
Optimization Toolbox™ 4
User’s Guide



How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Optimization Toolbox™ User’s Guide

© COPYRIGHT 1990–2008 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined
in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents


Revision History
November 1990 First printing
December 1996 Second printing For MATLAB® 5
January 1999 Third printing For Version 2 (Release 11)
September 2000 Fourth printing For Version 2.1 (Release 12)
June 2001 Online only Revised for Version 2.1.1 (Release 12.1)
September 2003 Online only Revised for Version 2.3 (Release 13SP1)
June 2004 Fifth printing Revised for Version 3.0 (Release 14)
October 2004 Online only Revised for Version 3.0.1 (Release 14SP1)
March 2005 Online only Revised for Version 3.0.2 (Release 14SP2)
September 2005 Online only Revised for Version 3.0.3 (Release 14SP3)
March 2006 Online only Revised for Version 3.0.4 (Release 2006a)
September 2006 Sixth printing Revised for Version 3.1 (Release 2006b)
March 2007 Seventh printing Revised for Version 3.1.1 (Release 2007a)
September 2007 Eighth printing Revised for Version 3.1.2 (Release 2007b)
March 2008 Online only Revised for Version 4.0 (Release 2008a)





Acknowledgments

Acknowledgments
The MathWorks™ would like to acknowledge the following contributors to
Optimization Toolbox™ algorithms.

Thomas F. Coleman researched and contributed the large-scale algorithms
for constrained and unconstrained minimization, nonlinear least squares and
curve fitting, constrained linear least squares, quadratic programming, and
nonlinear equations.

Dr. Coleman is Dean of Faculty of Mathematics and Professor of
Combinatorics and Optimization at University of Waterloo.

Dr. Coleman has published 4 books and over 70 technical papers in the
areas of continuous optimization and computational methods and tools for
large-scale problems.

Yin Zhang researched and contributed the large-scale linear programming
algorithm.

Dr. Zhang is Professor of Computational and Applied Mathematics on the
faculty of the Keck Center for Interdisciplinary Bioscience Training at Rice
University.

Dr. Zhang has published over 50 technical papers in the areas of interior-point
methods for linear programming and computation mathematical
programming.



Acknowledgments



Contents

Getting Started

1
Product Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2
Optimization Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2
Optimization Tool GUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3

Example: Nonlinear Constrained Minimization . . . . . . 1-4
Problem Formulation: Rosenbrock’s Function . . . . . . . . . . 1-4
Defining the Problem in Toolbox Syntax . . . . . . . . . . . . . . . 1-5
Running the Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7
Interpreting the Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-11

Optimization Overview

2
Introduction to Optimization Toolbox™ Solvers . . . . . . 2-2

Writing Objective Functions . . . . . . . . . . . . . . . . . . . . . . . . 2-4
Writing Objective Functions . . . . . . . . . . . . . . . . . . . . . . . . . 2-4
Jacobians of Vector and Matrix Objective Functions . . . . . 2-6
Anonymous Function Objectives . . . . . . . . . . . . . . . . . . . . . 2-9
Maximizing an Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9
Passing Extra Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10

Writing Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14
Types of Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14
Bound Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-15
Linear Inequality Constraints . . . . . . . . . . . . . . . . . . . . . . . 2-16
Linear Equality Constraints . . . . . . . . . . . . . . . . . . . . . . . . . 2-16
Nonlinear Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-17
An Example Using All Types of Constraints . . . . . . . . . . . . 2-18

vii



Choosing a Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-20
Problems Handled by Optimization Toolbox™ Functions . . 2-20
Optimization Decision Table . . . . . . . . . . . . . . . . . . . . . . . . 2-23

Solver Inputs and Outputs . . . . . . . . . . . . . . . . . . . . . . . . . 2-25
Iterations and Function Counts . . . . . . . . . . . . . . . . . . . . . . 2-25
First-Order Optimality Measure . . . . . . . . . . . . . . . . . . . . . 2-26
Tolerances and Stopping Criteria . . . . . . . . . . . . . . . . . . . . . 2-28
Lagrange Multiplier Structures . . . . . . . . . . . . . . . . . . . . . . 2-30
Output Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-30
Output Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-31

Local vs. Global Optima . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-39
What Are Local and Global Optima? . . . . . . . . . . . . . . . . . . 2-39
Basins of Attraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-39
Searching For Global Optima . . . . . . . . . . . . . . . . . . . . . . . . 2-41

Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-44

Optimization Tool

3
Getting Started with the Optimization Tool . . . . . . . . . . 3-2

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2
Opening the Optimization Tool . . . . . . . . . . . . . . . . . . . . . . 3-2
Steps for Using the Optimization Tool . . . . . . . . . . . . . . . . . 3-5

Running a Problem in the Optimization Tool . . . . . . . . . 3-6
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6
Pausing and Stopping the Algorithm . . . . . . . . . . . . . . . . . . 3-7
Viewing Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7
Final Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7
Starting a New Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8
Closing the Optimization Tool . . . . . . . . . . . . . . . . . . . . . . . 3-9

Specifying Certain Options . . . . . . . . . . . . . . . . . . . . . . . . . 3-10
Plot Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-10
Output function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-11

viii Contents



Display to Command Window . . . . . . . . . . . . . . . . . . . . . . . 3-11

Getting Help in the Optimization Tool . . . . . . . . . . . . . . . 3-13
Quick Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-13
Additional Help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-13

Importing and Exporting Your Work . . . . . . . . . . . . . . . . 3-14
Exporting to the MATLAB® Workspace . . . . . . . . . . . . . . . . 3-14
Importing Your Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-16
Generating an M-File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-16

Optimization Tool Examples . . . . . . . . . . . . . . . . . . . . . . . . 3-18
About Optimization Tool Examples . . . . . . . . . . . . . . . . . . . 3-18
Optimization Tool with the fmincon Solver . . . . . . . . . . . . . 3-18
Optimization Tool with the lsqlin Solver . . . . . . . . . . . . . . . 3-22

Tutorial

4
Medium- and Large-Scale Algorithms . . . . . . . . . . . . . . . . 4-3

Medium-Scale Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3
Large-Scale Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3

Examples That Use Standard Algorithms . . . . . . . . . . . . 4-4
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4
Unconstrained Minimization Example . . . . . . . . . . . . . . . . 4-5
Nonlinear Inequality Constrained Example . . . . . . . . . . . . 4-7
Constrained Example with Bounds . . . . . . . . . . . . . . . . . . . 4-8
Constrained Example with Gradients . . . . . . . . . . . . . . . . . 4-10
Constrained Minimization Using fmincon’s Interior-Point

Algorithm With Analytic Hessian . . . . . . . . . . . . . . . . . . 4-12
Gradient Check: Analytic vs. Numeric . . . . . . . . . . . . . . . . 4-18
Equality Constrained Example . . . . . . . . . . . . . . . . . . . . . . 4-19
Nonlinear Equations with Analytic Jacobian . . . . . . . . . . . 4-20
Nonlinear Equations with Finite-Difference Jacobian . . . . 4-23
Error Estimates in Nonlinear Curve Fitting with

lsqcurvefit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-24
Multiobjective Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-28

ix



Large-Scale Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-42
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-42
Problems Covered by Large-Scale Methods . . . . . . . . . . . . . 4-43
Nonlinear Equations with Jacobian . . . . . . . . . . . . . . . . . . . 4-47
Nonlinear Equations with Jacobian Sparsity Pattern . . . . 4-49
Nonlinear Least-Squares with Full Jacobian Sparsity

Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-52
Nonlinear Minimization with Gradient and Hessian . . . . . 4-53
Nonlinear Minimization with Gradient and Hessian

Sparsity Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-55
Nonlinear Minimization with Bound Constraints and

Banded Preconditioner . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-57
Nonlinear Minimization with Equality Constraints . . . . . . 4-60
Nonlinear Minimization with a Dense but Structured

Hessian and Equality Constraints . . . . . . . . . . . . . . . . . . 4-62
Quadratic Minimization with Bound Constraints . . . . . . . 4-66
Quadratic Minimization with a Dense but Structured

Hessian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-68
Linear Least-Squares with Bound Constraints . . . . . . . . . . 4-73
Linear Programming with Equalities and Inequalities . . . 4-75
Linear Programming with Dense Columns in the

Equalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-76

Default Options Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-79
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-79
Changing the Default Settings . . . . . . . . . . . . . . . . . . . . . . . 4-79

Displaying Iterative Output . . . . . . . . . . . . . . . . . . . . . . . . 4-84
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-84
Most Common Output Headings . . . . . . . . . . . . . . . . . . . . . 4-84
Function-Specific Output Headings . . . . . . . . . . . . . . . . . . . 4-85

Typical Problems and How to Deal with Them . . . . . . . 4-91

Selected Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-94

x Contents



Standard Algorithms

5
Optimization Theory Overview . . . . . . . . . . . . . . . . . . . . . 5-4

Demos of Medium-Scale Methods . . . . . . . . . . . . . . . . . . . 5-5

Unconstrained Optimization . . . . . . . . . . . . . . . . . . . . . . . . 5-6
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6
Quasi-Newton Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-7
Line Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-9

Quasi-Newton Implementation . . . . . . . . . . . . . . . . . . . . . . 5-11
Hessian Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11
Line Search Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11

Least-Squares Optimization . . . . . . . . . . . . . . . . . . . . . . . . 5-18
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-18
Gauss-Newton Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-20
Levenberg-Marquardt Method . . . . . . . . . . . . . . . . . . . . . . . 5-21
Nonlinear Least-Squares Implementation . . . . . . . . . . . . . 5-22

Nonlinear Systems of Equations . . . . . . . . . . . . . . . . . . . . 5-25
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-25
Gauss-Newton Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-25
Trust-Region Dogleg Method . . . . . . . . . . . . . . . . . . . . . . . . 5-26
Nonlinear Equations Implementation . . . . . . . . . . . . . . . . . 5-27

Constrained Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 5-29
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-29
Sequential Quadratic Programming (SQP) . . . . . . . . . . . . . 5-30
Quadratic Programming (QP) Subproblem . . . . . . . . . . . . . 5-31
SQP Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-32
Simplex Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-39

Multiobjective Optimization . . . . . . . . . . . . . . . . . . . . . . . . 5-44
Multiobjective Optimization Toolbox™ Solvers . . . . . . . . . 5-44
Goal Attainment Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-44
Algorithm Improvements for the Goal Attainment

Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-46

xi



Minimizing the Maximum Objective . . . . . . . . . . . . . . . . . . 5-47

Selected Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-49

Large-Scale Algorithms

6
Trust-Region Methods for Nonlinear Minimization . . . 6-3

Interior-Point Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-6
Barrier Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-6
Direct Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-7
Conjugate Gradient Step . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-8
Interior-Point Algorithm Options . . . . . . . . . . . . . . . . . . . . . 6-9

Demos of Large-Scale Methods . . . . . . . . . . . . . . . . . . . . . . 6-11

Preconditioned Conjugate Gradients . . . . . . . . . . . . . . . . 6-12
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-12
Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-12

Linearly Constrained Problems . . . . . . . . . . . . . . . . . . . . . 6-14
Linear Equality Constraints . . . . . . . . . . . . . . . . . . . . . . . . . 6-14
Box Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-15

Nonlinear Least-Squares . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-17

Quadratic Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-18

Linear Least-Squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-19

Large-Scale Linear Programming . . . . . . . . . . . . . . . . . . . 6-20
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-20
Main Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-20
Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-23

xii Contents



Selected Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-25

Parallel Computing for Optimization

7
Parallel Computing in Optimization Toolbox™

Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2
Parallel Optimization Functionality . . . . . . . . . . . . . . . . . . 7-2
Parallel Estimation of Gradients . . . . . . . . . . . . . . . . . . . . . 7-2
Nested Parallel Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 7-3

Using Parallel Computing with fmincon, fgoalattain,
and fminimax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-5
Using Parallel Computing with Multicore Processors . . . . 7-5
Using Parallel Computing with a Multiprocessor

Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-6
Testing Parallel Computations . . . . . . . . . . . . . . . . . . . . . . . 7-7

Improving Performance with Parallel Computing . . . . 7-8
Factors That Affect Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-8
Factors That Affect Results . . . . . . . . . . . . . . . . . . . . . . . . . 7-8
Searching for Global Optima . . . . . . . . . . . . . . . . . . . . . . . . 7-9

External Interface

8
ktrlink: An Interface to KNITRO® Libraries . . . . . . . . . . 8-2

What Is ktrlink? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-2
Installation and Configuration . . . . . . . . . . . . . . . . . . . . . . . 8-2
Example Using ktrlink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-4
Setting Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-7
Sparse Matrix Considerations . . . . . . . . . . . . . . . . . . . . . . . 8-9

xiii



Argument and Options Reference

9
Function Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-2

Input Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-2
Output Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-5

Optimization Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-8
Options Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-8
Output Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-18
Plot Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-27

Function Reference

10
Minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-2

Equation Solving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-2

Least Squares (Curve Fitting) . . . . . . . . . . . . . . . . . . . . . . . 10-3

Graphical User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-3

Utility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-4

xiv Contents



Functions — Alphabetical List

11

Examples

A
Examples that Use Standard Algorithms . . . . . . . . . . . . . A-2

Optimization Tool Examples . . . . . . . . . . . . . . . . . . . . . . . . A-2

Large-Scale Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-2

Index

xv



xvi Contents



1

Getting Started

Product Overview (p. 1-2) Introduces the toolbox and describes
the types of problems it is designed
to solve

Example: Nonlinear Constrained
Minimization (p. 1-4)

Presents an example that minimizes
a nonlinear function with a nonlinear
constraint



1 Getting Started

Product Overview

In this section...

“Introduction” on page 1-2

“Optimization Functions” on page 1-2

“Optimization Tool GUI” on page 1-3

Introduction
Optimization Toolbox™ software extends the capability of the MATLAB®

numeric computing environment. The software includes functions for many
types of optimization including

• Unconstrained nonlinear minimization

• Constrained nonlinear minimization, including semi-infinite minimization
problems

• Quadratic and linear programming

• Nonlinear least-squares and curve fitting

• Constrained linear least squares

• Sparse and structured large-scale problems, including linear programming
and constrained nonlinear minimization

• Multiobjective optimization, including goal attainment problems and
minimax problems

The toolbox also includes functions for solving nonlinear systems of equations.

Optimization Functions
Most toolbox functions are MATLAB M-files, made up of MATLAB statements
that implement specialized optimization algorithms. You can view the
MATLAB code for these functions using the statement

type function_name

1-2



Product Overview

You can extend the capabilities of Optimization Toolbox software by writing
your own M-files, or by using the software in combination with other toolboxes,
or with the MATLAB or Simulink® environments.

Optimization Tool GUI
Optimization Tool (optimtool) is a graphical user interface (GUI) for
selecting a toolbox function, specifying optimization options, and running
optimizations. It provides a convenient interface for all optimization routines,
including those from Genetic Algorithm and Direct Search Toolbox™ software,
which is licensed separately.

Optimization Tool makes it easy to

• Define and modify problems quickly

• Use the correct syntax for optimization functions

• Import and export from the MATLAB workspace

• Generate code containing your configuration for a solver and options

• Change parameters of an optimization during the execution of certain
Genetic Algorithm and Direct Search Toolbox functions

1-3



1 Getting Started

Example: Nonlinear Constrained Minimization

In this section...

“Problem Formulation: Rosenbrock’s Function” on page 1-4

“Defining the Problem in Toolbox Syntax” on page 1-5

“Running the Optimization” on page 1-7

“Interpreting the Result” on page 1-11

Problem Formulation: Rosenbrock’s Function
Consider the problem of minimizing Rosenbrock’s function

f x x x x( ) ( ) ,= −( ) + −100 12 1
2 2

1
2

over the unit disk, i.e., the disk of radius 1 centered at the origin. In other

words, find x that minimizes the function f(x) over the set x x1
2

2
2 1+ ≤ . This

problem is a minimization of a nonlinear function with a nonlinear constraint.

Note Rosenbrock’s function is a standard test function in optimization. It
has a unique minimum value of 0 attained at the point (1,1). Finding the
minimum is a challenge for some algorithms since it has a shallow minimum
inside a deeply curved valley.

Here are two view of Rosenbrock’s function in the unit disk. The vertical
axis is log-scaled; in other words, the plot shows log(1+f(x)). Contour lines
lie beneath the surface plot.

1-4



Example: Nonlinear Constrained Minimization

���������	�
��
����������

Rosenbrock’s function, log-scaled: two views.

The function f(x) is called the objective function. This is the function you wish

to minimize. The inequality x x1
2

2
2 1+ ≤ is called a constraint. Constraints

limit the set of x over which you may search for a minimum. You may have
any number of constraints, which may be inequalities or equations.

All Optimization Toolbox™ optimization functions minimize an objective
function. To maximize a function f, apply an optimization routine to minimize
–f.

Defining the Problem in Toolbox Syntax
To use Optimization Toolbox software, you need to

1 Define your objective function in the MATLAB® language, as an M-file or
anonymous function. This example will use an M-file.

1-5



1 Getting Started

2 Define your constraint(s) as a separate M-file or anonymous function.

M-file for Objective Function
An M-file is a text file containing MATLAB commands with the extension .m.
Create a new M-file in any text editor, or use the built-in MATLAB Editor as
follows:

1 At the command line type

edit rosenbrock

The MATLAB Editor opens.

2 In the editor type:

function f = rosenbrock(x)
f = 100*(x(2) - x(1)^2)^2 + (1 - x(1))^2;

3 Save the file by selecting File > Save.

M-File for Constraint Function
Constraint functions must be formulated so that they are in the form

c(x) ≤ 0 or ceq(x) = 0. The constraint x x1
2

2
2 1+ ≤ needs to be reformulated as

x x1
2

2
2 1 0+ − ≤ in order to have the correct syntax.

Furthermore, toolbox functions that accept nonlinear constraints need to
have both equality and inequality constraints defined. In this example there
is only an inequality constraint, so you must pass an empty array [ ] as
the equality constraint function ceq.

With these considerations in mind, write a function M-file for the nonlinear
constraint:

1 Create a file named unitdisk.m containing the following code:

function [c, ceq] = unitdisk(x)
c = x(1)^2 + x(2)^2 - 1;
ceq = [ ];

1-6



Example: Nonlinear Constrained Minimization

2 Save the file unitdisk.m.

Running the Optimization
There are two ways to run the optimization:

• Using the “Optimization Tool” on page 1-7 Graphical User Interface (GUI)

• Using command line functions; see “Minimizing at the Command Line”
on page 1-10.

Optimization Tool

1 Start the Optimization Tool by typing optimtool at the command line. The
following GUI opens.

1-7



1 Getting Started

For more information about this tool, see Chapter 3, “Optimization Tool”.

1-8



Example: Nonlinear Constrained Minimization

2 The default Solver fmincon - Constrained nonlinear minimization
is selected. This solver is appropriate for this problem, since Rosenbrock’s
function is nonlinear, and the problem has a constraint. For more
information about how to choose a solver, see “Choosing a Solver” on page
2-20.

3 In the Algorithm pop-up menu choose Active set—the default Trust
region reflective solver doesn’t handle nonlinear constraints.

4 For Objective function type @rosenbrock. The @ character indicates that
this is a function handle of the M-file rosenbrock.m.

5 For Start point type [0 0]. This is the initial point where fmincon begins
its search for a minimum.

6 For Nonlinear constraint function type @unitdisk, the function handle
of unitdisk.m.

7 In the Options pane (center bottom), select iterative in the Level of
display pop-up menu. (If you don’t see the option, click Display to
command window.) This shows the progress of fmincon in the command
window.

8 Click Start under Run solver and view results.
The following message appears in the box below the Start button:

Optimization running.

Optimization terminated.

Objective function value: 0.04567571111479972

Optimization terminated: magnitude of directional derivative in search

direction less than 2*options.TolFun and maximum constraint violation

is less than options.TolCon.

Your objective function value may differ slightly, depending on your computer
system and version of Optimization Toolbox software.

The message tells you that:

• The search for a constrained optimum ended because the derivative of the
objective function is nearly 0 in directions allowed by the constraint.

• The constraint is very nearly satisfied.

1-9



1 Getting Started

The minimizer x appears under Final point.

Minimizing at the Command Line
You can run the same optimization from the command line, as follows.

1 Create an options structure to choose iterative display and the active-set
algorithm:

options = optimset('Display','iter','Algorithm','active-set');

2 Run the fmincon solver with the structure options, reporting both the
location x of the minimizer, and value fval attained by the objective
function:

[x,fval] = fmincon(@rosenbrock,[0 0],...
[],[],[],[],[],[],@unitdisk,options)

The six sets of empty brackets represent optional constraints that are not
being used in this example. See the fmincon function reference pages for
the syntax.

MATLAB outputs a table of iterations, and the results of the optimization:

Optimization terminated: magnitude of directional derivative in search

direction less than 2*options.TolFun and maximum constraint violation

is less than options.TolCon.

No active inequalities.

x =

0.7864 0.6177

fval =

0.0457

1-10



Example: Nonlinear Constrained Minimization

The message tells you that the search for a constrained optimum ended
because the derivative of the objective function is nearly 0 in directions
allowed by the constraint, and that the constraint is very nearly satisfied.

Interpreting the Result
The iteration table in the command window shows how MATLAB searched for
the minimum value of Rosenbrock’s function in the unit disk. This table is
the same whether you use Optimization Tool or the command line. MATLAB
reports the minimization as follows:

Max Line search Directional First-order

Iter F-count f(x) constraint steplength derivative optimality Procedure

0 3 1 -1

1 9 0.953127 -0.9375 0.125 9.5 12.5

2 16 0.808445 -0.8601 0.0625 0.715 12.4

3 21 0.462347 -0.836 0.25 1.83 5.15

4 24 0.340677 -0.7969 1 -0.0409 0.811

5 27 0.300877 -0.7193 1 0.0087 3.72

6 30 0.261949 -0.6783 1 -0.0348 3.02

7 33 0.164971 -0.4972 1 -0.0632 2.29

8 36 0.110766 -0.3427 1 -0.0272 2

9 40 0.0750932 -0.1592 0.5 -0.00514 2.41

10 43 0.0580976 -0.007608 1 -0.00908 3.19

11 47 0.0482475 -0.003783 0.5 -0.0122 1.41

12 51 0.0464333 -0.001888 0.5 -0.00257 0.726

13 55 0.0459217 -0.0009431 0.5 -0.000759 0.362

14 59 0.0457652 -0.0004713 0.5 -0.000247 0.181

15 63 0.0457117 -0.0002356 0.5 -9.04e-005 0.0906 Hessian modified

16 67 0.0456912 -0.0001178 0.5 -3.69e-005 0.0453 Hessian modified

17 71 0.0456825 -5.889e-005 0.5 -1.64e-005 0.0226 Hessian modified

18 75 0.0456785 -2.944e-005 0.5 -7.67e-006 0.0113 Hessian modified

19 79 0.0456766 -1.472e-005 0.5 -3.71e-006 0.00566 Hessian modified

20 83 0.0456757 -7.361e-006 0.5 -1.82e-006 0.00283 Hessian modified

This table might differ from yours depending on toolbox version and computing
platform. The following description applies to the table as displayed.

• The first column, labeled Iter, is the iteration number from 0 to 20.
fmincon took 20 iterations to converge.

1-11



1 Getting Started

• The second column, labeled F-count, reports the cumulative number
of times Rosenbrock’s function was evaluated. The final row shows an
F-count of 83, indicating that fmincon evaluated Rosenbrock’s function
83 times in the process of finding a minimum.

• The third column, labeled f(x), displays the value of the objective function.
The final value, 0.0456757, is the minimum that is reported in the
Optimization Tool Run solver and view results box, and at the end of
the exit message in the command window.

• The fourth column, Max constraint, goes from a value of –1 at the initial
value, to very nearly 0, –7.361e–006, at the final iteration. This column
shows the value of the constraint function unitdisk at each iteration. Since

the value of unitdisk was nearly 0 at the final iteration, x x1
2

2
2 1+ ≈ there.

The other columns of the iteration table are described in “Displaying Iterative
Output” on page 4-84.

1-12



2

Optimization Overview

Introduction to Optimization
Toolbox™ Solvers (p. 2-2)

What is an optimization solver?

Writing Objective Functions (p. 2-4) Defining optimization objectives

Writing Constraints (p. 2-14) Defining optimization constraints

Choosing a Solver (p. 2-20) Finding the right solver for your
problem

Solver Inputs and Outputs (p. 2-25) Optimization terms

Local vs. Global Optima (p. 2-39) Explains why solvers may not find
the smallest minimum

Reference (p. 2-44) Bibliography



2 Optimization Overview

Introduction to Optimization Toolbox™ Solvers
There are four general categories of Optimization Toolbox™ solvers:

• Minimizers

This group of solvers attempts to find a local minimum of the objective
function near a starting point x0. They address problems of unconstrained
optimization, linear programming, quadratic programming, and general
nonlinear programming.

• Multiobjective minimizers

This group of solvers attempts to either minimize the maximum value of
a set of functions (fminimax), or to find a location where a collection of
functions is below some prespecified values (fgoalattain).

• Equation solvers

This group of solvers attempts to find a solution to a scalar- or vector-valued
nonlinear equation f(x) = 0 near a starting point x0. Equation-solving can
be considered a form of optimization because it is equivalent to finding
the minimum norm of f(x) near x0.

• Least-Squares (curve-fitting) solvers

This group of solvers attempts to minimize a sum of squares. This type of
problem frequently arises in fitting a model to data. The solvers address
problems of finding nonnegative solutions, bounded or linearly constrained
solutions, and fitting parameterized nonlinear models to data.

For more information see “Problems Handled by Optimization Toolbox™
Functions” on page 2-20. See “Optimization Decision Table” on page 2-23 for
aid in choosing among solvers for minimization.

Minimizers formulate optimization problems in the form

min ( ),
x

f x

possibly subject to constraints. f(x) is called an objective function. In general,
f(x) is a scalar function of type double, and x is a vector or scalar of type
double. However, multiobjective optimization, equation solving, and some
sum-of-squares minimizers, can have vector or matrix objective functions F(x)

2-2



Introduction to Optimization Toolbox™ Solvers

of type double. To use Optimization Toolbox solvers for maximization instead
of minimization, see “Maximizing an Objective” on page 2-9.

Write the objective function for a solver in the form of an M-file or anonymous
function handle. You can supply a gradient ∇f(x) for many solvers, and you
can supply a Hessian for several solvers. See “Writing Objective Functions”
on page 2-4. Constraints have a special form, as described in “Writing
Constraints” on page 2-14.

2-3



2 Optimization Overview

Writing Objective Functions

In this section...

“Writing Objective Functions” on page 2-4

“Jacobians of Vector and Matrix Objective Functions” on page 2-6

“Anonymous Function Objectives” on page 2-9

“Maximizing an Objective” on page 2-9

“Passing Extra Parameters” on page 2-10

Writing Objective Functions
This section relates to scalar-valued objective functions. For vector-valued
or matrix-valued objective functions, see “Jacobians of Vector and Matrix
Objective Functions” on page 2-6.

An objective function M-file can return one, two, or three outputs. It can
return:

• A single double-precision number, representing the value of f(x)

• Both f(x) and its gradient ∇f(x)

• All three of f(x), ∇f(x), and the Hessian matrix H(x)=∂ 2f/∂xi∂xj

You are not required to provide a gradient for some solvers, and you are
never required to provide a Hessian, but providing one or both can lead to
faster execution and more reliable answers. If you do not provide a gradient
or Hessian, solvers may attempt to estimate them using finite difference
approximations or other numerical schemes.

Some solvers do not use gradient or Hessian information. You should
“conditionalize” an M-file so that it returns just what is needed:

• f(x) alone

• Both f(x) and ∇f(x)

• All three of f(x), ∇f(x), and H(x)

2-4



Writing Objective Functions

For example, consider Rosenbrock’s function

f x x x x( ) ( ) ,= −( ) + −100 12 1
2 2

1
2

which is described and plotted in “Example: Nonlinear Constrained
Minimization” on page 1-4. The gradient of f(x) is

∇f x
x x x x

x x
( ) ,=

− −( ) − −( )

−( )
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

400 2 1

200

2 1
2

1 1

2 1
2

and the Hessian H(x) is

H x x x x
x

( ) .= − + −
−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1200 400 2 400
400 200

1
2

2 1

1

Function rosenboth returns the value of Rosenbrock’s function in f, the
gradient in g, and the Hessian in H if required:

function [f g H] = rosenboth(x)
% Calculate objective f
f = 100*(x(2) - x(1)^2)^2 + (1-x(1))^2;

if nargout > 1 % gradient required
g = [-400*(x(2)-x(1)^2)*x(1)-2*(1-x(1));

200*(x(2)-x(1)^2)];

if nargout > 2 % Hessian required
H = [1200*x(1)^2-400*x(2)+2, -400*x(1);

-400*x(1), 200];
end

end

nargout checks the number of arguments that a calling function specifies; see
“Checking the Number of Input Arguments” in the MATLAB® Programming
Fundamentals documentation.

2-5



2 Optimization Overview

The solver fminunc, designed for unconstrained optimization, allows you
to minimize Rosenbrock’s function. Tell fminunc to use the gradient and
Hessian by setting options:

options = optimset('GradObj','on','Hessian','on');

Run fminunc starting at [–1, 2]:

[x fval] = fminunc(@rosenboth, [-1; 2], options)

Optimization terminated: first-order optimality less than OPTIONS.TolFun,

and no negative/zero curvature detected in trust region model.

x =

1.0000

1.0000

fval =

1.9310e-017

Jacobians of Vector and Matrix Objective Functions
Some solvers, such as fsolve and lsqcurvefit, can have objective functions
that are vectors or matrices. The only difference in usage between these
types of objective functions and scalar objective functions is the way to write
their derivatives. The first-order partial derivatives of a vector-valued or
matrix-valued function is called a Jacobian; the first-order partial derivatives
of a scalar function is called a gradient.

Jacobians of Vector Functions
If x represents a vector of independent variables, and F(x) is the vector
function, the Jacobian J(x) is defined as

J x
F x
xij
i

j
( )

( )
.=

∂
∂

If F has m components, and x has k components, J is a m-by-k matrix.

For example, if

F x
x x x
x x x

( )
sin

,= +
+ −( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1
2

2 3

1 2 32 3

2-6



Writing Objective Functions

then J(x) is

J x
x x x

x x x x x x x x x
( )

cos cos cos
=

+ −( ) + −( ) − + −
2
2 3 2 2 3 3 2 3

1 3 2

1 2 3 1 2 3 1 2 3(( )
⎡

⎣
⎢

⎤

⎦
⎥ .

Jacobians of Matrix Functions
The Jacobian of a matrix F(x) is defined by changing the matrix to a vector,
column by column. For example, the matrix

F
F F
F F
F F

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

11 12

21 22

31 32

is rewritten as a vector f:

f

F
F
F
F
F
F

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

11

21

31

12

22

32

.

The Jacobian of F is defined as the Jacobian of f,

J
f
xij

i

j
=
∂
∂

.

If F is an m-by-n matrix, and x is a k-vector, the Jacobian is a mn-by-k matrix.

For example, if

F x

x x x x

x x x x

x x x

( ) / ,=

+

−

− −

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

1 2 1
3

2
2

2 1
4

2 1

2
2

1
3

2
4

3

5

4

the Jacobian of F is

2-7



2 Optimization Overview

J x

x x

x
x

x x

x x x

x x

( )

/ /

=

−
−

−

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

2 1

1
3

2

1
2

2

2 1
2

1

1
2

2
3

4 5
0 2

3 6

1

3 4

⎤⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

.

Jacobians with Matrix-Valued Independent Variables
If x is a matrix, the Jacobian of F(x) is defined by changing the matrix x to a
vector, column by column. For example, if

X
x x
x x

=
⎡

⎣
⎢

⎤

⎦
⎥

11 12

21 22
,

then the gradient is defined in terms of the vector

x

x
x
x
x

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

11

21

12

22

.

With

F
F F
F F
F F

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

11 12

21 22

31 32

,

and f the vector form of F as above, the Jacobian of F(X) is defined to be the
Jacobian of f(x):

J
f
xij

i

j
=
∂
∂

.

So, for example,

2-8



Writing Objective Functions

J
f
x

F
X

J
f
x

F
X

( , )
( )
( )

, ( , )
( )
( )

3 2
3
2

5 4
5
4

31

21

22

22
= ∂
∂

=
∂
∂

= ∂
∂

= ∂
∂

 and ..

If F is an m-by-n matrix, and x is a j-by-k matrix, the Jacobian is a mn-by-jk
matrix.

Anonymous Function Objectives
Anonymous functions are useful for writing simple objective functions,
without gradient or Hessian information. Rosenbrock’s function is simple
enough to write as an anonymous function:

anonrosen = @(x)(100*(x(2) - x(1)^2)^2 + (1 - x(1))^2);

Check that this evaluates correctly at (–1,2):

>> anonrosen([-1 2])
ans =

104

Using anonrosen in fminunc yields the following results:

[x fval] = fminunc(anonrosen, [-1; 2])

Warning: Gradient must be provided for trust-region method;

using line-search method instead.

> In fminunc at 265

Optimization terminated: relative infinity-norm of gradient less than options.TolFun.

x =

1.0000

1.0000

fval =

1.2262e-010

Maximizing an Objective
All solvers are designed to minimize an objective function. If you have a
maximization problem, that is, a problem of the form

max ( ),
x

f x

then define g(x) = –f(x), and minimize g.

2-9



2 Optimization Overview

For example, to find the maximum of tan(cos(x)) near x = 5, evaluate:

[x fval] = fminunc(@(x)-tan(cos(x)),5)

Warning: Gradient must be provided for trust-region method;

using line-search method instead.

> In fminunc at 265

Optimization terminated: relative infinity-norm of gradient less than options.TolFun.

x =

6.2832

fval =

-1.5574

The maximum is 1.5574 (the negative of the reported fval), and occurs at
x = 6.2832. This is correct since, to 5 digits, the maximum is tan(1) = 1.5574,
which occurs at x = 2π = 6.2832.

Passing Extra Parameters
Sometimes objective (or constraint) functions have parameters in addition
to the independent variable. There are three methods of including these
parameters:

• “Anonymous Functions” on page 2-11

• “Nested Functions” on page 2-12

• “Global Variables” on page 2-13

Global variables are troublesome because they do not allow names to be
reused among functions. It is better to use one of the other two methods.

For example, suppose you want to minimize the function

f x a bx x x x x c cx x( ) ,/= − +( ) + + − +( )1
2

1
4 3

1
2

1 2 2
2

2
2

(2-1)

for different values of a, b, and c. Solvers accept objective functions that
depend only on a single variable (x in this case). The following sections show
how to provide the additional parameters a, b, and c. The solutions are for
parameter values a = 4, b = 2.1, and c = 4 near x0 = [0.5 0.5] using fminunc.

2-10



Writing Objective Functions

Anonymous Functions
To pass parameters using anonymous functions:

1 Write an M-file containing the following code:

function y = parameterfun(x,a,b,c)
y = (a - b*x(1)^2 + x(1)^4/3)*x(1)^2 + x(1)*x(2) + ...

(-c + c*x(2)^2)*x(2)^2;

2 Assign values to the parameters and define a function handle f to an
anonymous function by entering the following commands at the MATLAB
prompt:

a = 4; b = 2.1; c = 4; % Assign parameter values
x0 = [0.5,0.5];
f = @(x)parameterfun(x,a,b,c)

3 Call the solver fminunc with the anonymous function:

[x,fval] = fminunc(f,x0)

The following output is displayed in the command window:

Warning: Gradient must be provided for trust-region method;

using line-search method instead.

> In fminunc at 265

Optimization terminated: relative infinity-norm of gradient less than options.TolFun.

x =

-0.0898 0.7127

fval =

-1.0316

You can create anonymous functions of more than one argument. For example,
to use lsqcurvefit, first create a function that takes two input arguments,
x and xdata:

fh = @(x,xdata)(sin(x).*xdata +(x.^2).*cos(xdata));
x = pi; xdata = pi*[4;2;3];
fh(x, xdata)

ans =

2-11



2 Optimization Overview

9.8696
9.8696

-9.8696

Now call lsqcurvefit:

% Assume ydata exists
x = lsqcurvefit(fh,x,xdata,ydata)

Nested Functions
To pass the parameters for Equation 2-1 via a nested function, write a single
M-file that

• Accepts a, b, c, and x0 as inputs

• Contains the objective function as a nested function

• Calls fminunc

Here is the code for the M-file for this example:

function [x,fval] = runnested(a,b,c,x0)
[x,fval] = fminunc(@nestedfun,x0);
% Nested function that computes the objective function

function y = nestedfun(x)
y = (a - b*x(1)^2 + x(1)^4/3)*x(1)^2 + x(1)*x(2) +...

(-c + c*x(2)^2)*x(2)^2;
end

end

Note that the objective function is computed in the nested function nestedfun,
which has access to the variables a, b, and c.

To run the optimization, enter:

a = 4; b = 2.1; c = 4;% Assign parameter values
x0 = [0.5,0.5];
[x,fval] = runnested(a,b,c,x0)

The output is the same as in “Anonymous Functions” on page 2-11.

2-12



Writing Objective Functions

Global Variables
Global variables can be troublesome, it is better to avoid using them. To use
global variables, declare the variables to be global in the workspace and in
the functions that use the variables.

1 Write an M-file containing code for your function:

function y = globalfun(x)
global a b c
y = (a - b*x(1)^2 + x(1)^4/3)*x(1)^2 + x(1)*x(2) + ...

(-c + c*x(2)^2)*x(2)^2;

2 In your MATLAB workspace, define the variables and run fminunc:

global a b c;
a = 4; b = 2.1; c = 4; % Assign parameter values
x0 = [0.5,0.5];
[x,fval] = fminunc(@globalfun,x0)

The output is the same as in “Anonymous Functions” on page 2-11.

2-13



2 Optimization Overview

Writing Constraints

In this section...

“Types of Constraints” on page 2-14

“Bound Constraints” on page 2-15

“Linear Inequality Constraints” on page 2-16

“Linear Equality Constraints” on page 2-16

“Nonlinear Constraints” on page 2-17

“An Example Using All Types of Constraints” on page 2-18

Types of Constraints
Optimization Toolbox™ solvers have special forms for constraints. Constraints
are separated into the following types:

• “Bound Constraints” on page 2-15 — Lower and upper bounds on individual
components: x ≥ l and x ≤ u.

• “Linear Inequality Constraints” on page 2-16 — A·x ≤ b. A is an m-by-n
matrix, which represents m constraints for an n-dimensional vector x. b is
m-dimensional.

• “Linear Equality Constraints” on page 2-16 — Aeq·x = beq. This is a system
of equations.

• “Nonlinear Constraints” on page 2-17 — c(x) ≤ 0 and ceq(x) = 0. Both c and
ceq are scalars or vectors representing several constraints.

Optimization Toolbox functions assume that inequality constraints are of the
form ci(x) ≤ 0 or A x ≤ b. Greater-than constraints are expressed as less-than
constraints by multiplying them by –1. For example, a constraint of the form
ci(x) ≥ 0 is equivalent to the constraint –ci(x) ≤ 0. A constraint of the form
A·x ≥ b is equivalent to the constraint –A·x ≤ –b. For more information, see
“Linear Inequality Constraints” on page 2-16 and “Nonlinear Constraints”
on page 2-17.

You can sometimes write constraints in a variety of ways. To make the best
use of the solvers, use the lowest numbered constraints possible:

2-14



Writing Constraints

1 Bounds

2 Linear equalities

3 Linear inequalities

4 Nonlinear equalities

5 Nonlinear inequalities

For example, with a constraint 5 x ≤ 20, use a bound x ≤ 4 instead of a linear
inequality or nonlinear inequality.

Bound Constraints
Lower and upper bounds on the components of the vector x. You need not give
gradients for this type of constraint; solvers calculate them automatically.
Bounds do not affect Hessians.

If you know bounds on the location of your optimum, then you may obtain
faster and more reliable solutions by explicitly including these bounds in your
problem formulation.

Bounds are given as vectors, with the same length as x.

• If a particular component is not bounded below, use –Inf as the bound;
similarly, use Inf if a component is not bounded above.

• If you have only bounds of one type (upper or lower), you do not need
to write the other type. For example, if you have no upper bounds, you
do not need to supply a vector of Infs. Also, if only the first m out of n
components are bounded, then you need only supply a vector of length
m containing bounds.

For example, suppose your bounds are:

• x3 ≥ 8

• x2 ≤ 3

Write the constraint vectors as

2-15



2 Optimization Overview

• l = [–Inf; –Inf; 8]

• u = [Inf; 3] or u = [Inf; 3; Inf]

Linear Inequality Constraints
Linear inequality constraints are of the form A·x ≤ b. When A is m-by-n,
this represents m constraints on a variable x with n components. You supply
the m-by-n matrix A and the m-component vector b. You do not need to give
gradients for this type of constraint; solvers calculate them automatically.
Linear inequalities do not affect Hessians.

For example, suppose that you have the following linear inequalities as
constraints:

x1 + x3 ≤ 4,
2x2– x3≥ –2,
x1– x2 + x3– x4≥ 9.

Here m = 3 and n = 4.

Write these using the following matrix A and vector b:

A

b

= −
− −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 0 1 0
0 2 1 0
1 1 1 1

4
2
9

,

.

Notice that the “greater than” inequalities were first multiplied by –1 in order
to get them into “less than” inequality form.

Linear Equality Constraints
Linear equalities are of the form Aeq·x = beq. This represents m equations
with n-component vector x. You supply the m-by-n matrix Aeq and the
m-component vector beq. You do not need to give a gradient for this type of
constraint; solvers calculate them automatically. Linear equalities do not
affect Hessians. The form of this type of constraint is exactly the same as

2-16



Writing Constraints

for “Linear Inequality Constraints” on page 2-16. Equalities rather than
inequalities are implied by the position in the input argument list of the
various solvers.

Nonlinear Constraints
Nonlinear inequality constraints are of the form c(x) ≤ 0, where c is a vector of
constraints, one component for each constraint. Similarly, nonlinear equality
constraints are of the form ceq(x) = 0. If you provide gradients for c and ceq,
your solver may run faster and give more reliable results.

For example, suppose that you have the following inequalities as constraints:

x x

x x

1
2

2
2

2 1
2

9 4
1

1

+ ≤

≥ −

,

.

Write these constraints in an M-file as follows:

function [c,ceq]=ellipseparabola(x)
% Inside the ellipse bounded by (-3<x<3),(-2<y<2)
% Above the line y=x^2-1
c(1) = (x(1)^2)/9 + (x(2)^2)/4 - 1;
c(2) = x(1)^2 - x(2) - 1;
ceq = [];
end

The constraint function returns empty [ ] as the nonlinear equality function.
Nonlinear constraint functions must return both inequality and equality
constraints, even if they do not both exist. Also, both inequalities were put
into ≤ 0 form.

To include gradient information, write a conditionalized function as follows:

function [c,ceq,gradc,gradceq]=ellipseparabola(x)
% Inside the ellipse bounded by (-3<x<3),(-2<y<2)
% Above the line y=x^2-1
c(1) = x(1)^2/9 + x(2)^2/4 - 1;
c(2) = x(1)^2 - x(2) - 1;
ceq = [];

2-17



2 Optimization Overview

if nargout > 2
gradc = [2*x(1)/9, 2*x(1);...

x(2)/2, -1];
gradceq = [];

end

See “Writing Objective Functions” on page 2-4 for information on
conditionalized gradients. The gradient matrix is of the form

gradci, j = [∂c(j)/∂xi].

The first column of the gradient matrix is associated with c(1), and the second
column is associated with c(2). This is the transpose of the form of Jacobians.

To have a solver use gradients of nonlinear constraints, you must indicate
that you have supplied them by using optimset:

options=optimset('GradConstr','on');

Make sure to pass the options structure to your solver:

[x,fval] = fmincon(@myobj,x0,A,b,Aeq,beq,lb,ub,...
@ellipseparabola,options)

An Example Using All Types of Constraints
This section contains an example of a nonlinear minimization problem with
all possible types of constraints. The objective function is in the subfunction
myobj(x). The nonlinear constraints are in the subfunction myconstr(x).
Gradients are not used in this example.

function fullexample
x0 = [1; 4; 5; 2; 5];
lb = [-Inf; -Inf; 0; -Inf; 1];
ub = [ Inf; Inf; 20];
Aeq = [1 -0.3 0 0 0];
beq = 0;
A = [0 0 0 -1 0.1

0 0 0 1 -0.5
0 0 -1 0 0.9];

b = [0; 0; 0];

2-18



Writing Constraints

[x,fval,exitflag]=fmincon(@myobj,x0,A,b,Aeq,beq,lb,ub,...
@myconstr)

%---------------------------------------------------------
function f = myobj(x)

f = 6*x(2)*x(5) + 7*x(1)*x(3) + 3*x(2)^2;

%---------------------------------------------------------
function [c, ceq] = myconstr(x)

c = [x(1) - 0.2*x(2)*x(5) - 71
0.9*x(3) - x(4)^2 - 67];

ceq = 3*x(2)^2*x(5) + 3*x(1)^2*x(3) - 20.875;

Calling fullexample produces the following display in the command window:

fullexample

Warning: Trust-region-reflective method does not currently solve this type of problem,

using active-set (line search) instead.

> In fmincon at 317

In fullexample at 12

Optimization terminated: first-order optimality measure less than options.TolFun

and maximum constraint violation is less than options.TolCon.

Active inequalities (to within options.TolCon = 1e-006):

lower upper ineqlin ineqnonlin

3

x =

0.6114

2.0380

1.3948

0.3585

1.5498

fval =

37.3806

exitflag =

1

2-19



2 Optimization Overview

Choosing a Solver

In this section...

“Problems Handled by Optimization Toolbox™ Functions” on page 2-20

“Optimization Decision Table” on page 2-23

Problems Handled by Optimization Toolbox™
Functions
The following tables show the functions available for minimization, equation
solving, multiobjective optimization, and solving least-squares or data-fitting
problems.

Minimization Problems

Type Formulation Solver

Scalar minimization
min ( )

x
f x

such that l < x < u (x is scalar)

fminbnd

Unconstrained minimization
min ( )

x
f x

fminunc,
fminsearch

Linear programming

min
x

Tf x

such that A·x ≤ b, Aeq·x = beq, l ≤ x ≤ u

linprog

Quadratic programming

min
x

T Tx Hx f x
1
2

+

such that A·x ≤ b, Aeq·x = beq, l ≤ x ≤ u

quadprog

2-20



Choosing a Solver

Minimization Problems (Continued)

Type Formulation Solver

Constrained minimization
min ( )

x
f x

such that c(x) ≤ 0, ceq(x) = 0, A·x ≤ b,
Aeq·x = beq, l ≤ x ≤ u

fmincon

Semi-infinite minimization
min ( )

x
f x

such that K(x,w) ≤ 0 for all w, c(x) ≤ 0,
ceq(x) = 0, A·x ≤ b, Aeq·x = beq, l ≤ x ≤ u

fseminf

Binary integer programming

min
x

Tf x

such that A·x ≤ b, Aeq·x = beq, x binary

bintprog

Multiobjective Problems

Type Formulation Solver

Goal attainment
min

,x γ
γ

such that F(x) – w·γ ≤ goal, c(x) ≤ 0, ceq(x) = 0,
A·x ≤ b, Aeq·x = beq, l ≤ x ≤ u

fgoalattain

Minimax
min max ( )

x i
iF x

such that c(x) ≤ 0, ceq(x) = 0, A·x ≤ b,
Aeq·x = beq, l ≤ x ≤ u

fminimax

2-21



2 Optimization Overview

Equation Solving Problems

Type Formulation Solver

Linear equations C·x = d, n equations, n variables \ (matrix left division)

Nonlinear equation of one
variable

f(x) = 0 fzero

Nonlinear equations F(x) = 0, n equations, n variables fsolve

Least-Squares (Model-Fitting) Problems

Type Formulation Solver

Linear least-squares

min
x

C x d⋅ − 2
2

m equations, n variables

\ (matrix left
division)

Nonnegative
linear-least-squares

min
x

C x d⋅ − 2
2

such that x ≥ 0

lsqnonneg

Constrained
linear-least-squares

min
x

C x d⋅ − 2
2

such that A·x ≤ b, Aeq·x = beq,
lb ≤ x ≤ ub

lsqlin

Nonlinear least-squares

min ( ) min ( )
x x

i
i

F x F x2
2 2= ∑

such that lb ≤ x ≤ ub

lsqnonlin

Nonlinear curve fitting

min ( , )
x

F x xdata ydata− 2
2

such that lb ≤ x ≤ ub

lsqcurvefit

2-22



Choosing a Solver

Optimization Decision Table
The following table is designed to help you choose a solver. It does not address
multiobjective optimization or equation solving. There are more details on
all the solvers in “Problems Handled by Optimization Toolbox™ Functions”
on page 2-20.

Use the table as follows:

1 Identify your objective function as one of five types:

• Linear

• Quadratic

• Sum-of-squares (Least squares)

• Smooth nonlinear

• Nonsmooth

2 Identify your constraints as one of five types:

• None (unconstrained)

• Bound

• Linear (including bound)

• General smooth

• Discrete (integer)

3 Use the table to identify a relevant solver.

In this table:

• Blank entries means there is no Optimization Toolbox™ solver specifically
designed for this type of problem.

• * means relevant solvers are found in Genetic Algorithm and Direct
Search Toolbox™ functions (licensed separately from Optimization Toolbox
solvers).

• fmincon applies to most smooth objective functions with smooth
constraints. It is not listed as a preferred solver for least squares or linear

2-23



2 Optimization Overview

or quadratic programming because the listed solvers are usually more
efficient.

• The table has suggested functions, but it is not meant to unduly restrict
your choices. For example, fmincon is known to be effective on some
non-smooth problems.

• The Genetic Algorithm and Direct Search Toolbox function ga can be
programmed to address discrete problems. It is not listed in the table
because additional programming is needed to solve discrete problems.

Solvers by Objective and Constraint

Objective TypeConstraint
Type Linear Quadratic Least

Squares
Smooth
nonlinear

Nonsmooth

None n/a (f = const,
or min = −∞ )

quadprog \,
lsqcurvefit,
lsqnonlin

fminsearch,
fminunc

fminsearch, *

Bound linprog quadprog lsqcurvefit,
lsqlin,
lsqnonlin,
lsqnonneg

fminbnd,
fmincon,
fseminf

*

Linear linprog quadprog lsqlin fmincon,
fseminf

*

General
smooth

fmincon fmincon fmincon fmincon,
fseminf

*

Discrete bintprog

Note This table does not list multiobjective solvers nor equation solvers. See
“Problems Handled by Optimization Toolbox™ Functions” on page 2-20 for a
complete list of problems addressed by Optimization Toolbox functions.

2-24



Solver Inputs and Outputs

Solver Inputs and Outputs

In this section...

“Iterations and Function Counts” on page 2-25

“First-Order Optimality Measure” on page 2-26

“Tolerances and Stopping Criteria” on page 2-28

“Lagrange Multiplier Structures” on page 2-30

“Output Structures” on page 2-30

“Output Functions” on page 2-31

Iterations and Function Counts
In general, Optimization Toolbox™ solvers iterate to find an optimum. This
means a solver begins at an initial value x0, performs some intermediate
calculations that eventually lead to a new point x1, and then repeats the
process to find successive approximations x2, x3, ... of the local minimum.
Processing stops after some number of iterations k.

At any step, intermediate calculations may involve evaluating the objective
function and constraints, if any, at points near the current iterate xi. For
example, the solver may estimate a gradient by finite differences. At each of
these nearby points, the function count (F-count) is increased by one.

• If there are no constraints, the F-count reports the total number of
objective function evaluations.

• If there are constraints, the F-count reports only the number of points
where function evaluations took place, not the total number of evaluations
of constraint functions.

• If there are many constraints, the F-count can be significantly less than
the total number of function evaluations.

F-count is a header in the iterative display for many solvers. For an example,
see “Interpreting the Result” on page 1-11.

2-25



2 Optimization Overview

The F-count appears in the output structure as output.funcCount. This
enables you to access the evaluation count programmatically. For more
information on output structures, see “Output Structures” on page 2-30.

Note Intermediate calculations do not count towards the reported number of
iterations k. The number of iterations is the total number of steps xi, 1 ≤ i ≤ k.

First-Order Optimality Measure
First-order optimality is a measure of how close a point x is to optimal. It
is used in all smooth solvers, constrained and unconstrained, though it
has different meanings depending on the problem and solver. For more
information about first-order optimality, see [1].

The tolerance TolFun relates to the first-order optimality measure. If the
optimality measure is less than TolFun, the solver iterations will end.

Unconstrained Optimality
For a smooth unconstrained problem,

min ( ),
x

f x

the optimality measure is the infinity-norm (i.e., maximum absolute value)
of ∇f(x):

First-order optimality measure = max ( ) ( ) .
i if x f x∇ ∇( ) = ∞

This measure of optimality is based on the familiar condition for a smooth
function to achieve a minimum: its gradient must be zero. For unconstrained
problems, when the first-order optimality measure is nearly zero, the objective
function has gradient nearly zero, so the objective function could be nearly
minimized. If the first-order optimality measure is not small, the objective
function is not minimized.

2-26



Solver Inputs and Outputs

Constrained Optimality—Theory
The theory behind the definition of first-order optimality measure for
constrained problems. The definition as used in Optimization Toolbox
functions is in “Constrained Optimality in Solver Form” on page 2-28.

For a smooth constrained problem let g and h be vector functions representing
all inequality and equality constraints respectively (i.e., bound, linear, and
nonlinear constraints):

min ( ) ( ) , ( ) .
x

f x g x h x subject to  ≤ =0 0

The meaning of first-order optimality in this case is more involved than for
unconstrained problems. The definition is based on the Karush-Kuhn-Tucker
(KKT) conditions. The KKT conditions are analogous to the condition that
the gradient must be zero at a minimum, modified to take constraints into
account. The difference is that The KKT conditions hold for constrained
problems.

The KKT conditions are given via an auxiliary Lagrangian function

L x f x g x h xi i i i( , ) ( ) ( ) ( ).λ λ λ= + +∑ ∑ (2-2)

The vector λ is called the Lagrange multiplier vector. Its length is the total
number of constraints.

The KKT conditions are:

∇xL x( , ) ,λ = 0 (2-3)

λi ig x i( ) ,= ∀0 (2-4)

g x
h x

i

( ) ,
( ) ,

≤
=
≥

⎧
⎨
⎪

⎩⎪

0
0
0λ  for inequality constraints. (2-5)

The three expressions in Equation 2-5 are not used in the calculation of
optimality measure.

The optimality measure associated with Equation 2-3 is

2-27



2 Optimization Overview

∇ ∇ ∇ ∇x i i i iL x f x g x h x( , ( ) ( ) ( ) .λ λ λ= + +∑∑ (2-6)

The optimality measure associated with Equation 2-4 is

λ g x
� ���

( ) , (2-7)

where the infinity norm (maximum) is used for the vector λi ig x
� �����

( ) .

The combined optimality measure is the maximum of the values calculated
in Equation 2-6 and Equation 2-7. Any constraint violations g(x) > 0 or
|h(x)| > 0 are measured and reported as tolerance violations; see “Tolerances
and Stopping Criteria” on page 2-28.

Constrained Optimality in Solver Form
The first-order optimality measure used by toolbox solvers is expressed as
follows for constraints given separately by bounds, linear functions, and
nonlinear functions. The measure is the maximum of the following two norms,
which correspond to Equation 2-6 and Equation 2-7:

∇ ∇ ∇ ∇x
T

ineq
T

eq i i i iL x f x A Aeq c x ceq x( , ( ) ( ) ( ) ,λ λ λ λ λ= + + + +∑∑ (2-8)

l x x u Ax bi i i i i i i i− − −λ λ λ
� ����������� � ������������ � �������

, , ( )
���������� � ����������

, ( ) ,c xi iλ (2-9)

where the infinity norm (maximum) is used for the vector in Equation 2-8 and
in Equation 2-9. The summations in Equation 2-8 range over all constraints.
If a bound is ±Inf, that term is not considered constrained, so is not part of
the summation.

For some large-scale problems with only linear equalities, the first-order
optimality measure is the infinity norm of the projected gradient (i.e., the
gradient projected onto the nullspace of Aeq).

Tolerances and Stopping Criteria
The number of iterations in an optimization depends on a solver’s stopping
criteria. These criteria include:

2-28



Solver Inputs and Outputs

• First-order optimality measure

• Tolerance TolX

• Tolerance TolFun

• Tolerance TolCon

• Bound on number of iterations taken MaxIter

• Bound on number of function evaluations MaxFunEvals

First-order optimality measure is defined in “First-Order Optimality
Measure” on page 2-26. Iterations and function evaluations are discussed
in “Iterations and Function Counts” on page 2-25. The remainder of this
section describes how Optimization Toolbox solvers use stopping criteria to
terminate optimizations.

• TolX is a lower bound on the size of a step, meaning the norm of (xi – xi+1). If
the solver attempts to take a step that is smaller than TolX, the iterations
end. TolX is sometimes used as a relative bound, meaning iterations end
when |(xi – xi+1)| < TolX*(1 + |xi|), or a similar relative measure.

• TolFun is a lower bound on the change in the value of the objective function
during a step. If |f(xi) – f(xi+1)| < TolFun, the iterations end. TolFun
is sometimes used as a relative bound, meaning iterations end when
|f(xi) – f(xi+1)| < TolFun(1 + |f(xi)|), or a similar relative measure.

• TolFun is also a bound on the first-order optimality measure. If the
optimality measure is less than TolFun, the iterations end. TolFun can also
be a relative bound.

• TolCon is an upper bound on the magnitude of any constraint functions.
If a solver returns a point x with c(x) > TolCon or |ceq(x)| > TolCon, the
solver reports that the constraints are violated at x. TolCon can also be a
relative bound.

Note TolCon operates differently from other tolerances. If TolCon is not
satisfied (i.e., if the magnitude of the constraint function exceeds TolCon), the
solver attempts to continue, unless it is halted for another reason. A solver
does not halt simply because TolCon is satisfied.

2-29



2 Optimization Overview

There are two other tolerances that apply to particular solvers: TolPCG and
MaxPCGIter. These relate to preconditioned conjugate gradient steps. For
more information, see “Preconditioned Conjugate Gradients” on page 6-12.

There are several tolerances that apply only to the interior-point algorithm
in the solver fmincon. See “Optimization Options” on page 9-8 for more
information.

Lagrange Multiplier Structures
Constrained optimization involves a set of Lagrange multipliers, as described
in “First-Order Optimality Measure” on page 2-26. Solvers return estimated
Lagrange multipliers in a structure. The structure is called lambda, since the
conventional symbol for Lagrange multipliers is the Greek letter lambda (λ ).
The structure separates the multipliers into the following types, called fields:

• lower, associated with lower bounds

• upper, associated with upper bounds

• eqlin, associated with linear equalities

• ineqlin, associated with linear inequalities

• eqnonlin, associated with nonlinear equalities

• ineqnonlin, associated with nonlinear inequalities

To access, for example, the nonlinear inequality field of a Lagrange multiplier
structure, enter lambda.inqnonlin. To access the third element of the
Lagrange multiplier associated with lower bounds, enter lambda.lower(3).

The content of the Lagrange multiplier structure depends on the solver.
For example, linear programming has no nonlinearities, so it does not have
eqnonlin or ineqnonlin fields. Each applicable solver’s function reference
pages contains a description of its Lagrange multiplier structure under the
heading “Outputs.”

Output Structures
An output structure contains information on a solver’s result. All solvers can
return an output structure. To obtain an output structure, invoke the solver

2-30



Solver Inputs and Outputs

with the output structure in the calling syntax. For example, to get an output
structure from lsqnonlin, use the syntax

[x,resnorm,residual,exitflag,output] = lsqnonlin(...)

You can also obtain an output structure by running a problem using the
Optimization Tool. All results exported from Optimization Tool contain an
output structure.

The contents of the output structure are listed in each solver’s reference
pages. For example, the output structure returned by lsqnonlin contains
firstorderopt, iterations, funcCount, cgiterations, stepsize,
algorithm, and message. To access, for example, the message, enter
output.message.

Optimization Tool exports results in a structure. The results structure
contains the output structure. To access, for example, the number of
iterations, use the syntax optimresults.output.iterations.

You can also see the contents of an output structure by double-clicking the
output structure in the MATLAB® Workspace pane.

Output Functions

Introduction
For some problems, you might want output from an optimization algorithm at
each iteration. For example, you might want to find the sequence of points
that the algorithm computes and plot those points. To do this, create an
output function that the optimization function calls at each iteration. See
“Output Function” on page 9-18 for details and syntax.

Generally, the solvers that can employ an output function are the ones that
can take nonlinear functions as inputs. You can determine which solvers can
have an output function by looking in the Options section of function reference
pages, or by checking whether the Output function option is available in the
Optimization Tool GUI for a solver.

2-31



2 Optimization Overview

Example: Using Output Functions

• “What the Example Contains” on page 2-32

• “Writing the Output Function” on page 2-32

• “Writing the Example M-File” on page 2-34

• “Running the Example” on page 2-35

What the Example Contains. The following example continues the one
in “Nonlinear Inequality Constrained Example” on page 4-7, which calls
the function fmincon at the command line to solve a nonlinear, constrained
optimization problem. The example in this section uses an M-file to call
fmincon. The M-file also contains all the functions needed for the example,
including:

• The objective function

• The constraint function

• An output function that records the history of points computed by the
algorithm for fmincon. At each iteration of the algorithm for fmincon,
the output function:

- Plots the current point computed by the algorithm.

- Stores the point and its corresponding objective function value in a
variable called history, and stores the current search direction in a
variable called searchdir. The search direction is a vector that points in
the direction from the current point to the next one.

The code for the M-file is here: “Writing the Example M-File” on page 2-34.

Writing the Output Function. You specify the output function in the
options structure

options = optimset('OutputFcn',@outfun)

where outfun is the name of the output function. When you call an
optimization function with options as an input, the optimization function
calls outfun at each iteration of its algorithm.

2-32



Solver Inputs and Outputs

In general, outfun can be any MATLAB function, but in this example, it is a
nested subfunction of the M-file described in “Writing the Example M-File” on
page 2-34. The following code defines the output function:

function stop = outfun(x,optimValues,state)
stop = false;

switch state
case 'init'

hold on
case 'iter'

% Concatenate current point and objective function
% value with history. x must be a row vector.
history.fval = [history.fval; optimValues.fval];
history.x = [history.x; x];
% Concatenate current search direction with
% searchdir.
searchdir = [searchdir;...

optimValues.searchdirection'];
plot(x(1),x(2),'o');
% Label points with iteration number.
text(x(1)+.15,x(2),num2str(optimValues.iteration));

case 'done'
hold off

otherwise
end

end

See “Using Function Handles with Nested Functions” in the MATLAB
Programming Fundamentals documentation for more information about
nested functions.

The arguments that the optimization function passes to outfun are:

• x — The point computed by the algorithm at the current iteration

• optimValues — Structure containing data from the current iteration

The example uses the following fields of optimValues:

- optimValues.iteration — Number of the current iteration

2-33



2 Optimization Overview

- optimValues.fval — Current objective function value

- optimValues.searchdirection — Current search direction

• state — The current state of the algorithm ('init', 'interrupt', 'iter',
or 'done')

For more information about these arguments, see “Output Function” on page
9-18.

Writing the Example M-File. To create the M-file for this example:

1 Open a new M-file in the MATLAB Editor.

2 Copy and paste the following code into the M-file:

function [history,searchdir] = runfmincon

% Set up shared variables with OUTFUN
history.x = [];
history.fval = [];
searchdir = [];

% call optimization
x0 = [-1 1];
options = optimset('outputfcn',@outfun,'display','iter',...
'largescale','off');
xsol = fmincon(@objfun,x0,[],[],[],[],[],[],@confun,options);

function stop = outfun(x,optimValues,state)
stop = false;

switch state
case 'init'

hold on
case 'iter'
% Concatenate current point and objective function
% value with history. x must be a row vector.

history.fval = [history.fval; optimValues.fval];
history.x = [history.x; x];

% Concatenate current search direction with

2-34



Solver Inputs and Outputs

% searchdir.
searchdir = [searchdir;...

optimValues.searchdirection'];
plot(x(1),x(2),'o');

% Label points with iteration number and add title.
text(x(1)+.15,x(2),...

num2str(optimValues.iteration));
title('Sequence of Points Computed by fmincon');

case 'done'
hold off

otherwise
end

end

function f = objfun(x)
f = exp(x(1))*(4*x(1)^2 + 2*x(2)^2 + 4*x(1)*x(2) +...

2*x(2) + 1);
end

function [c, ceq] = confun(x)
% Nonlinear inequality constraints
c = [1.5 + x(1)*x(2) - x(1) - x(2);

-x(1)*x(2) - 10];
% Nonlinear equality constraints
ceq = [];

end
end

3 Save the file as runfmincon.m in a directory on the MATLAB path.

Running the Example. To run the example, enter:

[history searchdir] = runfmincon;

This displays the following iterative output in the Command Window.

Max Line search Directional First-order

Iter F-count f(x) constraint steplength derivative optimality Procedure

0 3 1.8394 0.5 Infeasible start point

1 6 1.85127 -0.09197 1 -0.027 0.778

2 9 0.300167 9.33 1 -0.825 0.313 Hessian modified

2-35



2 Optimization Overview

3 12 0.529835 0.9209 1 0.302 0.232 twice

4 16 0.186965 -1.517 0.5 -0.437 0.13

5 19 0.0729085 0.3313 1 -0.0715 0.054

6 22 0.0353323 -0.03303 1 -0.026 0.0271

7 25 0.0235566 0.003184 1 -0.00963 0.00587

8 28 0.0235504 9.032e-008 1 -6.22e-006 8.51e-007

Optimization terminated: first-order optimality measure less

than options.TolFun and maximum constraint violation is less

than options.TolCon.

Active inequalities (to within options.TolCon = 1e-006):

lower upper ineqlin ineqnonlin

1

2

The output history is a structure that contains two fields:

history =

x: [9x2 double]
fval: [9x1 double]

The fval field contains the objective function values corresponding to the
sequence of points computed by fmincon:

history.fval

ans =

1.8394
1.8513
0.3002
0.5298
0.1870
0.0729
0.0353
0.0236
0.0236

These are the same values displayed in the iterative output in the column
with header f(x).

2-36



Solver Inputs and Outputs

The x field of history contains the sequence of points computed by the
algorithm:

history.x

ans =

-1.0000 1.0000
-1.3679 1.2500
-5.5708 3.4699
-4.8000 2.2752
-6.7054 1.2618
-8.0679 1.0186
-9.0230 1.0532
-9.5471 1.0471
-9.5474 1.0474

This example displays a plot of this sequence of points, in which each point is
labeled by its iteration number.

−10 −9 −8 −7 −6 −5 −4 −3 −2 −1
1

1.5

2

2.5

3

3.5

0

1

2

3

4

5678 0

Sequence of Points Computed by fmincon

1

2

3

4

5678

The optimal point occurs at the eighth iteration. Note that the last two points
in the sequence are so close that they overlap.

2-37



2 Optimization Overview

The second output argument, searchdir, contains the search directions for
fmincon at each iteration. The search direction is a vector pointing from the
point computed at the current iteration to the point computed at the next
iteration:

searchdir =

-0.3679 0.2500
-4.2029 2.2199
0.7708 -1.1947

-3.8108 -2.0268
-1.3625 -0.2432
-0.9552 0.0346
-0.5241 -0.0061
-0.0003 0.0003

2-38



Local vs. Global Optima

Local vs. Global Optima

What Are Local and Global Optima?
Usually, the goal of an optimization is to find a local minimum of a function—a
point where the function value is smaller than at nearby points, but possibly
greater than at a distant point in the search space. Sometimes the goal of
an optimization is to find the global minimum—a point where the function
value is smaller than all others in the search space. In general, optimization
algorithms return a local minimum. This section describes why solvers
behave this way, and gives suggestions for ways to search for a global
minimum, if needed.

Basins of Attraction
If an objective function f(x) is smooth, the vector –∇f(x) points in the direction
where f(x) decreases most quickly. The equation of steepest descent, namely

d
dt

x t f x t( ) ( ( )),= −∇

yields a path x(t) that goes to a local minimum as t gets large. Generally,
initial values x(0) that are near to each other give steepest descent paths that
tend to the same minimum point along their steepest descent paths. The
set of initial values that lead to the same local minimum is called a basin of
attraction for steepest descent.

The following figure shows two one-dimensional minima. Different basins of
attraction are plotted with different line styles, and directions of steepest
descent are indicated by arrows. For this and subsequent figures, black dots
represent local minima. Every steepest descent path, starting at a point x(0),
goes to the black dot in the basin containing x(0).

2-39



2 Optimization Overview

����

�

One-dimensional basins

The following figure shows how steepest descent paths can be more
complicated in more dimensions.

One basin of attraction, showing steepest descent paths from various
starting points

The following figure shows even more complicated paths and basins.

2-40



Local vs. Global Optima

Several basins of attraction

Constraints can break up one basin of attraction into several pieces, where a
steepest descent path may be restricted from proceeding.

Searching For Global Optima
Many numerical methods for optimization are based, in part, on the method
of steepest descent.

Note Solvers do not precisely follow steepest descent paths. They attempt to
take large steps, in the interest of efficiency. Basins of attraction associated
with solver algorithms can be more complex than those of steepest descent.

The problem of global optimization turns into two parts:

• Finding a good initial value for optimizers

• Finding the minimum point in the basin associated with the initial value

2-41



2 Optimization Overview

Note Optimization Toolbox™ solvers generally find the minimum point in
the basin, but leave the choice of starting point to you.

Generally, Optimization Toolbox solvers are not designed to find global
optima. They find the optimum in the basin of attraction of the starting point.
If you need a global optimum, you must find an initial value contained in the
basin of attraction of a global optimum.

There are some exceptions to this general rule.

• Linear programming and positive definite quadratic programming
problems are convex, with convex feasible regions, so there is only one
basin of attraction. Indeed, under certain choices of options, linprog
ignores any user-supplied starting point, and quadprog does not require
one, though supplying one can sometimes speed a minimization.

• Multiobjective optimization does not have basins of attraction, but still
depends on initial values.

• Some Genetic Algorithm and Direct Search Toolbox™ functions, such as
simulannealbnd, are designed to search through more than one basin
of attraction.

Suggestions for ways to set initial values to search for a global optimum:

• Use a regular grid of initial points.

• Use random points drawn from a uniform distribution if your problem has
all its coordinates bounded, or from normal, exponential, or other random
distributions if some components are unbounded. The less you know about
the location of the global optimum, the more spread-out your random
distribution should be. For example, normal distributions rarely sample
more than three standard deviations away from their means, but a Cauchy
distribution (density 1/(π(1 + x2))) makes hugely disparate samples.

• Use identical initial points with added random perturbations on each
coordinate, bounded, normal, exponential, or other.

2-42



Local vs. Global Optima

• Use the Genetic Algorithm and Direct Search Toolbox function
gacreationlinearfeasible to obtain a set of random initial points in a
region with linear constraints.

The more you know about possible initial points, the more focused and
successful your search will be.

2-43



2 Optimization Overview

Reference
[1] Nocedal, Jorge and Wright, Stephen J. Numerical Optimization, Second
Edition. New York: Springer, 2006.

2-44



3

Optimization Tool

Getting Started with the
Optimization Tool (p. 3-2)

Understand the Optimization
Tool—how to open the tool and steps
for use

Running a Problem in the
Optimization Tool (p. 3-6)

Run the solver and view results

Specifying Certain Options (p. 3-10) Set option values

Getting Help in the Optimization
Tool (p. 3-13)

Access help within the Optimization
Tool

Importing and Exporting Your Work
(p. 3-14)

Start a new problem, import, export,
and generate an M-file of your
problem and options

Optimization Tool Examples (p. 3-18) Examples using the Optimization
Tool



3 Optimization Tool

Getting Started with the Optimization Tool

In this section...

“Introduction” on page 3-2

“Opening the Optimization Tool” on page 3-2

“Steps for Using the Optimization Tool” on page 3-5

Introduction
The Optimization Tool is a GUI for solving optimization problems. With the
Optimization Tool, you select a solver from a list and set up your problem
visually. If you are familiar with the optimization problem you want to
solve, the Optimization Tool lets you select a solver, specify the optimization
options, and run your problem. You can also import and export data from the
MATLAB® workspace, and generate M-files containing your configuration for
the solver and options. Chapter 4, “Tutorial” provides information on how to
use the toolbox functions and examples for solving different optimization
problems.

Opening the Optimization Tool
To open the tool, type

optimtool

in the Command Window. This opens the Optimization Tool, as shown in
the following figure.

3-2



Getting Started with the Optimization Tool

3-3



3 Optimization Tool

You can also open the Optimization Tool from the main MATLAB window
as pictured:

The reference page for the Optimization Tool provides variations for starting
the optimtool function.

3-4



Getting Started with the Optimization Tool

Steps for Using the Optimization Tool
This is a summary of the steps to set up your optimization problem and view
results with the Optimization Tool.

�������������	����

��������	����������	
���� �������	�����
�������� 	�

����� ��	��� !��

"���������
����	���
	��������#�

���$��%��� !��
�	�	��
�������� 	�

&��'����� !��

(����	����� ��
������	�������
�� ��	����� !��

3-5



3 Optimization Tool

Running a Problem in the Optimization Tool

In this section...

“Introduction” on page 3-6

“Pausing and Stopping the Algorithm” on page 3-7

“Viewing Results” on page 3-7

“Final Point” on page 3-7

“Starting a New Problem” on page 3-8

“Closing the Optimization Tool” on page 3-9

Introduction
After defining your problem and specifying the options, you are ready to run
the solver.

To run the selected solver, click the Start button. For most solvers, as the
algorithm runs, the Current iteration field updates. This field does not
update for solvers for which the current iteration does not apply.

3-6



Running a Problem in the Optimization Tool

Pausing and Stopping the Algorithm
While the algorithm is running, you can

• Click Pause to temporarily suspend the algorithm. To resume the
algorithm using the current iteration at the time you paused, click Resume.

• Click Stop to stop the algorithm. The Run solver and view results
window displays information for the current iteration at the moment you
clicked Stop.

You can export your results after stopping the algorithm. For details, see
“Exporting to the MATLAB® Workspace” on page 3-14.

Viewing Results
When the algorithm terminates, the Run solver and view results window
displays the reason the algorithm terminated. To clear the Run solver and
view results window between runs, click Clear Results.

Displaying Plots
In addition to the Run solver and view results window, you can also
display measures of progress while the algorithm executes by generating
plots. Each plot selected draws a separate axis in the figure window. You
can select a predefined plot function from the Optimization Tool, or you can
write your own. For more information on what plot functions are available,
see “Plot Functions” on page 3-10.

Final Point
The Final point updates to show the coordinates of the final point
when the algorithm terminated. If you don’t see the final point, click the
upward-pointing triangle on the icon on the lower-left.

3-7



3 Optimization Tool

Starting a New Problem

Resetting Options and Clearing the Problem
Selecting File > Reset Optimization Tool resets the problem definition and
options to the original default values. This action is equivalent to closing
and restarting the optimtool.

To clear only the problem definition, select File > Clear Problem Fields.
With this action, fields in the Problem Setup and Results pane are reset to
the defaults, with the exception of the selected solver and algorithm choice.
Any options that you have modified from the default values in the Options
pane are not reset with this action.

Setting Preferences for Changing Solvers
To modify how your options are handled in the Optimization Tool when you
change solvers, select File > Preferences, which opens the Preferences
dialog box shown below.

The default value, Reset options to defaults, discards any options you
specified previously in the optimtool. Under this choice, you can select the
option Prompt before resetting options to defaults.

Alternatively, you can select Keep current options if possible to preserve
the values you have modified. Changed options that are not valid with the
newly selected solver are kept but not used, while active options relevant

3-8



Running a Problem in the Optimization Tool

to the new solver selected are used. This choice allows you to try different
solvers with your problem without losing your options.

Closing the Optimization Tool
To close the optimtool window, select File > Close.

3-9



3 Optimization Tool

Specifying Certain Options

In this section...

“Plot Functions” on page 3-10

“Output function” on page 3-11

“Display to Command Window” on page 3-11

Plot Functions
You can select a plot function to easily plot various measures of progress
while the algorithm executes. Each plot selected draws a separate axis in the
figure window. If available for the solver selected, the Stop button in the Run
solver and view results window to interrupt a running solver. You can
select a predefined plot function from the Optimization Tool, or you can select
Custom function to write your own. Plot functions not relevant to the solver
selected are grayed out. The following lists the available plot functions:

• Current point — Select to show a bar plot of the point at the current
iteration.

• Function count — Select to plot the number of function evaluations at
each iteration.

• Function value — Select to plot the function value at each iteration.

• Norm of residuals — Select to show a bar plot of the current norm of
residuals at the current iteration.

• Max constraint — Select to plot the maximum constraint violation value
at each iteration.

• Current step — Select to plot the algorithm step size at each iteration.

• First order optimality — Select to plot the violation of the optimality
conditions for the solver at each iteration.

• Custom function — Enter your own plot function as a function handle. To
provide more than one plot function use a cell array, for example, by typing:

{@plotfcn,@plotfcn2}

See “Plot Functions” on page 9-27.

3-10



Specifying Certain Options

The graphic above shows the plot functions available for the default fmincon
solver.

Output function
Output function is a function or collection of functions the algorithm calls
at each iteration. Through an output function you can observe optimization
quantities such as function values, gradient values, and current iteration.
Specify no output function, a single output function using a function handle,
or multiple output functions. To provide more than one output function use
a cell array of function handles in the Custom function field, for example
by typing:

{@outputfcn,@outputfcn2}

For more information on writing an output function, see “Output Function”
on page 9-18.

Display to Command Window
Select Level of display to specify the amount of information displayed when
you run the algorithm. Choose from the following:

• off (default) — Display no output.

• final — Display only the reason for stopping at the end of the run.

• notify — Display output only if the function does not converge.

3-11



3 Optimization Tool

• iterative — Display information at each iteration of the algorithm.

Set Node interval, with the bintprog solver selected, to specify the interval
of explored nodes you want to display output for. Note that integer feasible
solution nodes are always shown.

Selecting Show diagnostics lists problem information and options that have
changed from the defaults.

The graphic below shows the display options.

3-12



Getting Help in the Optimization Tool

Getting Help in the Optimization Tool

In this section...

“Quick Reference” on page 3-13

“Additional Help” on page 3-13

Quick Reference
The Optimization Tool provides extensive context-sensitive help directly in
the GUI.

For assistance with the primary tasks in the Optimization Tool window, use
the Quick Reference pane. To toggle between displaying or hiding the
Quick Reference pane, do either of the following:

• Select Help > Show Quick Reference

• Click the or buttons in the upper right of the GUI

To resize the Quick Reference pane, drag the vertical divider to the left or
to the right.

Additional Help
In addition to the Quick Reference pane, you can access the documentation
for the Optimization Tool by selecting Help > Optimization Tool Help.

3-13



3 Optimization Tool

Importing and Exporting Your Work

In this section...

“Exporting to the MATLAB® Workspace” on page 3-14

“Importing Your Work” on page 3-16

“Generating an M-File” on page 3-16

Exporting to the MATLAB® Workspace
The Export to Workspace dialog box enables you to send your problem
information to the MATLAB® workspace as a structure that you may then
manipulate in the Command Window.

To access the Export to Workspace dialog box shown below, select
File > Export to Workspace.

You can specify a structure that contains:

• The problem and options information

• The problem and options information, and the state of the solver when
stopped (this means the latest point for most solvers, the current population
for Genetic Algorithms solvers, and the best point found for Simulated
Annealing and Threshold Acceptance solvers)

3-14



Importing and Exporting Your Work

• The states of random number generators rand and randn at the start of
the previous run, by checking the Use random states from previous
run box for applicable solvers

• The options information only

• The results of running your problem in optimtool

Exported results structures contain all optional information. For example, an
exported results structure for lsqcurvefit contains the data x, resnorm,
residual, exitflag, output, lambda, and jacobian.

After you have exported information from the Optimization Tool to the
MATLAB workspace, you can see your data in the MATLAB Workspace
browser or by typing the name of the structure at the Command Window.
To see the value of a field in a structure, double-click on the structure
in the Workspace window. Alternatively, see the values by entering
structurename.fieldname at the command line. For example, so see the
message in an output structure, enter output.message. If a structure
contains structures, you can double-click again in the workspace browser,
or enter structure1.structure2.fieldname at the command line. For
example, to see the level of iterative display contained in the options structure
of an exported problem structure, enter optimproblem.options.Display.

You can run a solver on an exported problem at the command line by typing

solver(problem)

For example, if you have exported a fmincon problem named optimproblem,
you can type

fmincon(optimproblem)

This runs fmincon on the problem with the saved options structure contained
in optimproblem. You can exercise more control over outputs by typing, for
example,

[x,fval,exitflag] = fmincon(optimproblem)

or use any other supported syntax.

3-15



3 Optimization Tool

Importing Your Work
Whether you saved options from Optimization Toolbox™ functions at the
Command Window or if you exported options, or the problem and options, from
the optimtool, you can resume work on your problem using the optimtool.

There are three ways to import your options, or problem and options, to
optimtool.

• Call the optimtool function from the Command Window specifying your
options, or problem and options, as the input, tor example,

optimtool(options)

• Select File > Import Options in the Optimization Tool.

• Select File > Import Problem in the Optimization Tool.

The methods described above require that the options, or problem and options,
be present in the MATLAB workspace.

If you import a problem that was generated with the Include information
needed to resume this run box checked, the initial point is the latest
point generated in the previous run. (For Genetic Algorithm solvers, the
initial population is the latest population generated in the previous run. For
Simulated Annealing and Threshold Acceptance solvers, the initial point is
the best point generated in the previous run.) If you import a problem that
was generated with this box unchecked, the initial point (or population) is the
initial point (or population) of the previous run.

Generating an M-File
You may want to generate an M-file to continue with your optimization
problem in the Command Window at another time. You can run the M-file
without modification to recreate the results that you created with the
Optimization Tool. You can also edit and modify the M-file and run it from
the Command Window.

To export data from the Optimization Tool to an M-file, select File > Generate
M-file.

3-16



Importing and Exporting Your Work

The M-file captures the following:

• The problem definition, including the solver, information on the function to
be minimized, algorithm specification, constraints, and start point

• The options (using optimset) with the currently selected option value

Running the M-file at the Command Window reproduces your problem results.

Although you cannot export your problem results to a generated M-file, you
can save them in a MAT-file that you can use with your generated M-file, by
exporting the results using the Export to Workspace dialog box, then saving
the data to a MAT-file from the Command Window.

3-17



3 Optimization Tool

Optimization Tool Examples

In this section...

“About Optimization Tool Examples” on page 3-18

“Optimization Tool with the fmincon Solver” on page 3-18

“Optimization Tool with the lsqlin Solver” on page 3-22

About Optimization Tool Examples
This section contains two examples showing how to use the Optimization
Tool to solve representative problems. There are other examples available:
“Problem Formulation: Rosenbrock’s Function” on page 1-4 and “Constrained
Minimization Using fmincon’s Interior-Point Algorithm With Analytic
Hessian” on page 4-12 in this User’s Guide, and several in the Genetic
Algorithm and Direct Search Toolbox™ User’s Guide.

Optimization Tool with the fmincon Solver
This example shows how to use the Optimization Tool with the fmincon
solver to minimize a quadratic subject to linear and nonlinear constraints
and bounds.

Consider the problem of finding [x1, x2] that solves

min ( )
x

f x x x= +1
2

2
2

subject to the constraints

0 5
1 0

1 0

9 9 0

0

1

1 2

1
2

2
2

1
2

2
2

1
2

2

2
2

1

. ≤
− − + ≤

− − + ≤

− − + ≤

− − ≤

− + ≤

x
x x

x x

x x

x x

x x 00

3-18



Optimization Tool Examples

The starting guess for this problem is x1 = 3 and x2 = 1.

Step 1: Write an M-file objfun.m for the objective function.

function f = objfun(x)
f = x(1)^2 + x(2)^2;

Step 2: Write an M-file nonlconstr.m for the constraints.

function [c,ceq] = nonlconstr(x)
c = [-x(1)^2 - x(2)^2 + 1;

-9*x(1)^2 - x(2)^2 + 9;
-x(1)^2 + x(2);
-x(2)^2 + x(1)];

ceq = [];

Step 3: Set up and run the problem with the Optimization Tool.

1 Enter optimtool in the Command Window to open the Optimization Tool.

2 Select fmincon from the selection of solvers and change the Algorithm
field to Active set.

3 Enter @objfun in the Objective function field to call the M-file objfun.m.

4 Enter [3; 1] in the Start point field.

5 Define the constraints.

3-19



3 Optimization Tool

• To create variables for the equality constraints, enter [-1 -1] in the
A field and enter -1in the b field.

• Set the bounds on the variables to be 0.5 ≤ x1 by entering 0.5 for Lower.

• Enter @nonlconstr in the Nonlinear constraint function field to call
the M-file nonlconstr.m.

6 In the Options pane, expand the Display to command window option
if necessary, and select Iterative to show algorithm information at the
Command Window for each iteration.

7 Click the Start button as shown in the following figure.

8 When the algorithm terminates, under Run solver and view results the
following information is displayed:

3-20



Optimization Tool Examples

• The Current iteration value when the algorithm terminated, which
for this example is 7.

• The final value of the objective function when the algorithm terminated:

Objective function value: 2.000000000000001

• The algorithm termination message:

Optimization terminated: first-order optimality measure less
than options.TolFun and maximum constraint violation is less
than options.TolCon.

• The final point, which for this example is

1
1

9 In the Command Window, the algorithm information is displayed for each
iteration:

3-21



3 Optimization Tool

max Line search Directional First-order

Iter F-count f(x) constraint steplength derivative optimality

0 3 10 2

1 6 4.84298 -0.1322 1 -3.4 1.74

2 9 4.0251 -0.01168 1 -0.78 4.08

3 12 2.42704 -0.03214 1 -1.37 1.09

4 15 2.03615 -0.004728 1 -0.373 0.995

5 18 2.00033 -5.596e-005 1 -0.0357 0.0664

6 21 2 -5.327e-009 1 -0.000326 0.000522

7 24 2 -2.22e-016 1 -2.69e-008 1.21e-008

Optimization terminated: first-order optimality measure less

than options.TolFun and maximum constraint violation is less

than options.TolCon.

Active inequalities (to within options.TolCon = 1e-006):

lower upper ineqlin ineqnonlin

3

4

Reference

[1] Schittkowski, K., “More Test Examples for Nonlinear Programming
Codes,” Lecture Notes in Economics and Mathematical Systems, Number 282,
Springer, p. 45, 1987.

Optimization Tool with the lsqlin Solver
This example shows how to use the Optimization Tool to solve a constrained
least-squares problem.

The Problem
The problem in this example is to find the point on the plane x1 + 2x2 + 4x3 = 7
that is closest to the origin. The easiest way to solve this problem is to
minimize the square of the distance from a point x = (x1,x2,x3) on the plane to
the origin, which returns the same optimal point as minimizing the actual
distance. Since the square of the distance from an arbitrary point (x1,x2,x3) to

the origin is x x x1
2

2
2

3
2+ + , you can describe the problem as follows:

3-22



Optimization Tool Examples

min ( ) ,
x

f x x x x= + +1
2

2
2

3
2

subject to the constraint

x1 + 2x2 + 4x3 = 7.

The function f(x) is called the objective function and x1 + 2x2 + 4x3 = 7 is an
equality constraint. More complicated problems might contain other equality
constraints, inequality constraints, and upper or lower bound constraints.

Setting Up the Problem
This section shows how to set up the problem with the lsqlin solver in the
Optimization Tool.

1 Enter optimtool in the Command Window to open the Optimization Tool.

2 Select lsqlin from the selection of solvers. Use the default large-scale
algorithm.

3 Enter the following to create variables for the objective function:

• In the C field, enter eye(3).

• In the d field, enter zeros(3,1).

The C and d fields should appear as shown in the following figure.

4 Enter the following to create variables for the equality constraints:

• In the Aeq field, enter [1 2 4].

• In the beq field, enter 7.

3-23



3 Optimization Tool

The Aeq and beq fields should appear as shown in the following figure.

5 Click the Start button as shown in the following figure.

6 When the algorithm terminates, under Run solver and view results the
following information is displayed:

3-24



Optimization Tool Examples

• The Current iteration value when the algorithm terminated, which
for this example is 1.

• The final value of the objective function when the algorithm terminated:

Objective function value: 2.333333333333333

• The algorithm termination message:

Optimization terminated.

• The final point, which for this example is

0.3333
0.6667
1.3333

3-25



3 Optimization Tool

3-26



4

Tutorial

The Tutorial provides information on how to use Optimization Toolbox™
functions. It also provides examples for solving different optimization
problems.

Medium- and Large-Scale
Algorithms (p. 4-3)

Introduces medium- and large-scale
problems, and gives a high-level
account of their algorithms.

Examples That Use Standard
Algorithms (p. 4-4)

Presents medium-scale algorithms
through a selection of minimization
examples. These examples include
unconstrained and constrained
problems, as well as problems
with and without user-supplied
gradients. This section also discusses
maximization, greater-than-zero
constraints, passing additional
arguments, and multiobjective
examples.

Large-Scale Examples (p. 4-42) Presents large-scale algorithms
through a selection of large-scale
examples. These examples include
specifying sparsity structures,
and preconditioners, as well as
unconstrained and constrained
problems.



4 Tutorial

Default Options Settings (p. 4-79) Describes the use of default options
settings, how to change them and
how to determine which options are
used by a specified function. It also
includes examples of setting some
commonly used options.

Displaying Iterative Output (p. 4-84) Describes iterative output you can
display in the Command Window.

Typical Problems and How to Deal
with Them (p. 4-91)

Provides tips to improve solutions
found using optimization functions,
improve efficiency of algorithms,
overcome common difficulties, and
transform problems typically not in
standard form.

Selected Bibliography (p. 4-94) Lists published materials that
support concepts implemented in
Optimization Toolbox solvers.

4-2



Medium- and Large-Scale Algorithms

Medium- and Large-Scale Algorithms

In this section...

“Medium-Scale Algorithms” on page 4-3

“Large-Scale Algorithms” on page 4-3

Medium-Scale Algorithms
This guide separates “medium-scale” algorithms from “large-scale”
algorithms. Medium-scale is not a standard term and is used here only to
distinguish these algorithms from the large-scale algorithms, which are
designed to handle large-scale problems efficiently.

Optimization Toolbox™ functions offer a choice of algorithms and line search
strategies. The principal algorithms for unconstrained minimization are
the Nelder-Mead simplex search method and the BFGS (Broyden, Fletcher,
Goldfarb, and Shanno) quasi-Newton method. For constrained minimization,
minimax, goal attainment, and semi-infinite optimization, variations of
sequential quadratic programming (SQP) are used. Nonlinear least-squares
problems use the Gauss-Newton and Levenberg-Marquardt methods.
Nonlinear equation solving also uses the trust-region dogleg algorithm.

A choice of line search strategy is given for unconstrained minimization and
nonlinear least-squares problems. The line search strategies use safeguarded
cubic and quadratic interpolation and extrapolation methods.

Large-Scale Algorithms
All the large-scale algorithms, except linear programming, are trust-region
methods. Bound constrained problems are solved using reflective Newton
methods. Equality constrained problems are solved using a projective
preconditioned conjugate gradient iteration. You can use sparse iterative
solvers or sparse direct solvers in solving the linear systems to determine the
current step. Some choice of preconditioning in the iterative solvers is also
available.

The linear programming method is a variant of Mehrotra’s predictor-corrector
algorithm, a primal-dual interior-point method.

4-3



4 Tutorial

Examples That Use Standard Algorithms

In this section...

“Introduction” on page 4-4

“Unconstrained Minimization Example” on page 4-5

“Nonlinear Inequality Constrained Example” on page 4-7

“Constrained Example with Bounds” on page 4-8

“Constrained Example with Gradients” on page 4-10

“Constrained Minimization Using fmincon’s Interior-Point Algorithm With
Analytic Hessian” on page 4-12

“Gradient Check: Analytic vs. Numeric” on page 4-18

“Equality Constrained Example” on page 4-19

“Nonlinear Equations with Analytic Jacobian” on page 4-20

“Nonlinear Equations with Finite-Difference Jacobian” on page 4-23

“Error Estimates in Nonlinear Curve Fitting with lsqcurvefit” on page 4-24

“Multiobjective Examples” on page 4-28

Introduction
This section presents the medium-scale (i.e., standard) algorithms through
a tutorial. Examples similar to those in the first part of this tutorial
(“Unconstrained Minimization Example” on page 4-5 through the “Equality
Constrained Example” on page 4-19) can also be found in the tutorial
walk-through demo, tutdemo. (From the MATLAB® Help browser or the
MathWorks™ Web site documentation, you can click the demo name to
display the demo.)

Note Medium-scale is not a standard term and is used to differentiate
these algorithms from the large-scale algorithms described in Chapter 6,
“Large-Scale Algorithms”.

4-4



Examples That Use Standard Algorithms

The tutorial uses the functions fminunc, fmincon, and fsolve. The other
optimization routines, fgoalattain, fminimax, lsqnonlin, and fseminf,
are used in a nearly identical manner, with differences only in the problem
formulation and the termination criteria. The section “Multiobjective
Examples” on page 4-28 discusses multiobjective optimization and gives
several examples using lsqnonlin, fminimax, and fgoalattain, including
how to use Simulink® parameters with toolbox functions.

Unconstrained Minimization Example
Consider the problem of finding a set of values [x1, x2] that solves

min ( ) .
x

xf x e x x x x x= + + + +( )1 4 2 4 2 11
2

2
2

1 2 2 (4-1)

To solve this two-dimensional problem, write an M-file that returns the
function value. Then, invoke the unconstrained minimization routine
fminunc.

Step 1: Write an M-file objfun.m.

function f = objfun(x)
f = exp(x(1))*(4*x(1)^2+2*x(2)^2+4*x(1)*x(2)+2*x(2)+1);

Step 2: Invoke one of the unconstrained optimization routines.

x0 = [-1,1]; % Starting guess
options = optimset('LargeScale','off');
[x,fval,exitflag,output] = fminunc(@objfun,x0,options)

This produces the following output:

Optimization terminated: relative infinity-norm
of gradient less than options.TolFun.

x =
0.5000 -1.0000

fval =

4-5



4 Tutorial

3.6609e-015

exitflag =
1

output =
iterations: 8
funcCount: 66
stepsize: 1

firstorderopt: 1.2284e-007
algorithm: 'medium-scale: Quasi-Newton line search'

message: 'Optimization terminated: relative infinity-norm
of gradient less than options.TolFun.'

The exitflag tells whether the algorithm converged. exitflag = 1 means
a local minimum was found. The meanings of flags are given in function
reference pages.

The output structure gives more details about the optimization. For fminunc,
it includes the number of iterations in iterations, the number of function
evaluations in funcCount, the final step-size in stepsize, a measure of
first-order optimality (which in this unconstrained case is the infinity norm of
the gradient at the solution) in firstorderopt, the type of algorithm used in
algorithm, and the exit message (the reason the algorithm stopped).

Pass the variable options to fminunc to change characteristics of the
optimization algorithm, as in

x = fminunc(@objfun,x0,options);

options is a structure that contains values for termination tolerances and
algorithm choices. Create an options structure using the optimset function:

options = optimset('LargeScale','off');

You can also create an options structure by exporting from the Optimization
Tool.

In this example, we have turned off the default selection of the large-scale
algorithm and so the medium-scale algorithm is used. Other options include
controlling the amount of command line display during the optimization

4-6



Examples That Use Standard Algorithms

iteration, the tolerances for the termination criteria, whether a user-supplied
gradient or Jacobian is to be used, and the maximum number of iterations or
function evaluations. See optimset, the individual optimization functions,
and “Optimization Options” on page 9-8 for more options and information.

Nonlinear Inequality Constrained Example
If inequality constraints are added to Equation 4-1, the resulting problem can
be solved by the fmincon function. For example, find x that solves

min ( ) .
x

xf x e x x x x x= + + + +( )1 4 2 4 2 11
2

2
2

1 2 2 (4-2)

subject to the constraints

x1x2 – x1 – x2 ≤ –1.5,
x1x2 ≥ –10.

Because neither of the constraints is linear, you cannot pass the constraints
to fmincon at the command line. Instead you can create a second M-file,
confun.m, that returns the value at both constraints at the current x in a
vector c. The constrained optimizer, fmincon, is then invoked. Because
fmincon expects the constraints to be written in the form c(x) ≤ 0, you must
rewrite your constraints in the form

x1x2 – x1 – x2 + 1.5 ≤ 0,
–x1x2 –10 ≤ 0. (4-3)

Step 1: Write an M-file objfun.m for the objective function.

function f = objfun(x)
f = exp(x(1))*(4*x(1)^2 + 2*x(2)^2 + 4*x(1)*x(2) + 2*x(2) + 1);

Step 2: Write an M-file confun.m for the constraints.

function [c, ceq] = confun(x)
% Nonlinear inequality constraints
c = [1.5 + x(1)*x(2) - x(1) - x(2);

-x(1)*x(2) - 10];
% Nonlinear equality constraints

4-7



4 Tutorial

ceq = [];

Step 3: Invoke constrained optimization routine.

x0 = [-1,1]; % Make a starting guess at the solution
options = optimset('Algorithm','active-set');
[x,fval] = ...
fmincon(@objfun,x0,[],[],[],[],[],[],@confun,options)

After 38 function calls, the solution x produced with function value fval is

x =
-9.5474 1.0474

fval =
0.0236

You can evaluate the constraints at the solution by entering

[c,ceq] = confun(x)

This returns numbers close to zero, such as

c =
1.0e-007 *
-0.9032
0.9032

ceq =
[]

Note that both constraint values are, to within a small tolerance, less than or
equal to 0; that is, x satisfies c(x) ≤ 0.

Constrained Example with Bounds
The variables in x can be restricted to certain limits by specifying simple
bound constraints to the constrained optimizer function. For fmincon, the
command

x = fmincon(@objfun,x0,[],[],[],[],lb,ub,@confun,options);

4-8



Examples That Use Standard Algorithms

limits x to be within the range lb ≤ x ≤ ub.

To restrict x in Equation 4-2 to be greater than 0 (i.e., x1 ≥ 0, x1 ≥ 0), use
the commands

x0 = [-1,1]; % Make a starting guess at the solution
lb = [0,0]; % Set lower bounds
ub = [ ]; % No upper bounds
options = optimset('LargeScale','off');
[x,fval] = ...
fmincon(@objfun,x0,[],[],[],[],lb,ub,@confun,options)
[c, ceq] = confun(x)

Note that to pass in the lower bounds as the seventh argument to fmincon,
you must specify values for the third through sixth arguments. In this
example, we specified [] for these arguments since there are no linear
inequalities or linear equalities.

After 13 function evaluations, the solution produced is

x =
0 1.5000

fval =
8.5000

c =
0

-10
ceq =

[]

When lb or ub contains fewer elements than x, only the first corresponding
elements in x are bounded. Alternatively, if only some of the variables are
bounded, then use -inf in lb for unbounded below variables and inf in ub for
unbounded above variables. For example,

lb = [-inf 0];
ub = [10 inf];

bounds x1 ≤ 10, x2 ≥ 0. x1 has no lower bound, and x2 has no upper bound.
Using inf and -inf give better numerical results than using a very large
positive number or a very large negative number to imply lack of bounds.

4-9



4 Tutorial

Note that the number of function evaluations to find the solution is reduced
because we further restricted the search space. Fewer function evaluations
are usually taken when a problem has more constraints and bound limitations
because the optimization makes better decisions regarding step size and
regions of feasibility than in the unconstrained case. It is, therefore, good
practice to bound and constrain problems, where possible, to promote fast
convergence to a solution.

Constrained Example with Gradients
Ordinarily the medium-scale minimization routines use numerical gradients
calculated by finite-difference approximation. This procedure systematically
perturbs each of the variables in order to calculate function and constraint
partial derivatives. Alternatively, you can provide a function to compute
partial derivatives analytically. Typically, the problem is solved more
accurately and efficiently if such a function is provided.

To solve Equation 4-2 using analytically determined gradients, do the
following.

Step 1: Write an M-file for the objective function and gradient.

function [f,G] = objfungrad(x)
f = exp(x(1))*(4*x(1)^2+2*x(2)^2+4*x(1)*x(2)+2*x(2)+1);
% Gradient of the objective function
if nargout > 1

G = [ f + exp(x(1)) * (8*x(1) + 4*x(2)),
exp(x(1))*(4*x(1)+4*x(2)+2)];

end

Step 2: Write an M-file for the nonlinear constraints and the
gradients of the nonlinear constraints.

function [c,ceq,DC,DCeq] = confungrad(x)
c(1) = 1.5 + x(1) * x(2) - x(1) - x(2); %Inequality constraints
c(2) = -x(1) * x(2)-10;
% No nonlinear equality constraints
ceq=[];
% Gradient of the constraints

4-10



Examples That Use Standard Algorithms

if nargout > 2
DC= [x(2)-1, -x(2);

x(1)-1, -x(1)];
DCeq = [];

end

G contains the partial derivatives of the objective function, f, returned by
objfungrad(x), with respect to each of the elements in x:

∇f
e x x x x x e x x

e x x

x x

x
=

+ + + +( ) + +( )

+ +( )

⎡

⎣

1 1

1

4 2 4 2 1 8 4

4 4 2

1
2

2
2

1 2 2 1 2

1 2

⎢⎢
⎢

⎤

⎦

⎥
⎥
.

(4-4)

The columns of DC contain the partial derivatives for each respective
constraint (i.e., the ith column of DC is the partial derivative of the ith
constraint with respect to x). So in the above example, DC is

∂
∂

∂
∂

∂
∂

∂
∂

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=
− −
− −

⎡

⎣
⎢

⎤

⎦
⎥

c
x

c
x

c
x

c
x

x x
x x

1

1

2

1

1

2

2

2

2 2

1 1

1
1

.

(4-5)

Since you are providing the gradient of the objective in objfungrad.m and the
gradient of the constraints in confungrad.m, you must tell fmincon that these
M-files contain this additional information. Use optimset to turn the options
GradObj and GradConstr to 'on' in the example’s existing options structure:

options = optimset(options,'GradObj','on','GradConstr','on');

If you do not set these options to 'on' in the options structure, fmincon does
not use the analytic gradients.

The arguments lb and ub place lower and upper bounds on the independent
variables in x. In this example, there are no bound constraints and so they
are both set to [].

Step 3: Invoke the constrained optimization routine.

x0 = [-1,1]; % Starting guess

4-11



4 Tutorial

options = optimset('LargeScale','off');
options = optimset(options,'GradObj','on','GradConstr','on');
lb = [ ]; ub = [ ]; % No upper or lower bounds
[x,fval] = fmincon(@objfungrad,x0,[],[],[],[],lb,ub,...

@confungrad,options)
[c,ceq] = confungrad(x) % Check the constraint values at x

After 20 function evaluations, the solution produced is

x =
-9.5474 1.0474

fval =
0.0236

c =
1.0e-14 *
0.1110

-0.1776
ceq =

[]

Constrained Minimization Using fmincon’s
Interior-Point Algorithm With Analytic Hessian
fmincon’s interior-point algorithm can accept a Hessian function as an input.
When you supply a Hessian, you may obtain a faster, more accurate solution
to a constrained minimization problem.

The constraint set for this example is the intersection of the interior of two
cones—one pointing up, and one pointing down. The constraint function
c is a two-component vector, one component for each cone. Since this is a
three-dimensional example, the gradient of the constraint c is a 3-by-2 matrix.

function [c ceq gradc gradceq] = twocone(x)
% This constraint is two cones, z > -10 + r
% and z < 3 - r

ceq = [];
r = sqrt(x(1)^2 + x(2)^2);
c = [-10+r-x(3);

x(3)-3+r];

4-12



Examples That Use Standard Algorithms

if nargout > 2

gradceq = [];
gradc = [x(1)/r,x(1)/r;

x(2)/r,x(2)/r;
-1,1];

end

The objective function grows rapidly negative as the x(1) coordinate becomes
negative. Its gradient is a three-element vector.

function [f gradf] = bigtoleft(x)
% This is a simple function that grows rapidly negative
% as x(1) gets negative
%
f=10*x(1)^3+x(1)*x(2)^2+x(3)*(x(1)^2+x(2)^2);

if nargout > 1

gradf=[30*x(1)^2+x(2)^2+2*x(3)*x(1);
2*x(1)*x(2)+2*x(3)*x(2);
(x(1)^2+x(2)^2)];

end

Here is a plot of the problem. The shading represents the value of the
objective function. You can see that the objective function is minimized near
x = [-6.5,0,-3.5]:

4-13



4 Tutorial

The Hessian of the Lagrangian is given by the equation:

∇ ∇ ∇ ∇xx i i i iL x f x c x ceq x2 2 2 2( , ) ( ) ( ) ( ).λ λ λ= + +∑ ∑
The following function computes the Hessian at a point x with Lagrange
multiplier structure lambda:

function h = hessinterior(x,lambda)

4-14



Examples That Use Standard Algorithms

h = [60*x(1)+2*x(3),2*x(2),2*x(1);
2*x(2),2*(x(1)+x(3)),2*x(2);
2*x(1),2*x(2),0];% Hessian of f

r = sqrt(x(1)^2+x(2)^2);% radius
rinv3 = 1/r^3;
hessc = [(x(2))^2*rinv3,-x(1)*x(2)*rinv3,0;

-x(1)*x(2)*rinv3,x(1)^2*rinv3,0;
0,0,0];% Hessian of both c(1) and c(2)

h = h + lambda.ineqnonlin(1)*hessc + lambda.ineqnonlin(2)*hessc;

Run this problem using the interior-point algorithm in fmincon. To do this
using the Optimization Tool:

1 Set the problem as in the following figure.

2 For iterative output, scroll to the bottom of the Options pane and select
Level of display, iterative.

4-15



4 Tutorial

3 In the Options pane, give the analytic Hessian function handle.

4 Under Run solver and view results, click Start.

To perform the minimization at the command line:

1 Set options as follows:

4-16



Examples That Use Standard Algorithms

options = optimset('Algorithm','interior-point',...
'Display','iter','GradObj','on','GradConstr','on',...
'Hessian','user-supplied','HessFcn',@hessinterior);

2 Run fmincon with starting point [–1,–1,–1], using the options structure:

[x fval flag]=fmincon(@bigtoleft,[-1,-1,-1],...
[],[],[],[],[],[],@twocone,options)

The output is:

First-order Norm of
Iter F-count f(x) Feasibility optimality step

0 1 -1.300000e+001 0.000e+000 3.067e+001
1 2 -2.011543e+002 0.000e+000 1.739e+002 1.677e+000
2 3 -1.270471e+003 9.844e-002 3.378e+002 2.410e+000
3 4 -2.881667e+003 1.937e-002 1.079e+002 2.206e+000
4 5 -2.931003e+003 2.798e-002 5.813e+000 6.006e-001
5 6 -2.894085e+003 0.000e+000 2.352e-002 2.800e-002
6 7 -2.894125e+003 0.000e+000 5.981e-005 3.048e-005

Optimization terminated: first-order optimality relative error
less than options.TolFun, and relative constraint violation less
than options.TolCon.

x =
-6.5000 -0.0000 -3.5000

fval =
-2.8941e+003

flag =
1

If you do not use a Hessian function, fmincon takes 9 iterations to converge,
instead of 6:

options = optimset('Algorithm','interior-point',...
'Display','iter','GradObj','on','GradConstr','on');

[x fval flag]=fmincon(@bigtoleft,[-1,-1,-1],...
[],[],[],[],[],[],@twocone,options)

4-17



4 Tutorial

First-order Norm of
Iter F-count f(x) Feasibility optimality step

0 1 -1.300000e+001 0.000e+000 3.067e+001
1 2 -7.259551e+003 2.495e+000 2.414e+003 8.344e+000
2 3 -7.361301e+003 2.529e+000 2.767e+001 5.253e-002
3 4 -2.978165e+003 9.392e-002 1.069e+003 2.462e+000
4 8 -3.033486e+003 1.050e-001 8.282e+002 6.749e-001
5 9 -2.893740e+003 0.000e+000 4.186e+001 1.053e-001
6 10 -2.894074e+003 0.000e+000 2.637e-001 3.565e-004
7 11 -2.894124e+003 0.000e+000 2.340e-001 1.680e-004
8 12 -2.894125e+003 2.830e-008 1.180e-001 6.374e-004
9 13 -2.894125e+003 2.939e-008 1.423e-004 6.484e-004

Optimization terminated: first-order optimality relative error
less than options.TolFun, and relative constraint violation less
than options.TolCon.

x =
-6.5000 -0.0000 -3.5000

fval =
-2.8941e+003

flag =
1

Both runs lead to similar solutions, but the F-count and number of iterations
are lower when using an analytic Hessian.

Gradient Check: Analytic vs. Numeric
When you provide analytically determined gradients to a solver, you can
compare the supplied gradients with a set calculated by finite differences.
This is particularly useful for detecting mistakes in either the objective
function or the gradient function formulation.

If you want such gradient checks, set the DerivativeCheck option to 'on'
using optimset:

options = optimset(options,'DerivativeCheck','on');

4-18



Examples That Use Standard Algorithms

The first cycle of the optimization checks the analytically determined
gradients (of the objective function and, if they exist, the nonlinear
constraints). If they do not match the finite difference estimates to within a
given tolerance, a warning message indicates the discrepancy and asks if you
want to abort the optimization or to continue.

Equality Constrained Example
For routines that permit equality constraints, nonlinear equality constraints
must be computed in the M-file with the nonlinear inequality constraints. For
linear equalities, the coefficients of the equalities are passed in through the
matrix Aeq and the right-hand-side vector beq.

For example, if you have the nonlinear equality constraint x x1
2

2 1+ = and the
nonlinear inequality constraint x1x2 ≥ –10, rewrite them as

x x
x x
1
2

2

1 2

1 0
10 0

+ − =
− − ≤

,
,

and then solve the problem using the following steps.

Step 1: Write an M-file objfun.m.

function f = objfun(x)
f = exp(x(1))*(4*x(1)^2+2*x(2)^2+4*x(1)*x(2)+2*x(2)+1);

Step 2: Write an M-file confuneq.m for the nonlinear
constraints.

function [c, ceq] = confuneq(x)
% Nonlinear inequality constraints
c = -x(1)*x(2) - 10;
% Nonlinear equality constraints
ceq = x(1)^2 + x(2) - 1;

4-19



4 Tutorial

Step 3: Invoke constrained optimization routine.

x0 = [-1,1]; % Make a starting guess at the solution
options = optimset('LargeScale','off');
[x,fval] = fmincon(@objfun,x0,[],[],[],[],[],[],...

@confuneq,options)
[c,ceq] = confuneq(x) % Check the constraint values at x

After 21 function evaluations, the solution produced is

x =
-0.7529 0.4332

fval =
1.5093

c =
-9.6739

ceq =
4.0684e-010

Note that ceq is equal to 0 within the default tolerance on the constraints of
1.0e-006 and that c is less than or equal to 0 as desired.

Nonlinear Equations with Analytic Jacobian
This example demonstrates the use of the default medium-scale fsolve
algorithm. It is intended for problems where

• The system of nonlinear equations is square, i.e., the number of equations
equals the number of unknowns.

• There exists a solution x such that F(x) = 0.

The example uses fsolve to obtain the minimum of the banana (or
Rosenbrock) function by deriving and then solving an equivalent system of
nonlinear equations. The Rosenbrock function, which has a minimum of
F(x) = 0, is a common test problem in optimization. It has a high degree of
nonlinearity and converges extremely slowly if you try to use steepest descent
type methods. It is given by

f x x x x( ) ( ) .= −( ) + −100 12 1
2 2

1
2

4-20



Examples That Use Standard Algorithms

First generalize this function to an n-dimensional function, for any positive,
even value of n:

f x x x xi i i
i

n
( ) ( ) .

/
= −( ) + −− −

=
∑ 100 12 2 1

2 2
2 1

2

1

2

This function is referred to as the generalized Rosenbrock function. It consists
of n squared terms involving n unknowns.

Before you can use fsolve to find the values of x such that F(x) = 0, i.e., obtain
the minimum of the generalized Rosenbrock function, you must rewrite the
function as the following equivalent system of nonlinear equations:

F x

F x x

F x

F x x

F n

( )

( )

( )

( )

( )

1 1

2 10

3 1

4 10

1 1

1

2 1
2

3

4 3
2

= −

= −( )
= −

= −( )

− = −
�

xx

F n x x

n

n n

−

−= −( )
1

1
210( ) .

This system is square, and you can use fsolve to solve it. As the example
demonstrates, this system has a unique solution given by xi = 1, i = 1,...,n.

Step 1: Write an M-file bananaobj.m to compute the objective
function values and the Jacobian.

function [F,J] = bananaobj(x);
% Evaluate the vector function and the Jacobian matrix for
% the system of nonlinear equations derived from the general
% n-dimensional Rosenbrock function.
% Get the problem size
n = length(x);
if n == 0, error('Input vector, x, is empty.'); end
if mod(n,2) ~= 0,

4-21



4 Tutorial

error('Input vector, x, must have an even number of
components.');
end
% Evaluate the vector function
odds = 1:2:n;
evens = 2:2:n;
F = zeros(n,1);
F(odds,1) = 1-x(odds);
F(evens,1) = 10.*(x(evens)-x(odds).^2);
% Evaluate the Jacobian matrix if nargout > 1
if nargout > 1

c = -ones(n/2,1); C = sparse(odds,odds,c,n,n);
d = 10*ones(n/2,1); D = sparse(evens,evens,d,n,n);
e = -20.*x(odds); E = sparse(evens,odds,e,n,n);
J = C + D + E;

end

Step 2: Call the solve routine for the system of equations.

n = 64;
x0(1:n,1) = -1.9;
x0(2:2:n,1) = 2;
options=optimset('Display','iter','Jacobian','on');
[x,F,exitflag,output,JAC] = fsolve(@bananaobj,x0,options);

Use the starting point x(i) = –1.9 for the odd indices, and x(i) = 2 for the even
indices. Accept the fsolve default 'off' for the LargeScale option, and
the default medium-scale nonlinear equation algorithm 'dogleg'. Then set
Jacobian to 'on' to use the Jacobian defined in bananaobj.m . The fsolve
function generates the following output:

Norm of First-order Trust-region

Iteration Func-count f(x) step optimality radius

0 1 4281.92 615 1

1 2 1546.86 1 329 1

2 3 112.552 2.5 34.8 2.5

3 4 106.24 6.25 34.1 6.25

4 5 106.24 6.25 34.1 6.25

5 6 51.3854 1.5625 6.39 1.56

6 7 51.3854 3.90625 6.39 3.91

4-22



Examples That Use Standard Algorithms

7 8 43.8722 0.976562 2.19 0.977

8 9 37.0713 2.44141 6.27 2.44

9 10 37.0713 2.44141 6.27 2.44

10 11 26.2485 0.610352 1.52 0.61

11 12 20.6649 1.52588 4.63 1.53

12 13 17.2558 1.52588 6.97 1.53

13 14 8.48582 1.52588 4.69 1.53

14 15 4.08398 1.52588 3.77 1.53

15 16 1.77589 1.52588 3.56 1.53

16 17 0.692381 1.52588 3.31 1.53

17 18 0.109777 1.16206 1.66 1.53

18 19 0 0.0468565 0 1.53

Optimization terminated successfully:

First-order optimality is less than options.TolFun

Nonlinear Equations with Finite-Difference Jacobian
In the preceding example, the function bananaobj evaluates F and computes
the Jacobian J. What if the code to compute the Jacobian is not available?
By default, if you do not indicate that the Jacobian can be computed in the
objective function (by setting the Jacobian option in options to 'on'),
fsolve, lsqnonlin, and lsqcurvefit instead use finite differencing to
approximate the Jacobian. This is the default Jacobian option. You can select
finite differencing by setting Jacobian to 'off' using optimset.

This example uses bananaobj from the preceding example as the objective
function, but sets Jacobian to 'off' so that fsolve approximates the
Jacobian and ignores the second bananaobj output. It accepts the fsolve
default 'off' for the LargeScale option, and the default nonlinear equation
medium-scale algorithm 'dogleg':

n = 64;
x0(1:n,1) = -1.9;
x0(2:2:n,1) = 2;
options=optimset('Display','iter','Jacobian','off');
[x,F,exitflag,output,JAC] = fsolve(@bananaobj,x0,options);

The example produces the following output:

Norm of First-order Trust-region

Iteration Func-count f(x) step optimality radius

4-23



4 Tutorial

0 65 4281.92 615 1

1 130 1546.86 1 329 1

2 195 112.552 2.5 34.8 2.5

3 260 106.24 6.25 34.1 6.25

4 261 106.24 6.25 34.1 6.25

5 326 51.3854 1.5625 6.39 1.56

6 327 51.3854 3.90625 6.39 3.91

7 392 43.8722 0.976562 2.19 0.977

8 457 37.0713 2.44141 6.27 2.44

9 458 37.0713 2.44141 6.27 2.44

10 523 26.2485 0.610352 1.52 0.61

11 588 20.6649 1.52588 4.63 1.53

12 653 17.2558 1.52588 6.97 1.53

13 718 8.48582 1.52588 4.69 1.53

14 783 4.08398 1.52588 3.77 1.53

15 848 1.77589 1.52588 3.56 1.53

16 913 0.692381 1.52588 3.31 1.53

17 978 0.109777 1.16206 1.66 1.53

18 1043 0 0.0468565 0 1.53

Optimization terminated successfully:

First-order optimality is less than options.TolFun

The finite-difference version of this example requires the same number of
iterations to converge as the analytic Jacobian version in the preceding
example. It is generally the case that both versions converge at about the same
rate in terms of iterations. However, the finite-difference version requires
many additional function evaluations. The cost of these extra evaluations
might or might not be significant, depending on the particular problem.

Error Estimates in Nonlinear Curve Fitting with
lsqcurvefit
lsqcurvefit enables you to fit parameterized nonlinear functions to data
easily. It also aids in calculating confidence intervals for the fitted parameters.
“Nonlinear Curve Fitting Theory” on page 4-25 describes how to calculate
approximate confidence intervals in general, and “Nonlinear Curve Fitting
Example” on page 4-26 gives a worked example.

4-24



Examples That Use Standard Algorithms

Nonlinear Curve Fitting Theory
In general, there are n data points x, and n measured responses y. The
parameterized nonlinear model is, for a particular function F,

y F a xi i i= +( , ) .ε

a is a vector of parameters of size p, and εi is noise at the ith data point.

If you give an initial guess a0 for the parameters, then lsqcurvefit can
generate an estimate â that causes the model to best fit the data (in a
least-squares sense). lsqcurvefit can also generate a vector of residuals

r y F a xi i i= − ( )ˆ, ,

and an estimated Jacobian

J F a xa= ( )∇ ˆ, .

J is an n-by-p matrix.

Here are standard formulas for approximate confidence intervals; see [1] and
[2]. The mean squared residual is defined to be

s
n p

ri
i

n
2 2

1

1=
− =
∑ .

The covariance matrix of the estimated parameters â can be approximated as

ˆ .Σ = ⎡⎣
⎤
⎦
−

J J sT 1 2

Σ̂ is a p-by-p matrix. The vector of standard errors for â is

diag ˆ .Σ( )
For computational stability it is best to calculate the matrix Σ̂ as follows.
Calculate the QR decomposition of J using the MATLAB command

[Q,R] = qr(J,0);

4-25



4 Tutorial

Q is an n-by-p orthogonal matrix, and R is a p-by-p upper triangular matrix.
Because

J J R Q QR R RT T T T= = ,

it holds that

J J R RT T⎡
⎣

⎤
⎦ = ⎡

⎣
⎤
⎦

− − −1 1 1 .

Use R–1[R–1]T in the calculation of Σ̂ .

To calculate approximate 1 – α confidence intervals for the parameters, use

ˆ , ˆa ai i i i− +[ ]Δ Δ , where â are the estimated parameters, and Δi is the ith
standard error multiplied by the 1 – α/2 quantile of Student’s t distribution
with n–p degrees of freedom.

Nonlinear Curve Fitting Example
This example has 100 data points represented as the vector xdat and
associated measurements represented as the vector ydat. Generate the data
using the following script.

rand('twister', 5489);
randn('state', 0);
xdat=-2*log(rand(100,1));
ydat=(ones(100,1) + .1*randn(100,1)) + (3*ones(100,1) + ...
.5*randn(100,1)).*exp((-(2*ones(100,1)+.5*randn(100,1))).*xdat);

The modeled relationship between xdat and ydat is

ydat a a a xdati i i= + − +1 2 3exp( ) .ε

The goal is to find parameters âi , i = 1, 2, 3, for the model that best fit the
data. Furthermore, the goal is to find confidence intervals for these estimated
parameters.

In order to fit the parameters to the data using lsqcurvefit, you need
to define a fitting function. Define the fitting function predicted as an
anonymous function:

predicted = @(a,xdat) a(1)*ones(100,1) + a(2)*exp(-a(3)*xdat);

4-26



Examples That Use Standard Algorithms

To fit the model to the data, lsqcurvefit needs an initial estimate a0 of
the parameters. Enter

a0=[2;2;2];

Run the solver lsqcurvefit as follows:

[ahat,resnorm,residual,exitflag,output,lambda,jacobian]=...
lsqcurvefit(predicted,a0,xdat,ydat);

The least-squares estimate of â is calculated to be

ahat =
1.0259
2.9774
2.0074

Enter the following commands to calculate the standard errors:

s2=resnorm/(length(residual) - 3);
[Q,R]=qr(jacobian,0);
Rinv=inv(R);
sigmaest=(Rinv*Rinv')*s2;
stderrors=sqrt(diag(sigmaest));

The resulting vector of standard errors is

stderrors = [0.0430; 0.1085; 0.1503]

Student’s t distribution with many degrees of freedom is very close to a normal
distribution. For example, a 95% confidence interval on the parameters is
approximately plus or minus two standard errors from the observed mean. In
other words, approximate 95% confidence intervals for this example are

ˆ * *a stderrors± =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
±2 2

1.0259
2.9774
2.0074

0.0430
0.1085
00.1503

0.9399
2.7604
1.7068

1.1118
3.194

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
, 44

2.3080

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
.

xdat was generated by 100 independent samples from an exponential
distribution with mean 2. ydat was generated from predicted(a,xdat)

4-27



4 Tutorial

using a = [1;3;2], perturbed by adding normal deviates with standard
deviations [0.1; 0.5; 0.5]. The confidence interval just given shows that the
95% confidence interval contains the vector [1; 3; 2].

Note The standard error and confidence interval calculations shown here are
approximations. They are based on the assumptions that the random errors
in the data are small and approximately normally distributed, and that the
number of data points is large compared to the number of parameters. When
these assumptions are violated, the approximations may not be valid.

If you have Statistics Toolbox™ software, you can use the function nlparci to
generate the confidence intervals without doing all these calculations.

References

[1] Draper, Norman R., and Smith, Harry. Applied Regression Analysis, Third
Edition. New York: Wiley-Interscience, 1998.

[2] Seber, G.A.F., and Wild, C.J. Nonlinear Regression, New York:
Wiley-Interscience, 2003.

Multiobjective Examples
The previous examples involved problems with a single objective function.
This section shows how to solve problems with multiobjective functions using
lsqnonlin, fminimax, and fgoalattain. The first two examples show how to
optimize parameters in a Simulink model.

This section presents the following examples:

• “Using lsqnonlin With a Simulink® Model” on page 4-29

• “Using fminimax with a Simulink® Model” on page 4-35

• “Signal Processing Example” on page 4-38

4-28



Examples That Use Standard Algorithms

Using lsqnonlin With a Simulink® Model
Suppose that you want to optimize the control parameters in the Simulink
model optsim.mdl. (This model can be found in the optim directory. Note that
Simulink must be installed on your system to load this model.) The model
includes a nonlinear process plant modeled as a Simulink block diagram.

Plant with Actuator Saturation

The plant is an under-damped third-order model with actuator limits. The
actuator limits are a saturation limit and a slew rate limit. The actuator
saturation limit cuts off input values greater than 2 units or less than -2
units. The slew rate limit of the actuator is 0.8 units/sec. The closed-loop
response of the system to a step input is shown in Closed-Loop Response on
page 4-30. You can see this response by opening the model (type optsim at
the command line or click the model name), and selecting Start from the
Simulation menu. The response plots to the scope.

4-29



4 Tutorial

Closed-Loop Response

The problem is to design a feedback control loop that tracks a unit step input
to the system. The closed-loop plant is entered in terms of the blocks where
the plant and actuator have been placed in a hierarchical Subsystem block. A
Scope block displays output trajectories during the design process.

Closed-Loop Model

4-30



Examples That Use Standard Algorithms

One way to solve this problem is to minimize the error between the output
and the input signal. The variables are the parameters of the Proportional
Integral Derivative (PID) controller. If you only need to minimize the error
at one time unit, it would be a single objective function. But the goal is
to minimize the error for all time steps from 0 to 100, thus producing a
multiobjective function (one function for each time step).

The routine lsqnonlin is used to perform a least-squares fit on the tracking of
the output. The tracking is performed via an M-file function tracklsq, which
returns the error signal yout, the output computed by calling sim, minus the
input signal 1. The code for tracklsq, shown below, is contained in the file
runtracklsq.m, which is included with Optimization Toolbox™ software.

The function runtracklsq sets up all the needed values and then calls
lsqnonlin with the objective function tracklsq, which is nested inside
runtracklsq. The variable options passed to lsqnonlin defines the
criteria and display characteristics. In this case you ask for output, use the
medium-scale algorithm, and give termination tolerances for the step and
objective function on the order of 0.001.

To run the simulation in the model optsim, the variables Kp, Ki, Kd, a1, and
a2 (a1 and a2 are variables in the Plant block) must all be defined. Kp, Ki, and
Kd are the variables to be optimized. The function tracklsq is nested inside
runtracklsq so that the variables a1 and a2 are shared between the two
functions. The variables a1 and a2 are initialized in runtracklsq.

The objective function tracklsq must run the simulation. The simulation can
be run either in the base workspace or the current workspace, that is, the
workspace of the function calling sim, which in this case is the workspace of
tracklsq. In this example, the simset command is used to tell sim to run the
simulation in the current workspace by setting 'SrcWorkspace' to 'Current'.
You can also choose a solver for sim using the simset function. The simulation
is performed using a fixed-step fifth-order method to 100 seconds.

When the simulation is completed, the variables tout, xout, and yout are now
in the current workspace (that is, the workspace of tracklsq). The Outport
block in the block diagram model puts yout into the current workspace at the
end of the simulation.

The following is the code for runtracklsq:

4-31



4 Tutorial

function [Kp,Ki,Kd] = runtracklsq
% RUNTRACKLSQ demonstrates using LSQNONLIN with Simulink.

optsim % Load the model
pid0 = [0.63 0.0504 1.9688]; % Set initial values
a1 = 3; a2 = 43; % Initialize model plant variables
options = optimset('LargeScale','off','Display','iter',...

'TolX',0.001,'TolFun',0.001);
pid = lsqnonlin(@tracklsq, pid0, [], [], options);
Kp = pid(1); Ki = pid(2); Kd = pid(3);

function F = tracklsq(pid)
% Track the output of optsim to a signal of 1

% Variables a1 and a2 are needed by the model optsim.
% They are shared with RUNTRACKLSQ so do not need to be
% redefined here.
Kp = pid(1);
Ki = pid(2);
Kd = pid(3);

% Compute function value
simopt = simset('solver','ode5',...

'SrcWorkspace','Current');
% Initialize sim options
[tout,xout,yout] = sim('optsim',[0 100],simopt);
F = yout-1;

end
end

When you run runtracklsq, the optimization gives the solution for the
proportional, integral, and derivative (Kp, Ki, Kd) gains of the controller after
64 function evaluations:

[Kp, Ki, Kd] = runtracklsq

Directional

Iteration Func-count Residual Step-size derivative Lambda

0 4 8.66531

4-32



Examples That Use Standard Algorithms

1 18 5.21604 85.4 -0.00836 6.92469

2 25 4.53699 1 -0.107 0.0403059

3 32 4.47316 0.973 -0.00209 0.0134348

4 40 4.46854 2.45 9.72e-005 0.00676229

5 47 4.46575 0.415 -0.00266 0.00338115

6 48 4.46526 1 -0.000999 0.00184785

Optimization terminated: directional derivative along

search direction less than TolFun and infinity-norm of

gradient less than 10*(TolFun+TolX).

Kp =

3.0956

Ki =

0.1466

Kd =

14.1378

Here is the resulting closed-loop step response.

4-33



4 Tutorial

Closed-Loop Response Using lsqnonlin

Note The call to sim results in a call to one of the Simulink ordinary
differential equation (ODE) solvers. A choice must be made about the type of
solver to use. From the optimization point of view, a fixed-step solver is the
best choice if that is sufficient to solve the ODE. However, in the case of a stiff
system, a variable-step method might be required to solve the ODE.

The numerical solution produced by a variable-step solver, however, is not a
smooth function of parameters, because of step-size control mechanisms. This
lack of smoothness can prevent the optimization routine from converging. The
lack of smoothness is not introduced when a fixed-step solver is used. (For a
further explanation, see [1].)

Simulink® Response Optimization™ software is recommended for solving
multiobjective optimization problems in conjunction with Simulink
variable-step solvers. It provides a special numeric gradient computation that
works with Simulink and avoids introducing a problem of lack of smoothness.

4-34



Examples That Use Standard Algorithms

Using fminimax with a Simulink® Model
Another approach to optimizing the control parameters in the Simulink model
shown in Plant with Actuator Saturation on page 4-29 is to use the fminimax
function. In this case, rather than minimizing the error between the output
and the input signal, you minimize the maximum value of the output at any
time t between 0 and 100.

The code for this example, shown below, is contained in the function
runtrackmm, in which the objective function is simply the output yout
returned by the sim command. But minimizing the maximum output at all
time steps might force the output to be far below unity for some time steps.
To keep the output above 0.95 after the first 20 seconds, the constraint
function trackmmcon contains the constraint yout >= 0.95 from t=20 to
t=100. Because constraints must be in the form g ≤ 0, the constraint in the
function is g = -yout(20:100)+.95.

Both trackmmobj and trackmmcon use the result yout from sim, calculated
from the current PID values. The nonlinear constraint function is always
called immediately after the objective function in fmincon, fminimax,
fgoalattain, and fseminf with the same values. This way you can avoid
calling the simulation twice by using nested functions so that the value of
yout can be shared between the objective and constraint functions as long as
it is initialized in runtrackmm.

The following is the code for runtrackmm:

function [Kp, Ki, Kd] = runtrackmm

optsim
pid0 = [0.63 0.0504 1.9688];
% a1, a2, yout are shared with TRACKMMOBJ and TRACKMMCON
a1 = 3; a2 = 43; % Initialize plant variables in model
yout = []; % Give yout an initial value
options = optimset('Display','iter',...

'TolX',0.001,'TolFun',0.001);
pid = fminimax(@trackmmobj,pid0,[],[],[],[],[],[],...

@trackmmcon,options);
Kp = pid(1); Ki = pid(2); Kd = pid(3);

function F = trackmmobj(pid)

4-35



4 Tutorial

% Track the output of optsim to a signal of 1.
% Variables a1 and a2 are shared with RUNTRACKMM.
% Variable yout is shared with RUNTRACKMM and
% RUNTRACKMMCON.

Kp = pid(1);
Ki = pid(2);
Kd = pid(3);

% Compute function value
opt = simset('solver','ode5','SrcWorkspace','Current');
[tout,xout,yout] = sim('optsim',[0 100],opt);
F = yout;

end

function [c,ceq] = trackmmcon(pid)
% Track the output of optsim to a signal of 1.
% Variable yout is shared with RUNTRACKMM and
% TRACKMMOBJ

% Compute constraints.
% Objective TRACKMMOBJ is called before this
% constraint function, so yout is current.
c = -yout(20:100)+.95;
ceq=[];

end
end

When you run the code, it returns the following results:

[Kp,Ki,Kd] = runtrackmm

Max Directional

Iter F-count {F,constraints} Step-size derivative Procedure

0 5 1.11982

1 11 1.264 1 1.18

2 17 1.055 1 -0.172

3 23 1.004 1 -0.0128 Hessian modified twice

4 29 0.9997 1 3.48e-005 Hessian modified

5 35 0.9996 1 -1.36e-006 Hessian modified twice

4-36



Examples That Use Standard Algorithms

Optimization terminated: magnitude of directional derivative in search

direction less than 2*options.TolFun and maximum constraint violation

is less than options.TolCon.

lower upper ineqlin ineqnonlin

1

14

182

Kp =

0.5894

Ki =

0.0605

Kd =

5.5295

The last value shown in the MAX{F,constraints} column of the output shows
that the maximum value for all the time steps is 0.9996. The closed loop
response with this result is shown in the following Closed-Loop Response
Using fminimax on page 4-38.

This solution differs from the solution lsqnonlin because you are solving
different problem formulations.

4-37



4 Tutorial

Closed-Loop Response Using fminimax

Signal Processing Example
Consider designing a linear-phase Finite Impulse Response (FIR) filter. The
problem is to design a lowpass filter with magnitude one at all frequencies
between 0 and 0.1 Hz and magnitude zero between 0.15 and 0.5 Hz.

The frequency response H(f) for such a filter is defined by

H f h n e

A f e

A f a n fn

j fn

n

M

j fM

n

M

( ) ( )

( ) ,

( ) ( ) cos( )

=

=

=

−

=
−

=

−

∑ 2

0

2

2

0
2

π

π

π
11

∑ ,
(4-6)

where A(f) is the magnitude of the frequency response. One solution is to
apply a goal attainment method to the magnitude of the frequency response.

4-38



Examples That Use Standard Algorithms

Given a function that computes the magnitude, the function fgoalattain
will attempt to vary the magnitude coefficients a(n) until the magnitude
response matches the desired response within some tolerance. The function
that computes the magnitude response is given in filtmin.m. This function
takes a, the magnitude function coefficients, and w, the discretization of the
frequency domain we are interested in.

To set up a goal attainment problem, you must specify the goal and weights
for the problem. For frequencies between 0 and 0.1, the goal is one. For
frequencies between 0.15 and 0.5, the goal is zero. Frequencies between 0.1
and 0.15 are not specified, so no goals or weights are needed in this range.

This information is stored in the variable goal passed to fgoalattain.
The length of goal is the same as the length returned by the function
filtmin. So that the goals are equally satisfied, usually weight would
be set to abs(goal). However, since some of the goals are zero, the effect
of using weight=abs(goal) will force the objectives with weight 0 to be
satisfied as hard constraints, and the objectives with weight 1 possibly to be
underattained (see “Goal Attainment Method” on page 5-44). Because all the
goals are close in magnitude, using a weight of unity for all goals will give
them equal priority. (Using abs(goal) for the weights is more important
when the magnitude of goal differs more significantly.) Also, setting

options = optimset('GoalsExactAchieve',length(goal));

specifies that each objective should be as near as possible to its goal value
(neither greater nor less than).

Step 1: Write an M-file filtmin.m.

function y = filtmin(a,w)
n = length(a);
y = cos(w'*(0:n-1)*2*pi)*a ;

Step 2: Invoke optimization routine.

% Plot with initial coefficients
a0 = ones(15,1);
incr = 50;
w = linspace(0,0.5,incr);

4-39



4 Tutorial

y0 = filtmin(a0,w);
clf, plot(w,y0,'.r');
drawnow;

% Set up the goal attainment problem
w1 = linspace(0,0.1,incr) ;
w2 = linspace(0.15,0.5,incr);
w0 = [w1 w2];
goal = [1.0*ones(1,length(w1)) zeros(1,length(w2))];
weight = ones(size(goal));

% Call fgoalattain
options = optimset('GoalsExactAchieve',length(goal));
[a,fval,attainfactor,exitflag]=fgoalattain(@(x) filtmin(x,w0)...

a0,goal,weight,[],[],[],[],[],[],[],options);

% Plot with the optimized (final) coefficients
y = filtmin(a,w);
hold on, plot(w,y,'r')
axis([0 0.5 -3 3])
xlabel('Frequency (Hz)')
ylabel('Magnitude Response (dB)')
legend('initial', 'final')
grid on

Compare the magnitude response computed with the initial coefficients and
the final coefficients (Magnitude Response with Initial and Final Magnitude
Coefficients on page 4-41). Note that you could use the firpm function in
Signal Processing Toolbox™ software to design this filter.

4-40



Examples That Use Standard Algorithms

Magnitude Response with Initial and Final Magnitude Coefficients

4-41



4 Tutorial

Large-Scale Examples

In this section...

“Introduction” on page 4-42

“Problems Covered by Large-Scale Methods” on page 4-43

“Nonlinear Equations with Jacobian” on page 4-47

“Nonlinear Equations with Jacobian Sparsity Pattern” on page 4-49

“Nonlinear Least-Squares with Full Jacobian Sparsity Pattern” on page 4-52

“Nonlinear Minimization with Gradient and Hessian” on page 4-53

“Nonlinear Minimization with Gradient and Hessian Sparsity Pattern”
on page 4-55

“Nonlinear Minimization with Bound Constraints and Banded
Preconditioner” on page 4-57

“Nonlinear Minimization with Equality Constraints” on page 4-60

“Nonlinear Minimization with a Dense but Structured Hessian and
Equality Constraints” on page 4-62

“Quadratic Minimization with Bound Constraints” on page 4-66

“Quadratic Minimization with a Dense but Structured Hessian” on page
4-68

“Linear Least-Squares with Bound Constraints” on page 4-73

“Linear Programming with Equalities and Inequalities” on page 4-75

“Linear Programming with Dense Columns in the Equalities” on page 4-76

Introduction
Some of the optimization functions include algorithms for continuous
optimization problems especially targeted to large problems with sparsity or
structure. The main large-scale algorithms are iterative, i.e., a sequence
of approximate solutions is generated. In each iteration a linear system is
(approximately) solved. The linear systems are solved using MATLAB® sparse
matrix capabilities and a variety of sparse linear solution techniques, both
iterative and direct.

4-42



Large-Scale Examples

Generally speaking, the large-scale optimization methods preserve structure
and sparsity, using exact derivative information wherever possible. To solve
the large-scale problems efficiently, some problem formulations are restricted
(such as only solving overdetermined linear or nonlinear systems), or require
additional information (e.g., the nonlinear minimization algorithm requires
that the gradient be computed in the user-supplied function).

This section summarizes the kinds of problems covered by large-scale methods
and provides examples.

Problems Covered by Large-Scale Methods
This section describes how to formulate problems for functions that use
large-scale methods. It is important to keep in mind that there are some
restrictions on the types of problems covered by large-scale methods. For
example, the function fmincon cannot use large-scale methods when the
feasible region is defined by either of the following:

• Nonlinear equality or inequality constraints

• Both upper- or lower-bound constraints and equality constraints

When a function is unable to solve a problem using large-scale methods, it
reverts to medium-scale methods.

Formulating Problems with Large-Scale Methods
The following table summarizes how to set up problems for large-scale
methods and provide the necessary input for the optimization functions. For
each function, the second column of the table describes how to formulate
the problem and the third column describes what additional information is
needed for the large-scale algorithms. For fminunc and fmincon, the gradient
must be computed along with the objective in the user-supplied function (the
gradient is not required for the medium-scale algorithms).

Since these methods can also be used on small- to medium-scale problems
that are not necessarily sparse, the last column of the table emphasizes what
conditions are needed for large-scale problems to run efficiently without
exceeding your computer system’s memory capabilities, e.g., the linear
constraint matrices should be sparse. For smaller problems the conditions
in the last column are unnecessary.

4-43



4 Tutorial

Note The following table lists the functions in order of increasing problem
complexity.

Several examples, which follow this table, clarify the contents of the table.

Large-Scale Problem Coverage and Requirements

Function
Problem
Formulations

Additional
Information
Needed For Large Problems

fminunc min ( )
x

f x Must provide
gradient for
f(x) in fun.

• Provide sparsity
structure of the Hessian,
or compute the Hessian
in fun.

• The Hessian should be
sparse.

fmincon

•
min ( )

x
f x

such that l ≤ x ≤ u, where
l < u.

•
min ( )

x
f x

such that Aeq·x = beq, and Aeq
is an m-by-n matrix where
m ≤ n.

Must provide
gradient for
f(x) in fun.

• Provide sparsity
structure of the Hessian
or compute the Hessian
in fun.

• The Hessian should be
sparse.

• Aeq should be sparse.

4-44



Large-Scale Examples

Large-Scale Problem Coverage and Requirements (Continued)

Function
Problem
Formulations

Additional
Information
Needed For Large Problems

lsqnonlin

•
min ( ) min ( )

x x
i

i

F x F x2
2 2= ∑

•
min ( ) min ( )

x x
i

i

F x F x2
2 2= ∑

such that l ≤ x ≤ u where l < u.

F(x) must be overdetermined
(have at least as many equations
as variables).

None • Provide sparsity
structure of the Jacobian
or compute the Jacobian
in fun.

• The Jacobian should be
sparse.

lsqcurvefit

•
min ( , )

x
F x xdata ydata− 2

2

•
min ( , )

x
F x xdata ydata− 2

2

such that l ≤ x ≤ u, where
l < u.

F(x,xdata) must be
overdetermined (have at least as
many equations as variables).

None • Provide sparsity
structure of the Jacobian
or compute the Jacobian
in fun.

• The Jacobian should be
sparse.

fsolve F(x) = 0

F(x) must have the same number
of equations as variables.

None • Provide sparsity
structure of the Jacobian
or compute the Jacobian
in fun.

• The Jacobian should be
sparse.

4-45



4 Tutorial

Large-Scale Problem Coverage and Requirements (Continued)

Function
Problem
Formulations

Additional
Information
Needed For Large Problems

lsqlin
min

x
C x d⋅ − 2

2

such that l ≤ x ≤ u, where l < u.

C is an m-by-n matrix where
m ≥ n, i.e., the problem must be
overdetermined.

None C should be sparse.

linprog
min

x

Tf x

such that A·x ≤ b, Aeq·x = beq,
l ≤ x ≤ u

None A and Aeq should be sparse.

quadprog

•
min

x

T Tx Hx f x
1
2

+

such that l ≤ x ≤ u, where l < u

•
min

x

T Tx Hx f x
1
2

+

such that such that
Aeq·x = beq, and Aeq is
an m-by-n matrix where
m ≤ n.

None • H should be sparse.

• Aeq should be sparse.

In the following examples, many of the M-file functions are available in
the optim directory. Most of these do not have a fixed problem size, i.e.,
the size of your starting point xstart determines the size problem that is
computed. If your computer system cannot handle the size suggested in the
examples below, use a smaller-dimension start point to run the problems. If
the problems have upper or lower bounds or equalities, you must adjust the
size of those vectors or matrices as well.

4-46



Large-Scale Examples

Nonlinear Equations with Jacobian
Consider the problem of finding a solution to a system of nonlinear equations
whose Jacobian is sparse. The dimension of the problem in this example
is 1000. The goal is to find x such that F(x) = 0. Assuming n = 1000, the
nonlinear equations are

F x x x

F i x x x x

F n x x

i i i i

n

( ) ,

( ) ,

( )

1 3 2 2 1

3 2 2 1

3 2

1 1
2

2
2

1 1

= − − +

= − − − +

= −
− +

nn nx2
1 1− +− .

To solve a large nonlinear system of equations, F(x) = 0, use the large-scale
method available in fsolve.

Step 1: Write an M-file nlsf1.m that computes the objective
function values and the Jacobian.

function [F,J] = nlsf1(x)
% Evaluate the vector function
n = length(x);
F = zeros(n,1);
i = 2:(n-1);
F(i) = (3-2*x(i)).*x(i)-x(i-1)-2*x(i+1) + 1;
F(n) = (3-2*x(n)).*x(n)-x(n-1) + 1;
F(1) = (3-2*x(1)).*x(1)-2*x(2) + 1;
% Evaluate the Jacobian if nargout > 1
if nargout > 1

d = -4*x + 3*ones(n,1); D = sparse(1:n,1:n,d,n,n);
c = -2*ones(n-1,1); C = sparse(1:n-1,2:n,c,n,n);
e = -ones(n-1,1); E = sparse(2:n,1:n-1,e,n,n);
J = C + D + E;

end

Step 2: Call the solve routine for the system of equations.

xstart = -ones(1000,1);
fun = @nlsf1;
options = optimset('Display','iter','LargeScale','on',...

4-47



4 Tutorial

'Jacobian','on','PrecondBandWidth',0);
[x,fval,exitflag,output] = fsolve(fun,xstart,options);

A starting point is given as well as the function name. The default method for
fsolve is medium-scale, so it is necessary to specify 'LargeScale' as 'on' in
the options argument. Setting the Display option to 'iter' causes fsolve
to display the output at each iteration. Setting Jacobian to 'on', causes
fsolve to use the Jacobian information available in nlsf1.m.

The commands display this output:

Norm of First-order

Iteration Func-count f(x) step optimality CG-iterations

0 1 1011 19

1 2 16.1942 7.91898 2.35 3

2 3 0.0228027 1.33142 0.291 3

3 4 0.000103359 0.0433329 0.0201 4

4 5 7.3792e-007 0.0022606 0.000946 4

5 6 4.02299e-010 0.000268381 4.12e-005 5

Optimization terminated: relative function value

changing by less than OPTIONS.TolFun.

A linear system is (approximately) solved in each major iteration using the
preconditioned conjugate gradient method. Setting PrecondBandWidth to 0
in options means a diagonal preconditioner is used. (PrecondBandWidth
specifies the bandwidth of the preconditioning matrix. A bandwidth of 0
means there is only one diagonal in the matrix.)

From the first-order optimality values, fast linear convergence occurs. The
number of conjugate gradient (CG) iterations required per major iteration is
low, at most five for a problem of 1000 dimensions, implying that the linear
systems are not very difficult to solve in this case (though more work is
required as convergence progresses).

If you want to use a tridiagonal preconditioner, i.e., a preconditioning matrix
with three diagonals (or bandwidth of one), set PrecondBandWidth to the
value 1:

options = optimset('Display','iter','Jacobian','on',...
'LargeScale','on','PrecondBandWidth',1);

[x,fval,exitflag,output] = fsolve(fun,xstart,options);

4-48



Large-Scale Examples

In this case the output is

Norm of First-order

Iteration Func-count f(x) step optimality CG-iterations

0 1 1011 19

1 2 16.0839 7.92496 1.92 1

2 3 0.0458181 1.3279 0.579 1

3 4 0.000101184 0.0631898 0.0203 2

4 5 3.16615e-007 0.00273698 0.00079 2

5 6 9.72481e-010 0.00018111 5.82e-005 2

Optimization terminated: relative function value

changing by less than OPTIONS.TolFun.

Note that although the same number of iterations takes place, the number
of PCG iterations has dropped, so less work is being done per iteration. See
“Preconditioned Conjugate Gradients” on page 6-12.

Setting PrecondBandWidth to Inf (this is the default) means that the solver
uses Cholesky factorization rather than PCG.

Nonlinear Equations with Jacobian Sparsity Pattern
In the preceding example, the function nlsf1 computes the Jacobian J, a
sparse matrix, along with the evaluation of F. What if the code to compute the
Jacobian is not available? By default, if you do not indicate that the Jacobian
can be computed in nlsf1 (by setting the Jacobian option in options to
'on'), fsolve, lsqnonlin, and lsqcurvefit instead uses finite differencing
to approximate the Jacobian.

In order for this finite differencing to be as efficient as possible, you should
supply the sparsity pattern of the Jacobian, by setting JacobPattern to 'on'
in options. That is, supply a sparse matrix Jstr whose nonzero entries
correspond to nonzeros of the Jacobian for all x. Indeed, the nonzeros of Jstr
can correspond to a superset of the nonzero locations of J; however, in general
the computational cost of the sparse finite-difference procedure will increase
with the number of nonzeros of Jstr.

Providing the sparsity pattern can drastically reduce the time needed to
compute the finite differencing on large problems. If the sparsity pattern

4-49



4 Tutorial

is not provided (and the Jacobian is not computed in the objective function
either) then, in this problem nlsfs1, the finite-differencing code attempts to
compute all 1000-by-1000 entries in the Jacobian. But in this case there are
only 2998 nonzeros, substantially less than the 1,000,000 possible nonzeros
the finite-differencing code attempts to compute. In other words, this problem
is solvable if you provide the sparsity pattern. If not, most computers run out
of memory when the full dense finite-differencing is attempted. On most
small problems, it is not essential to provide the sparsity structure.

Suppose the sparse matrix Jstr, computed previously, has been saved in file
nlsdat1.mat. The following driver calls fsolve applied to nlsf1a, which is
the same as nlsf1 except that only the function values are returned; sparse
finite-differencing is used to estimate the sparse Jacobian matrix as needed.

Step 1: Write an M-file nlsf1a.m that computes the objective
function values.

function F = nlsf1a(x)
% Evaluate the vector function
n = length(x);
F = zeros(n,1);
i = 2:(n-1);
F(i) = (3-2*x(i)).*x(i)-x(i-1)-2*x(i+1) + 1;
F(n) = (3-2*x(n)).*x(n)-x(n-1) + 1;
F(1) = (3-2*x(1)).*x(1)-2*x(2) + 1;

Step 2: Call the system of equations solve routine.

xstart = -ones(1000,1);
fun = @nlsf1a;
load nlsdat1 % Get Jstr
options = optimset('Display','iter','JacobPattern',Jstr,...

'LargeScale','on','PrecondBandWidth',1);
[x,fval,exitflag,output] = fsolve(fun,xstart,options);

In this case, the output displayed is

Norm of First-order

Iteration Func-count f(x) step optimality CG-iterations

0 5 1011 19

4-50



Large-Scale Examples

1 10 16.0839 7.92496 1.92 1

2 15 0.0458179 1.3279 0.579 1

3 20 0.000101184 0.0631896 0.0203 2

4 25 3.16616e-007 0.00273698 0.00079 2

5 30 9.72483e-010 0.00018111 5.82e-005 2

Optimization terminated: relative function value

changing by less than OPTIONS.TolFun.

Alternatively, it is possible to choose a sparse direct linear solver (i.e., a sparse
QR factorization) by indicating a “complete” preconditioner. For example, if
you set PrecondBandWidth to Inf, then a sparse direct linear solver is used
instead of a preconditioned conjugate gradient iteration:

xstart = -ones(1000,1);
fun = @nlsf1a;
load nlsdat1 % Get Jstr
options = optimset('Display','iter','JacobPattern',Jstr,...

'LargeScale','on','PrecondBandWidth',inf);
[x,fval,exitflag,output] = fsolve(fun,xstart,options);

and the resulting display is

Norm of First-order

Iteration Func-count f(x) step optimality CG-iterations

0 5 1011 19

1 10 15.9018 7.92421 1.89 0

2 15 0.0128161 1.32542 0.0746 0

3 20 1.73502e-008 0.0397923 0.000196 0

4 25 1.10732e-018 4.55495e-005 2.74e-009 0

Optimization terminated: first-order optimality less than OPTIONS.TolFun,

and no negative/zero curvature detected in trust region model.

When the sparse direct solvers are used, the CG iteration is 0 for that (major)
iteration, as shown in the output under CG-Iterations. Notice that the final
optimality and f(x) value (which for fsolve, f(x), is the sum of the squares of
the function values) are closer to zero than using the PCG method, which
is often the case.

4-51



4 Tutorial

Nonlinear Least-Squares with Full Jacobian Sparsity
Pattern
The large-scale methods in lsqnonlin, lsqcurvefit, and fsolve can be used
with small- to medium-scale problems without computing the Jacobian in fun
or providing the Jacobian sparsity pattern. (This example also applies to the
case of using fmincon or fminunc without computing the Hessian or supplying
the Hessian sparsity pattern.) How small is small- to medium-scale? No
absolute answer is available, as it depends on the amount of virtual memory
available in your computer system configuration.

Suppose your problem has m equations and n unknowns. If the command
J = sparse(ones(m,n)) causes an Out of memory error on your machine,
then this is certainly too large a problem. If it does not result in an error,
the problem might still be too large, but you can only find out by running it
and seeing if MATLAB is able to run within the amount of virtual memory
available on your system.

Let’s say you have a small problem with 10 equations and 2 unknowns, such
as finding x that minimizes

2 2 1 2
2

1

10
+ − −( )

=
∑ k e ekx kx

k

,

starting at the point x = [0.3,0.4].

Because lsqnonlin assumes that the sum of squares is not explicitly formed
in the user function, the function passed to lsqnonlin should instead compute
the vector valued function

F x k e ek
kx kx( ) ,= + − −2 2 1 2

for k = 1 to 10 (that is, F should have 10 components).

Step 1: Write an M-file myfun.m that computes the objective
function values.

function F = myfun(x)

4-52



Large-Scale Examples

k = 1:10;
F = 2 + 2*k-exp(k*x(1))-exp(k*x(2));

Step 2: Call the nonlinear least-squares routine.

x0 = [0.3 0.4] % Starting guess
[x,resnorm] = lsqnonlin(@myfun,x0) % Invoke optimizer

Because the Jacobian is not computed in myfun.m, and no Jacobian
sparsity pattern is provided by the JacobPattern option in options,
lsqnonlin calls the large-scale method with JacobPattern set to
Jstr = sparse(ones(10,2)). This is the default for lsqnonlin. Note that
the Jacobian option in options is set to 'off' by default.

When the finite-differencing routine is called the first time, it detects that
Jstr is actually a dense matrix, i.e., that no speed benefit is derived from
storing it as a sparse matrix. From then on the finite-differencing routine
uses Jstr = ones(10,2) (a full matrix) for the optimization computations.

After about 24 function evaluations, this example gives the solution

x =
0.2578 0.2578

resnorm % Residual or sum of squares
resnorm =

124.3622

Most computer systems can handle much larger full problems, say into the
100s of equations and variables. But if there is some sparsity structure in the
Jacobian (or Hessian) that can be taken advantage of, the large-scale methods
will always run faster if this information is provided.

Nonlinear Minimization with Gradient and Hessian
This example involves solving a nonlinear minimization problem with a
tridiagonal Hessian matrix H(x) first computed explicitly, and then by
providing the Hessian’s sparsity structure for the finite-differencing routine.

The problem is to find x to minimize

4-53



4 Tutorial

f x x xi
x

i
x

i

n
i i

( ) ,= ( ) + ( )⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

+ +( )
+

+( )
=

−

∑ 2 1
1

2 1

1

1
1

2 2

(4-7)

where n = 1000.

Step 1: Write an M-file brownfgh.m that computes the
objective function, the gradient of the objective, and the sparse
tridiagonal Hessian matrix.
The file is lengthy so is not included here. View the code with the command

type brownfgh

Because brownfgh computes the gradient and Hessian values as well as the
objective function, you need to use optimset to indicate that this information
is available in brownfgh, using the GradObj and Hessian options.

Step 2: Call a nonlinear minimization routine with a starting
point xstart.

n = 1000;
xstart = -ones(n,1);
xstart(2:2:n,1) = 1;
options = optimset('GradObj','on','Hessian','on');
[x,fval,exitflag,output] = fminunc(@brownfgh,xstart,options);

This 1000 variable problem is solved in about 7 iterations and 7 conjugate
gradient iterations with a positive exitflag indicating convergence. The
final function value and measure of optimality at the solution x are both close
to zero. For fminunc, the first order optimality is the infinity norm of the
gradient of the function, which is zero at a local minimum:

exitflag =
1

fval =
2.8709e-017

output =
iterations: 7
funcCount: 8

cgiterations: 7

4-54



Large-Scale Examples

firstorderopt: 4.7948e-010
algorithm: 'large-scale: trust-region Newton'

message: [1x137 char]

Nonlinear Minimization with Gradient and Hessian
Sparsity Pattern
Next, solve the same problem but the Hessian matrix is now approximated by
sparse finite differences instead of explicit computation. To use the large-scale
method in fminunc, you must compute the gradient in fun; it is not optional
as in the medium-scale method.

The M-file function brownfg computes the objective function and gradient.

Step 1: Write an M-file brownfg.m that computes the objective
function and the gradient of the objective.

function [f,g] = brownfg(x)
% BROWNFG Nonlinear minimization test problem
%
% Evaluate the function
n=length(x); y=zeros(n,1);
i=1:(n-1);
y(i)=(x(i).^2).^(x(i+1).^2+1) + ...

(x(i+1).^2).^(x(i).^2+1);
f=sum(y);

% Evaluate the gradient if nargout > 1
if nargout > 1

i=1:(n-1); g = zeros(n,1);
g(i) = 2*(x(i+1).^2+1).*x(i).* ...

((x(i).^2).^(x(i+1).^2))+ ...
2*x(i).*((x(i+1).^2).^(x(i).^2+1)).* ...
log(x(i+1).^2);

g(i+1) = g(i+1) + ...
2*x(i+1).*((x(i).^2).^(x(i+1).^2+1)).* ...
log(x(i).^2) + ...
2*(x(i).^2+1).*x(i+1).* ...
((x(i+1).^2).^(x(i).^2));

end

4-55



4 Tutorial

To allow efficient computation of the sparse finite-difference approximation of
the Hessian matrix H(x), the sparsity structure of H must be predetermined.
In this case assume this structure, Hstr, a sparse matrix, is available in file
brownhstr.mat. Using the spy command you can see that Hstr is indeed
sparse (only 2998 nonzeros). Use optimset to set the HessPattern option
to Hstr. When a problem as large as this has obvious sparsity structure,
not setting the HessPattern option requires a huge amount of unnecessary
memory and computation because fminunc attempts to use finite differencing
on a full Hessian matrix of one million nonzero entries.

You must also set the GradObj option to 'on' using optimset, since the
gradient is computed in brownfg.m. Then execute fminunc as shown in Step 2.

Step 2: Call a nonlinear minimization routine with a starting
point xstart.

fun = @brownfg;
load brownhstr % Get Hstr, structure of the Hessian
spy(Hstr) % View the sparsity structure of Hstr
n = 1000;
xstart = -ones(n,1);
xstart(2:2:n,1) = 1;
options = optimset('GradObj','on','HessPattern',Hstr);
[x,fval,exitflag,output] = fminunc(fun,xstart,options);

This 1000-variable problem is solved in eight iterations and seven conjugate
gradient iterations with a positive exitflag indicating convergence. The
final function value and measure of optimality at the solution x are both close
to zero (for fminunc, the first-order optimality is the infinity norm of the
gradient of the function, which is zero at a local minimum):

exitflag =
1

fval =
7.4739e-017

output =
iterations: 7
funcCount: 8

cgiterations: 7
firstorderopt: 7.9822e-010

4-56



Large-Scale Examples

algorithm: 'large-scale: trust-region Newton'
message: [1x137 char]

Nonlinear Minimization with Bound Constraints and
Banded Preconditioner
The goal in this problem is to minimize the nonlinear function

f x x x x x x xi i i i
p

i

n

i i n
p

i

n
( ) ,/

/
= + −( ) − − + + +− +

=
+

=
∑ ∑1 3 2 11 1

1
2

1

2

such that -10.0 ≤ xi ≤ 10.0, where n is 800 (n should be a multiple of 4), p = 7/3,
and x0 = xn + 1 = 0.

Step 1: Write an M-file tbroyfg.m that computes the objective
function and the gradient of the objective
The M-file function tbroyfg.m computes the function value and gradient.
This file is long and is not included here. You can see the code for this function
using the command

type tbroyfg

The sparsity pattern of the Hessian matrix has been predetermined and
stored in the file tbroyhstr.mat. The sparsity structure for the Hessian of
this problem is banded, as you can see in the following spy plot.

load tbroyhstr
spy(Hstr)

4-57



4 Tutorial

0 100 200 300 400 500 600 700 800

0

100

200

300

400

500

600

700

800

nz = 4794

In this plot, the center stripe is itself a five-banded matrix. The following
plot shows the matrix more clearly:

spy(Hstr(1:20,1:20))

0 2 4 6 8 10 12 14 16 18 20

0

2

4

6

8

10

12

14

16

18

20

nz = 94

4-58



Large-Scale Examples

Use optimset to set the HessPattern parameter to Hstr. When a problem
as large as this has obvious sparsity structure, not setting the HessPattern
parameter requires a huge amount of unnecessary memory and computation.
This is because fmincon attempts to use finite differencing on a full Hessian
matrix of 640,000 nonzero entries.

You must also set the GradObj parameter to 'on' using optimset, since the
gradient is computed in tbroyfg.m. Then execute fmincon as shown in Step 2.

Step 2: Call a nonlinear minimization routine with a starting
point xstart.

fun = @tbroyfg;
load tbroyhstr % Get Hstr, structure of the Hessian
n = 800;
xstart = -ones(n,1); xstart(2:2:n) = 1;
lb = -10*ones(n,1); ub = -lb;
options = optimset('GradObj','on','HessPattern',Hstr);
[x,fval,exitflag,output] = ...

fmincon(fun,xstart,[],[],[],[],lb,ub,[],options);

After seven iterations, the exitflag, fval, and output values are

exitflag =
3

fval =
270.4790

output =
iterations: 7
funcCount: 8

cgiterations: 18
firstorderopt: 0.0163

algorithm: 'large-scale: trust-region reflective Newton'
message: [1x86 char]

For bound constrained problems, the first-order optimality is the infinity
norm of v.*g, where v is defined as in “Box Constraints” on page 6-15, and g
is the gradient.

4-59



4 Tutorial

Because of the five-banded center stripe, you can improve the solution
by using a five-banded preconditioner instead of the default diagonal
preconditioner. Using the optimset function, reset the PrecondBandWidth
parameter to 2 and solve the problem again. (The bandwidth is the number of
upper (or lower) diagonals, not counting the main diagonal.)

fun = @tbroyfg;
load tbroyhstr % Get Hstr, structure of the Hessian
n = 800;
xstart = -ones(n,1); xstart(2:2:n,1) = 1;
lb = -10*ones(n,1); ub = -lb;
options = optimset('GradObj','on','HessPattern',Hstr, ...

'PrecondBandWidth',2);
[x,fval,exitflag,output] = ...

fmincon(fun,xstart,[],[],[],[],lb,ub,[],options);

The number of iterations actually goes up by two; however the total number
of CG iterations drops from 18 to 15. The first-order optimality measure is
reduced by a factor of 1e-3:

exitflag =
3

fval =
270.4790

output =
iterations: 9
funcCount: 10

cgiterations: 15
firstorderopt: 7.5340e-005

algorithm: 'large-scale: trust-region reflective Newton'
message: [1x86 char]

Nonlinear Minimization with Equality Constraints
The large-scale method for fmincon can handle equality constraints if no
other constraints exist. Suppose you want to minimize the same objective as
in Equation 4-7, which is coded in the function brownfgh.m, where n = 1000,
such that Aeq·x = beq for Aeq that has 100 equations (so Aeq is a 100-by-1000
matrix).

4-60



Large-Scale Examples

Step 1: Write an M-file brownfgh.m that computes the
objective function, the gradient of the objective, and the sparse
tridiagonal Hessian matrix.
The file is lengthy so is not included here. View the code with the command

type brownfgh

Because brownfgh computes the gradient and Hessian values as well as the
objective function, you need to use optimset to indicate that this information
is available in brownfgh, using the GradObj and Hessian options.

The sparse matrix Aeq and vector beq are available in the file browneq.mat:

load browneq

The linear constraint system is 100-by-1000, has unstructured sparsity (use
spy(Aeq) to view the sparsity structure), and is not too badly ill-conditioned:

condest(Aeq*Aeq')
ans =

2.9310e+006

Step 2: Call a nonlinear minimization routine with a starting
point xstart.

fun = @brownfgh;
load browneq % Get Aeq and beq, the linear equalities
n = 1000;
xstart = -ones(n,1); xstart(2:2:n) = 1;
options = optimset('GradObj','on','Hessian','on');
[x,fval,exitflag,output] = ...

fmincon(fun,xstart,[],[],Aeq,beq,[],[],[],options);

The option PrecondBandWidth is inf by default. It means a sparse direct
solver is used, instead of preconditioned conjugate gradients.

The exitflag value of 3 indicates that the algorithm terminated because the
change in the objective function value was less than the specified tolerance
TolFun. The final function value is given by fval.

4-61



4 Tutorial

exitflag =
3

fval =
205.9313

output =
iterations: 16
funcCount: 17

cgiterations: 20
firstorderopt: 7.3575e-005

algorithm: 'large-scale: projected trust-region Newton'
message: [1x86 char]

The linear equalities are satisfied at x.

norm(Aeq*x-beq)

ans =
1.1885e-012

Nonlinear Minimization with a Dense but Structured
Hessian and Equality Constraints
The fmincon and fminunc large-scale methods can solve problems where the
Hessian is dense but structured. For these problems, fmincon and fminunc do
not compute H*Y with the Hessian H directly, as they do for medium-scale
problems and for large-scale problems with sparse H, because forming H
would be memory-intensive. Instead, you must provide fmincon or fminunc
with a function that, given a matrix Y and information about H, computes
W = H*Y.

In this example, the objective function is nonlinear and linear equalities exist
so fmincon is used. The objective function has the structure

f x f x x VV xT T( ) ( ) ,= − 1
2

where V is a 1000-by-2 matrix. The Hessian of f is dense, but the Hessian of

f̂ is sparse. If the Hessian of f̂ is Ĥ , then H, the Hessian of f, is

4-62



Large-Scale Examples

H H VV T= −ˆ .

To avoid excessive memory usage that could happen by working with H
directly, the example provides a Hessian multiply function, hmfleq1. This
function, when passed a matrix Y, uses sparse matrices Hinfo, which

corresponds to Ĥ , and V to compute the Hessian matrix product

W = H*Y = (Hinfo - V*V')*Y

In this example, the Hessian multiply function needs Ĥ and V to compute the
Hessian matrix product. V is a constant, so you can capture V in a function
handle to an anonymous function.

However, Ĥ is not a constant and must be computed at the current x. You

can do this by computing Ĥ in the objective function and returning Ĥ as
Hinfo in the third output argument. By using optimset to set the 'Hessian'
options to 'on', fmincon knows to get the Hinfo value from the objective
function and pass it to the Hessian multiply function hmfleq1.

Step 1: Write an M-file brownvv.m that computes the objective
function, the gradient, and the sparse part of the Hessian.
The example passes brownvv to fmincon as the objective function. The
brownvv.m file is long and is not included here. You can view the code with
the command

type brownvv

Because brownvv computes the gradient and part of the Hessian as well as
the objective function, the example (Step 3) uses optimset to set the GradObj
and Hessian options to 'on'.

Step 2: Write a function to compute Hessian-matrix products
for H given a matrix Y.
Now, define a function hmfleq1 that uses Hinfo, which is computed
in brownvv, and V, which you can capture in a function handle to an
anonymous function, to compute the Hessian matrix product W where
W = H*Y = (Hinfo - V*V')*Y. This function must have the form

4-63



4 Tutorial

W = hmfleq1(Hinfo,Y)

The first argument must be the same as the third argument returned by the
objective function brownvv. The second argument to the Hessian multiply
function is the matrix Y (of W = H*Y).

Because fmincon expects the second argument Y to be used to form the
Hessian matrix product, Y is always a matrix with n rows where n is the
number of dimensions in the problem. The number of columns in Y can vary.
Finally, you can use a function handle to an anonymous function to capture
V, so V can be the third argument to 'hmfleqq'.

function W = hmfleq1(Hinfo,Y,V);
%HMFLEQ1 Hessian-matrix product function for BROWNVV objective.
% W = hmfleq1(Hinfo,Y,V) computes W = (Hinfo-V*V')*Y
% where Hinfo is a sparse matrix computed by BROWNVV
% and V is a 2 column matrix.
W = Hinfo*Y - V*(V'*Y);

Note The function hmfleq1 is available in the optimdemos directory as the
M-file hmfleq1.m.

Step 3: Call a nonlinear minimization routine with a starting
point and linear equality constraints.
Load the problem parameter, V, and the sparse equality constraint matrices,
Aeq and beq, from fleq1.mat, which is available in the optim directory. Use
optimset to set the GradObj and Hessian options to 'on' and to set the
HessMult option to a function handle that points to hmfleq1. Call fmincon
with objective function brownvv and with V as an additional parameter:

function [fval, exitflag, output, x] = runfleq1
% RUNFLEQ1 demonstrates 'HessMult' option for
% FMINCON with linear equalities.

% Copyright 1984-2006 The MathWorks, Inc.
% $Revision: 1.1.4.73 $ $Date: 2008/01/21 23:43:48 $

problem = load('fleq1'); % Get V, Aeq, beq

4-64



Large-Scale Examples

V = problem.V; Aeq = problem.Aeq; beq = problem.beq;
n = 1000; % problem dimension
xstart = -ones(n,1); xstart(2:2:n,1) = ones(length(2:2:n),1);
% starting point
options = optimset('GradObj','on','Hessian','on','HessMult',...
@(Hinfo,Y)hmfleq1(Hinfo,Y,V) ,'Display','iter','TolFun',1e-9);
[x,fval,exitflag,output] = fmincon(@(x)brownvv(x,V),...
xstart,[],[],Aeq,beq,[],[], [],options);

Note Type [fval,exitflag,output,x] = runfleq1; to run the preceding
code. This command displays the values for fval, exitflag, and output, as
well as the following iterative display.

Because the iterative display was set using optimset, the results displayed
are

Norm of First-order
Iteration f(x) step optimality CG-iterations

1 1997.07 1 555 0
2 1072.56 6.31716 377 1
3 480.232 8.19554 159 2
4 136.861 10.3015 59.5 2
5 44.3708 9.04697 16.3 2
6 44.3708 100 16.3 2
7 44.3708 25 16.3 0
8 -8.90967 6.25 28.5 0
9 -318.486 12.5 107 1

10 -318.486 12.5 107 1
11 -415.445 3.125 73.9 0
12 -561.688 3.125 47.4 2
13 -785.326 6.25 126 3
14 -785.326 4.30584 126 5
15 -804.414 1.07646 26.9 0
16 -822.399 2.16965 2.8 3
17 -823.173 0.40754 1.34 3
18 -823.241 0.154885 0.555 3
19 -823.246 0.0518407 0.214 5
20 -823.246 0.00977601 0.00724 6

4-65



4 Tutorial

Optimization terminated successfully:
Relative function value changing by less than OPTIONS.TolFun

Convergence is rapid for a problem of this size with the PCG iteration cost
increasing modestly as the optimization progresses. Feasibility of the equality
constraints is maintained at the solution

norm(Aeq*x-beq)

ans =

1.9854e-013

Preconditioning
In this example, fmincon cannot use H to compute a preconditioner because H
only exists implicitly. Instead of H, fmincon uses Hinfo, the third argument
returned by brownvv, to compute a preconditioner. Hinfo is a good choice
because it is the same size as H and approximates H to some degree. If Hinfo
were not the same size as H, fmincon would compute a preconditioner based
on some diagonal scaling matrices determined from the algorithm. Typically,
this would not perform as well.

Quadratic Minimization with Bound Constraints
To minimize a large-scale quadratic with upper and lower bounds, you can
use the quadprog function.

The problem stored in the MAT-file qpbox1.mat is a positive definite
quadratic, and the Hessian matrix H is tridiagonal, subject to upper (ub) and
lower (lb) bounds.

Step 1: Load the Hessian and define f, lb, and ub.

load qpbox1 % Get H
lb = zeros(400,1); lb(400) = -inf;
ub = 0.9*ones(400,1); ub(400) = inf;
f = zeros(400,1); f([1 400]) = -2;

4-66



Large-Scale Examples

Step 2: Call a quadratic minimization routine with a starting
point xstart.

xstart = 0.5*ones(400,1);
[x,fval,exitflag,output] = ...

quadprog(H,f,[],[],[],[],lb,ub,xstart);

Looking at the resulting values of exitflag and output,

exitflag =
3

output =
iterations: 19
algorithm: 'large-scale: reflective trust-region'

firstorderopt: 1.0761e-005
cgiterations: 1640

message: [1x206 char]

you can see that while convergence occurred in 19 iterations, the high number
of CG iterations indicates that the cost of the linear system solve is high. In
light of this cost, one strategy would be to limit the number of CG iterations
per optimization iteration. The default number is the dimension of the
problem divided by two, 200 for this problem. Suppose you limit it to 50 using
the MaxPCGIter flag in options:

options = optimset('MaxPCGIter',50);
[x,fval,exitflag,output] = ...

quadprog(H,f,[],[],[],[],lb,ub,xstart,options);

This time convergence still occurs and the total number of CG iterations
(1547) has dropped:

exitflag =
3

output =
iterations: 36
algorithm: 'large-scale: reflective trust-region'

firstorderopt: 2.3821e-005
cgiterations: 1547

message: [1x206 char]

4-67



4 Tutorial

A second strategy would be to use a direct solver at each iteration by setting
the PrecondBandWidth option to inf:

options = optimset('PrecondBandWidth',inf);
[x,fval,exitflag,output] = ...

quadprog(H,f,[],[],[],[],lb,ub,xstart,options);

Now the number of iterations has dropped to 10:

exitflag =
3

output =
iterations: 10
algorithm: 'large-scale: reflective trust-region'

firstorderopt: 1.0366e-006
cgiterations: 0

message: [1x206 char]

Using a direct solver at each iteration usually causes the number of iterations
to decrease, but often takes more time per iteration. For this problem, the
tradeoff is beneficial, as the time for quadprog to solve the problem decreases
by a factor of 10.

Quadratic Minimization with a Dense but Structured
Hessian
The quadprog large-scale method can also solve large problems where the
Hessian is dense but structured. For these problems, quadprog does not
compute H*Y with the Hessian H directly, as it does for medium-scale
problems and for large-scale problems with sparse H, because forming H
would be memory-intensive. Instead, you must provide quadprog with a
function that, given a matrix Y and information about H, computes W = H*Y.

In this example, the Hessian matrix H has the structure H = B + A*A' where
B is a sparse 512-by-512 symmetric matrix, and A is a 512-by-10 sparse
matrix composed of a number of dense columns. To avoid excessive memory
usage that could happen by working with H directly because H is dense, the
example provides a Hessian multiply function, qpbox4mult. This function,
when passed a matrix Y, uses sparse matrices A and B to compute the Hessian
matrix product W = H*Y = (B + A*A')*Y.

4-68



Large-Scale Examples

In this example, the matrices A and B need to be provided to the Hessian
multiply function qpbox4mult. You can pass one matrix as the first argument
to quadprog, which is passed to the Hessian multiply function. You can use a
nested function to provide the value of the second matrix.

Step 1: Decide what part of H to pass to quadprog as the
first argument.
Either A or B can be passed as the first argument to quadprog. The example
chooses to pass B as the first argument because this results in a better
preconditioner (see “Preconditioning” on page 4-72).

quadprog(B,f,[],[],[],[],l,u,xstart,options)

Step 2: Write a function to compute Hessian-matrix products
for H.
Now, define a function runqpbox4 that

• Contains a nested function qpbox4mult that uses A and B to compute the
Hessian matrix product W, where W = H*Y = (B + A*A')*Y. The nested
function must have the form

W = qpbox4mult(Hinfo,Y,...)

The first two arguments Hinfo and Y are required.

• Loads the problem parameters from qpbox4.mat.

• Uses optimset to set the HessMult option to a function handle that points
to qpbox4mult.

• Calls quadprog with B as the first argument.

The first argument to the nested function qpbox4mult must be the same as
the first argument passed to quadprog, which in this case is the matrix B.

The second argument to qpbox4mult is the matrix Y (of W = H*Y). Because
quadprog expects Y to be used to form the Hessian matrix product, Y is always
a matrix with n rows, where n is the number of dimensions in the problem.
The number of columns in Y can vary. The function qpbox4mult is nested so
that the value of the matrix A comes from the outer function.

4-69



4 Tutorial

function [fval, exitflag, output, x] = runqpbox4
% RUNQPBOX4 demonstrates 'HessMult' option for QUADPROG with
% bounds.

problem = load('qpbox4'); % Get xstart, u, l, B, A, f
xstart = problem.xstart; u = problem.u; l = problem.l;
B = problem.B; A = problem.A; f = problem.f;
mtxmpy = @qpbox4mult; % function handle to qpbox4mult nested
% subfunction

% Choose the HessMult option
options = optimset('HessMult',mtxmpy);

% Pass B to qpbox4mult via the Hinfo argument. Also, B will be
% used in computing a preconditioner for PCG.
[x, fval, exitflag, output] = ...
quadprog(B,f,[],[],[],[],l,u,xstart,options);

function W = qpbox4mult(B,Y);
%QPBOX4MULT Hessian matrix product with dense
%structured Hessian.
% W = qpbox4mult(B,Y) computes W = (B + A*A')*Y where
% INPUT:
% B - sparse square matrix (512 by 512)
% Y - vector (or matrix) to be multiplied by
% B + A'*A.
% VARIABLES from outer function runqpbox4:
% A - sparse matrix with 512 rows and 10 columns.
%
% OUTPUT:
% W - The product (B + A*A')*Y.
%

% Order multiplies to avoid forming A*A',
% which is large and dense
W = B*Y + A*(A'*Y);

end
end

4-70



Large-Scale Examples

Step 3: Call a quadratic minimization routine with a starting
point.
To call the quadratic minimizing routine contained in runqpbox4, enter

[fval,exitflag,output] = runqpbox4

to run the preceding code and display the values for fval, exitflag, and
output. The results are

Optimization terminated: relative function value changing by
less than sqrt(OPTIONS.TolFun), no negative curvature detected
in current trust region model and the rate of progress (change
in f(x)) is slow.

fval =
-1.0538e+003

exitflag =
3

output =
iterations: 18
algorithm: 'large-scale: reflective trust-region'

firstorderopt: 0.0028
cgiterations: 50

message: [1x206 char]

After 18 iterations with a total of 30 PCG iterations, the function value is
reduced to

fval =
-1.0538e+003

and the first-order optimality is

output.firstorderopt =
0.0043

4-71



4 Tutorial

Preconditioning
In this example, quadprog cannot use H to compute a preconditioner because
H only exists implicitly. Instead, quadprog uses B, the argument passed in
instead of H, to compute a preconditioner. B is a good choice because it is the
same size as H and approximates H to some degree. If B were not the same
size as H, quadprog would compute a preconditioner based on some diagonal
scaling matrices determined from the algorithm. Typically, this would not
perform as well.

Because the preconditioner is more approximate than when H is available
explicitly, adjusting the TolPcg parameter to a somewhat smaller value
might be required. This example is the same as the previous one, but reduces
TolPcg from the default 0.1 to 0.01.

function [fval, exitflag, output, x] = runqpbox4prec
% RUNQPBOX4PREC demonstrates 'HessMult' option for QUADPROG
% with bounds.

problem = load('qpbox4'); % Get xstart, u, l, B, A, f
xstart = problem.xstart; u = problem.u; l = problem.l;
B = problem.B; A = problem.A; f = problem.f;
mtxmpy = @qpbox4mult; % function handle to qpbox4mult nested
subfunction

% Choose the HessMult option
% Override the TolPCG option
options = optimset('HessMult',mtxmpy,'TolPcg',0.01);

% Pass B to qpbox4mult via the H argument. Also, B will be
% used in computing a preconditioner for PCG.
% A is passed as an additional argument after 'options'
[x, fval, exitflag, output] =
quadprog(B,f,[],[],[],[],l,u,xstart,options);

function W = qpbox4mult(B,Y);
%QPBOX4MULT Hessian matrix product with dense
%structured Hessian.
% W = qpbox4mult(B,Y) computes W = (B + A*A')*Y where
% INPUT:
% B - sparse square matrix (512 by 512)

4-72



Large-Scale Examples

% Y - vector (or matrix) to be multiplied by B + A'*A.
% VARIABLES from outer function runqpbox4:
% A - sparse matrix with 512 rows and 10 columns.
%
% OUTPUT:
% W - The product (B + A*A')*Y.

% Order multiplies to avoid forming A*A',
% which is large and dense
W = B*Y + A*(A'*Y);

end

end

Now, enter

[fval,exitflag,output] = runqpbox4prec

to run the preceding code. After 18 iterations and 50 PCG iterations, the
function value has the same value to five significant digits

fval =
-1.0538e+003

but the first-order optimality is further reduced.

output.firstorderopt =
0.0028

Note Decreasing TolPcg too much can substantially increase the number of
PCG iterations.

Linear Least-Squares with Bound Constraints
Many situations give rise to sparse linear least-squares problems, often with
bounds on the variables. The next problem requires that the variables be
nonnegative. This problem comes from fitting a function approximation to a
piecewise linear spline. Specifically, particles are scattered on the unit square.
The function to be approximated is evaluated at these points, and a piecewise

4-73



4 Tutorial

linear spline approximation is constructed under the condition that (linear)
coefficients are not negative. There are 2000 equations to fit on 400 variables:

load particle % Get C, d
lb = zeros(400,1);
[x,resnorm,residual,exitflag,output] = ...

lsqlin(C,d,[],[],[],[],lb);

The default diagonal preconditioning works fairly well:

exitflag =
3

resnorm =
22.5794

output =
iterations: 10
algorithm: 'large-scale: trust-region reflective Newton'

firstorderopt: 2.7870e-005
cgiterations: 42

message: [1x123 char]

For bound constrained problems, the first-order optimality is the infinity
norm of v.*g, where v is defined as in “Box Constraints” on page 6-15, and g
is the gradient.

You can improve (decrease) the first-order optimality measure by using a
sparse QR factorization in each iteration. To do this, set PrecondBandWidth to
inf:

options = optimset('PrecondBandWidth',inf);
[x,resnorm,residual,exitflag,output] = ...

lsqlin(C,d,[],[],[],[],lb,[],[],options);

The first-order optimality measure decreases:

exitflag =
1

resnorm =
22.5794

output =
iterations: 12

4-74



Large-Scale Examples

algorithm: 'large-scale: trust-region reflective Newton'
firstorderopt: 5.5907e-015
cgiterations: 0

message: [1x104 char]

Linear Programming with Equalities and Inequalities
The problem is

min
,

,
.

x

Tf x
A x b

Aeq x beq
x

 such that 
⋅ ≤
⋅ =
≥

⎧
⎨
⎪

⎩⎪ 0

You can load the matrices and vectors A, Aeq, b, beq, f, and the lower bounds
lb into the MATLAB workspace with

load sc50b

This problem in sc50b.mat has 48 variables, 30 inequalities, and 20 equalities.

You can use linprog to solve the problem:

[x,fval,exitflag,output] = ...
linprog(f,A,b,Aeq,beq,lb,[],[],optimset('Display','iter'));

Because the iterative display was set using optimset, the results displayed
are

Residuals: Primal Dual Duality Total
Infeas Infeas Gap Rel
A*x-b A'*y+z-f x'*z Error

---------------------------------------------------
Iter 0: 1.50e+003 2.19e+001 1.91e+004 1.00e+002
Iter 1: 1.15e+002 3.18e-015 3.62e+003 9.90e-001
Iter 2: 8.32e-013 1.96e-015 4.32e+002 9.48e-001
Iter 3: 3.47e-012 7.49e-015 7.78e+001 6.88e-001
Iter 4: 5.66e-011 1.16e-015 2.38e+001 2.69e-001
Iter 5: 1.13e-010 3.67e-015 5.05e+000 6.89e-002
Iter 6: 5.03e-011 1.21e-016 1.64e-001 2.34e-003
Iter 7: 5.75e-012 1.12e-016 1.09e-005 1.55e-007

4-75



4 Tutorial

Iter 8: 8.08e-014 5.67e-013 1.09e-011 3.82e-012
Optimization terminated.

For this problem, the large-scale linear programming algorithm quickly
reduces the scaled residuals below the default tolerance of 1e-08.

The exitflag value is positive, telling you linprog converged. You can
also get the final function value in fval and the number of iterations in
output.iterations:

exitflag =
1

fval =
-70.0000

output =
iterations: 8
algorithm: 'large-scale: interior point'

cgiterations: 0
message: 'Optimization terminated.'

Linear Programming with Dense Columns in the
Equalities
The problem is

min
,

.x

Tf x
Aeq x beq
lb x ub

 such that 
⋅ =
≤ ≤

⎧
⎨
⎩

You can load the matrices and vectors Aeq, beq, f, lb, and ub into the
MATLAB workspace with

load densecolumns

The problem in densecolumns.mat has 1677 variables and 627 equalities with
lower bounds on all the variables, and upper bounds on 399 of the variables.
The equality matrix Aeq has dense columns among its first 25 columns, which
is easy to see with a spy plot:

spy(Aeq)

4-76



Large-Scale Examples

You can use linprog to solve the problem:

[x,fval,exitflag,output] = ...
linprog(f,[],[],Aeq,beq,lb,ub,[],optimset('Display','iter'));

Because the iterative display was set using optimset, the results displayed
are

Residuals: Primal Dual Upper Duality Total
Infeas Infeas Bounds Gap Rel
A*x-b A'*y+z-w-f {x}+s-ub x'*z+s'*w Error

-------------------------------------------------------------
Iter 0: 1.67e+003 8.11e+002 1.35e+003 5.30e+006 2.92e+001
Iter 1: 1.37e+002 1.33e+002 1.11e+002 1.27e+006 2.48e+000
Iter 2: 3.56e+001 2.38e+001 2.89e+001 3.42e+005 1.99e+000
Iter 3: 4.86e+000 8.88e+000 3.94e+000 1.40e+005 1.89e+000
Iter 4: 4.24e-001 5.89e-001 3.44e-001 1.91e+004 8.41e-001
Iter 5: 1.23e-001 2.02e-001 9.97e-002 8.41e+003 5.79e-001
Iter 6: 3.98e-002 7.91e-002 3.23e-002 4.05e+003 3.52e-001
Iter 7: 7.25e-003 3.83e-002 5.88e-003 1.85e+003 1.85e-001
Iter 8: 1.47e-003 1.34e-002 1.19e-003 8.12e+002 8.52e-002
Iter 9: 2.52e-004 3.39e-003 2.04e-004 2.78e+002 2.99e-002
Iter 10: 3.46e-005 1.08e-003 2.81e-005 1.09e+002 1.18e-002
Iter 11: 6.96e-007 2.00e-012 5.64e-007 1.48e+001 1.62e-003
Iter 12: 9.35e-007 6.98e-013 3.18e-008 8.32e-001 9.09e-005
Iter 13: 1.14e-007 2.03e-012 3.86e-009 7.26e-002 7.94e-006
Iter 14: 1.92e-010 1.16e-012 6.55e-012 1.11e-003 1.21e-007

4-77



4 Tutorial

Iter 15: 1.05e-013 2.50e-012 3.71e-013 8.62e-008 9.42e-012
Optimization terminated.

You can see the returned values of exitflag, fval, and output:

exitflag =
1

fval =
9.1464e+003

output =
iterations: 15
algorithm: 'large-scale: interior point'

cgiterations: 0
message: 'Optimization terminated.'

This time the algorithm detects dense columns in Aeq are detected. Therefore,
instead of using a sparse Cholesky factorization, linprog tries to use the
Sherman-Morrison formula to solve a linear system involving Aeq*Aeq'. If
the Sherman-Morrison formula does not give a satisfactory residual, the
algorithm uses a solution process based on LDL factorization. See “Main
Algorithm” on page 6-20.

4-78



Default Options Settings

Default Options Settings

In this section...

“Introduction” on page 4-79

“Changing the Default Settings” on page 4-79

Introduction
The options structure contains options used in the optimization routines.
If, on the first call to an optimization routine, the options structure is not
provided, or is empty, a set of default options is generated. Some of the default
options values are calculated using factors based on problem size, such as
MaxFunEvals. Some options are dependent on the specific optimization
routines and are documented on those function reference pages (See “Main
Algorithm” on page 6-20).

“Optimization Options” on page 9-8 provides an overview of all the options in
the options structure.

Changing the Default Settings
The function optimset creates or updates an options structure to pass
to the various optimization functions. The arguments to the optimset
function are option name and option value pairs, such as TolX and 1e-4. Any
unspecified properties have default values. You need to type only enough
leading characters to define the option name uniquely. Case is ignored for
option names. For option values that are strings, however, case and the exact
string are necessary.

help optimset provides information that defines the different options and
describes how to use them.

Here are some examples of the use of optimset.

Returning All Options
optimset returns all the options that can be set with typical values and
default values.

4-79



4 Tutorial

Determining Options Used by a Function
The options structure defines the options that can be used by toolbox
functions. Because functions do not use all the options, it can be useful to find
which options are used by a particular function.

To determine which options structure fields are used by a function, pass the
name of the function (in this example, fmincon) to optimset:

optimset('fmincon')

or

optimset fmincon

or

optimset(@fmincon)

This statement returns a structure. Generally, fields not used by the function
have empty values ([]); fields used by the function are set to their default
values for the given function. However, some solvers have different default
values depending on the algorithm used. For example, fmincon has a default
MaxIter value of 400 for the trust-region-reflective and active-set
algorithms, but a default value of 1000 for the interior-point algorithm.
optimset fmincon returns [] for the MaxIter field.

You can also check the available options and their defaults in the Optimization
Tool. These can change depending on problem and algorithm settings. These
three pictures show how the available options for derivatives change as the
type of supplied derivatives change:

4-80



Default Options Settings

��		�� �
��	����

��		�� �
��	����

4-81



4 Tutorial

��		�� �
��	����

Displaying Output
To display output at each iteration, enter

options = optimset('Display','iter');

This command sets the value of the Display option to 'iter', which causes
the solver to display output at each iteration. You can also turn off any output
display ('off'), display output only at termination ('final'), or display
output only if the problem fails to converge ('notify').

Running Medium-Scale Optimization
For all functions that support medium- and large-scale optimization problems
except fsolve, the default is for the function to use the large-scale algorithm.
To use the medium-scale algorithm, enter

options = optimset('LargeScale','off');

For fsolve, the default is the medium-scale algorithm. To use the large-scale
algorithm, enter

4-82



Default Options Settings

options = optimset('LargeScale','on');

Setting More Than One Option
You can specify multiple options with one call to optimset. For example, to
reset the output option and the tolerance on x, enter

options = optimset('Display','iter','TolX',1e-6);

Updating an options Structure
To update an existing options structure, call optimset and pass options
as the first argument:

options = optimset(options, 'Display','iter','TolX',1e-6);

Retrieving Option Values
Use the optimget function to get option values from an options structure.
For example, to get the current display option, enter the following:

verbosity = optimget(options,'Display');

4-83



4 Tutorial

Displaying Iterative Output

In this section...

“Introduction” on page 4-84

“Most Common Output Headings” on page 4-84

“Function-Specific Output Headings” on page 4-85

Note An optimization function does not return all of the output headings,
described in the following tables, each time you call it. Which output headings
are returned depends on the algorithm the optimization function uses for
a particular problem.

Introduction
When you set 'Display' to 'iter' in options, the optimization functions
display iterative output in the Command Window. This output, which
provides information about the progress of the algorithm, is displayed in
columns with descriptive headings. For example, if you run medium-scale
fminunc with 'Display' set to 'iter', the output headings are

First-order
Iteration Func-count f(x) Step-size optimality

Most Common Output Headings
The following table lists some common output headings of iterative output.

Output Heading Information Displayed

Iteration or Iter Iteration number

Func-count or
F-count

Number of function evaluations

x Current point for the algorithm

f(x) Current function value

4-84



Displaying Iterative Output

Output Heading Information Displayed

Step-size Step size in the current search direction

Norm of step Norm of the current step

Function-Specific Output Headings
The following sections describe output headings of iterative output whose
meaning is specific to the optimization function you are using.

• “bintprog” on page 4-85

• “fminsearch” on page 4-86

• “fzero and fminbnd” on page 4-87

• “fminunc” on page 4-87

• “fsolve” on page 4-88

• “fgoalattain, fmincon, fminimax, and fseminf” on page 4-88

• “linprog” on page 4-89

• “lsqnonlin and lsqcurvefit” on page 4-90

bintprog
The following table describes the output headings specific to bintprog.

bintprog
Output
Heading Information Displayed

Explored
nodes

Cumulative number of explored nodes

Obj of LP
relaxation

Objective function value of the linear programming (LP)
relaxation problem

Obj of best
integer point

Objective function value of the best integer point found
so far. This is an upper bound for the final objective
function value.

4-85



4 Tutorial

bintprog
Output
Heading Information Displayed

Unexplored
nodes

Number of nodes that have been set up but not yet
explored

Best lower
bound on obj

Objective function value of LP relaxation problem that
gives the best current lower bound on the final objective
function value

Relative
gap between
bounds

100
1

( )
,

b a
b

−
+

where

• b is the objective function value of the best integer
point.

• a is the best lower bound on the objective function
value.

fminsearch
The following table describes the output headings specific to fminsearch.

fminsearch
Output
Heading Information Displayed

min f(x) Minimum function value in the current simplex

Procedure Simplex procedure at the current iteration. Procedures
include initial, expand, reflect, shrink, contract
inside, and contract outside.

4-86



Displaying Iterative Output

fzero and fminbnd
The following table describes the output headings specific to fzero and
fminbnd.

fzero and
fminbnd
Output
Heading Information Displayed

Procedure Procedure at the current operation. Procedures for
fzero:

• initial (initial point)

• search (search for an interval containing a zero)

• bisection (bisection search)

• interpolation

Operations for fminbnd:

• initial

• golden (golden section search)

• parabolic (parabolic interpolation)

fminunc
The following table describes the output headings specific to fminunc.

fminunc
Output
Heading Information Displayed

First-order
optimality

First-order optimality measure (see “First-Order
Optimality Measure” on page 2-26)

CG-iterations Number of conjugate gradient iterations taken by the
current (optimization) iteration (see “Preconditioned
Conjugate Gradients” on page 6-12)

4-87



4 Tutorial

fsolve
The following table describes the output headings specific to fsolve.

fsolve Output
Heading Information Displayed

First-order
optimality

First-order optimality measure (see “First-Order
Optimality Measure” on page 2-26)

Trust-region
radius

Current trust-region radius (change in the norm of the
trust-region radius)

Residual Residual (sum of squares) of the function

Directional
derivative

Gradient of the function along the search direction

fgoalattain, fmincon, fminimax, and fseminf
The following table describes the output headings specific to fgoalattain,
fmincon, fminimax, and fseminf.

fgoalattain,
fmincon,
fminimax, fseminf
Output Heading Information Displayed

Max constraint Maximum violation among all constraints, both
internally constructed and user-provided

First-order
optimality

First-order optimality measure (see “First-Order
Optimality Measure” on page 2-26)

CG-iterations Number of conjugate gradient iterations taken by the
current (optimization) iteration (see “Preconditioned
Conjugate Gradients” on page 6-12)

Trust-region
radius

Current trust-region radius

Residual Residual (sum of squares) of the function

Attainment factor Value of the attainment factor for fgoalattain

4-88



Displaying Iterative Output

fgoalattain,
fmincon,
fminimax, fseminf
Output Heading Information Displayed

Objective value Objective function value of the nonlinear
programming reformulation of the minimax problem
for fminimax

Directional
derivative

Current gradient of the function along the search
direction

Procedure Hessian update and QP subproblem. The Procedure
messages are discussed in “Updating the Hessian
Matrix” on page 5-32.

linprog
The following table describes the output headings specific to linprog.

linprog Output
Heading Information Displayed

Primal Infeas
A*x-b

Primal infeasibility

Dual Infeas
A'*y+z-w-f

Dual infeasibility

Duality Gap
x'*z+s'*w

Duality gap (see “Large-Scale Linear Programming” on
page 6-20) between the primal objective and the dual
objective. s and w appear only in this equation if there
are finite upper bounds.

Total Rel
Error

Total relative error, described at the end of “Main
Algorithm” on page 6-20.

Objective f'*x Current objective value

4-89



4 Tutorial

lsqnonlin and lsqcurvefit
The following table describes the output headings specific to lsqnonlin and
lsqcurvefit.

lsqnonlin and
lsqcurvefit
Output
Heading Information Displayed

Resnorm Value of the squared 2-norm of the residual at x

Residual Residual vector of the function

First-order
optimality

First-order optimality measure (see “First-Order
Optimality Measure” on page 2-26)

CG-iterations Number of conjugate gradient iterations taken by the
current (optimization) iteration (see “Preconditioned
Conjugate Gradients” on page 6-12)

Directional
derivative

Gradient of the function along the search direction

Lambda λ k value defined in “Least-Squares Optimization” on
page 5-18. (This value is displayed when you use the
Levenberg-Marquardt method and omitted when you
use the Gauss-Newton method.)

4-90



Typical Problems and How to Deal with Them

Typical Problems and How to Deal with Them
Optimization problems can take many iterations to converge and can be
sensitive to numerical problems such as truncation and round-off error in the
calculation of finite-difference gradients. Most optimization problems benefit
from good starting guesses. This improves the execution efficiency and can
help locate the global minimum instead of a local minimum.

Advanced problems are best solved by an evolutionary approach, whereby a
problem with a smaller number of independent variables is solved first. You
can generally use solutions from lower order problems as starting points for
higher order problems by using an appropriate mapping.

The use of simpler cost functions and less stringent termination criteria in the
early stages of an optimization problem can also reduce computation time.
Such an approach often produces superior results by avoiding local minima.

Optimization Toolbox™ functions can be applied to a large variety of
problems. Used with a little “conventional wisdom,” you can overcome many
of the limitations associated with optimization techniques. Additionally,
you can handle problems that are not typically in the standard form by
using an appropriate transformation. Below is a list of typical problems and
recommendations for dealing with them.

Troubleshooting

Problem Recommendation

fminunc produces
warning messages and
seems to exhibit slow
convergence near the
solution.

If you are not supplying analytically determined gradients and the
termination criteria are stringent, fminunc often exhibits slow
convergence near the solution due to truncation error in the gradient
calculation. Relaxing the termination criteria produces faster,
although less accurate, solutions. For the medium-scale algorithm,
another option is adjusting the finite-difference perturbation levels,
DiffMinChange and DiffMaxChange, which might increase the
accuracy of gradient calculations.

4-91



4 Tutorial

Troubleshooting (Continued)

Problem Recommendation

Sometimes an
optimization problem
has values of x for
which it is impossible to
evaluate the objective
function fun or the
nonlinear constraints
function nonlcon.

Place bounds on the independent variables or make a penalty
function to give a large positive value to f and g when infeasibility is
encountered. For gradient calculation, the penalty function should be
smooth and continuous.

The function that is
being minimized has
discontinuities.

The derivation of the underlying method is based upon functions
with continuous first and second derivatives. Some success might
be achieved for some classes of discontinuities when they do not
occur near solution points. One option is to smooth the function.
For example, the objective function might include a call to an
interpolation function to do the smoothing.

Or, for the medium-scale algorithms, you can adjust the
finite-difference parameters in order to jump over small
discontinuities. The variables DiffMinChange and DiffMaxChange
control the perturbation levels for x used in the calculation of
finite-difference gradients. The perturbation, Δx, is always in the
range DiffMinChange < Dx < DiffMaxChange.

Warning messages are
displayed.

This sometimes occurs when termination criteria are overly stringent,
or when the problem is particularly sensitive to changes in the
independent variables. This usually indicates truncation or round-off
errors in the finite-difference gradient calculation, or problems in
the polynomial interpolation routines. These warnings can usually
be ignored because the routines continue to make steps toward the
solution point; however, they are often an indication that convergence
will take longer than normal. Scaling can sometimes improve the
sensitivity of a problem.

4-92



Typical Problems and How to Deal with Them

Troubleshooting (Continued)

Problem Recommendation

The independent
variables, x, can only
take on discrete values,
for example, integers.

This type of problem commonly occurs when, for example, the
variables are the coefficients of a filter that are realized using
finite-precision arithmetic or when the independent variables
represent materials that are manufactured only in standard amounts.

Although Optimization Toolbox functions are not explicitly set up to
solve discrete problems, you can solve some discrete problems by first
solving an equivalent continuous problem. Do this by progressively
eliminating discrete variables from the independent variables, which
are free to vary.

Eliminate a discrete variable by rounding it up or down to the nearest
best discrete value. After eliminating a discrete variable, solve a
reduced order problem for the remaining free variables. Having
found the solution to the reduced order problem, eliminate another
discrete variable and repeat the cycle until all the discrete variables
have been eliminated.

dfildemo is a demonstration routine that shows how filters with
fixed-precision coefficients can be designed using this technique.
(From the MATLAB® Help browser or the MathWorks™ Web site
documentation, you can click the demo name to display the demo.)

The minimization
routine appears to
enter an infinite loop
or returns a solution
that does not satisfy the
problem constraints.

Your objective (fun), constraint (nonlcon, seminfcon), or gradient
(computed by fun) functions might be returning Inf, NaN, or complex
values. The minimization routines expect only real numbers to be
returned. Any other values can cause unexpected results. Insert
some checking code into the user-supplied functions to verify that
only real numbers are returned (use the function isfinite).

You do not get the
convergence you expect
from the lsqnonlin
routine.

You might be forming the sum of squares explicitly and returning
a scalar value. lsqnonlin expects a vector (or matrix) of function
values that are squared and summed internally.

4-93



4 Tutorial

Selected Bibliography
[1] Hairer, E., S. P. Norsett, and G. Wanner, Solving Ordinary Differential
Equations I - Nonstiff Problems, Springer-Verlag, pp. 183-184.

4-94



5

Standard Algorithms

Standard Algorithms describes the medium-scale (i.e., standard) algorithms
used in toolbox functions. These algorithms have been chosen for their
robustness and iterative efficiency. The choice of problem formulation (e.g.,
unconstrained, least-squares, constrained, minimax, multiobjective, or goal
attainment) depends on the problem being considered and the required
execution efficiency.

Optimization Theory Overview
(p. 5-4)

Introduces optimization as a way
of finding a set of parameters
that can be defined as optimal.
These parameters are obtained
by minimizing or maximizing an
objective function, subject to equality
or inequality constraints and/or
parameter bounds.

Demos of Medium-Scale Methods
(p. 5-5)

Functions that demonstrate
medium-scale methods.

Unconstrained Optimization (p. 5-6) Discusses the use of quasi-Newton
and line search methods for
unconstrained optimization.

Quasi-Newton Implementation
(p. 5-11)

Provides implementation details
for the Hessian update and line
search phases of the quasi-Newton
algorithm.



5 Standard Algorithms

Least-Squares Optimization (p. 5-18) Discusses the use of
the Gauss-Newton and
Levenberg-Marquardt methods
for nonlinear least-squares
(LS) optimization. Also
provides implementation details
for the Gauss-Newton and
Levenberg-Marquardt methods
used in the nonlinear least-squares
optimization routines, lsqnonlin
and lsqcurvefit.

Nonlinear Systems of Equations
(p. 5-25)

Discusses the use of Gauss-Newton,
Newton’s, and trust-region dogleg
methods for the solution of nonlinear
systems of equations. Also provides
implementation details for the
Gauss-Newton and trust-region
dogleg methods used by the fsolve
function.

Constrained Optimization (p. 5-29) Discusses the use of the
Karush-Kuhn-Tucker (KKT)
equations as the basis for sequential
quadratic programming (SQP)
methods. Provides implementation
details for the Hessian matrix
update, quadratic programming
problem solution, and line search
and merit function calculation
phases of the SQP algorithm used in
fmincon, fminimax, fgoalattain,
and fseminf. Explains the simplex
algorithm, which is an optional
algorithm for linprog.

5-2



Multiobjective Optimization (p. 5-44) Introduces multiobjective
optimization and discusses
strategies for dealing with competing
objectives. It discusses in detail the
use of the goal attainment method,
and suggests improvements to the
SQP method for use with the goal
attainment method.

Selected Bibliography (p. 5-49) Lists published materials that
support concepts implemented in the
medium-scale algorithms.

Note Medium-scale is not a standard term and is used here only to
differentiate these algorithms from the large-scale algorithms described in
Chapter 6, “Large-Scale Algorithms”.

5-3



5 Standard Algorithms

Optimization Theory Overview
Optimization techniques are used to find a set of design parameters,
x = {x1,x1,...,xn}, that can in some way be defined as optimal. In a simple case
this might be the minimization or maximization of some system characteristic
that is dependent on x. In a more advanced formulation the objective function,
f(x), to be minimized or maximized, might be subject to constraints in the form
of equality constraints, Gi(x) = 0 ( i = 1,...,me); inequality constraints, Gi( x) ≤ 0
(i = me + 1,...,m); and/or parameter bounds, xl, xu.

A General Problem (GP) description is stated as

min ( ),
x

f x
(5-1)

subject to

G x i m
G x i m m

i e

i e

( ) ,..., ,
( ) ,..., ,

= =
≤ = +

0 1
0 1

where x is the vector of length n design parameters, f(x) is the objective
function, which returns a scalar value, and the vector function G(x) returns
a vector of length m containing the values of the equality and inequality
constraints evaluated at x.

An efficient and accurate solution to this problem depends not only on the size
of the problem in terms of the number of constraints and design variables but
also on characteristics of the objective function and constraints. When both
the objective function and the constraints are linear functions of the design
variable, the problem is known as a Linear Programming (LP) problem.
Quadratic Programming (QP) concerns the minimization or maximization of a
quadratic objective function that is linearly constrained. For both the LP and
QP problems, reliable solution procedures are readily available. More difficult
to solve is the Nonlinear Programming (NP) problem in which the objective
function and constraints can be nonlinear functions of the design variables.
A solution of the NP problem generally requires an iterative procedure
to establish a direction of search at each major iteration. This is usually
achieved by the solution of an LP, a QP, or an unconstrained subproblem.

5-4



Demos of Medium-Scale Methods

Demos of Medium-Scale Methods
From the MATLAB® Help browser or the MathWorks™ Web site
documentation, click the demo name to display the demo.

bandem Minimization of banana function

datdemo Fitting data to a curve

dfildemo Finite-precision filter design (requires Signal
Processing Toolbox™ software)

goaldemo Goal attainment example

officeassign Binary integer programming to solve the office
assignment problem

tutdemo Script for medium-scale algorithms, following
Chapter 4, “Tutorial”

5-5



5 Standard Algorithms

Unconstrained Optimization

In this section...

“Introduction” on page 5-6

“Quasi-Newton Methods” on page 5-7

“Line Search” on page 5-9

Introduction
Although a wide spectrum of methods exists for unconstrained optimization,
methods can be broadly categorized in terms of the derivative information that
is, or is not, used. Search methods that use only function evaluations (e.g., the
simplex search of Nelder and Mead [30]) are most suitable for problems that
are very nonlinear or have a number of discontinuities. Gradient methods are
generally more efficient when the function to be minimized is continuous in
its first derivative. Higher order methods, such as Newton’s method, are
only really suitable when the second-order information is readily and easily
calculated, because calculation of second-order information, using numerical
differentiation, is computationally expensive.

Gradient methods use information about the slope of the function to dictate
a direction of search where the minimum is thought to lie. The simplest of
these is the method of steepest descent in which a search is performed in a
direction, –∇f(x), where ∇f(x) is the gradient of the objective function. This
method is very inefficient when the function to be minimized has long narrow
valleys as, for example, is the case for Rosenbrock’s function

f x x x x( ) ( ) .= −( ) + −100 12 1
2 2

1
2

(5-2)

The minimum of this function is at x = [1,1], where f(x) = 0. A contour
map of this function is shown in the figure below, along with the solution
path to the minimum for a steepest descent implementation starting at the
point [-1.9,2]. The optimization was terminated after 1000 iterations, still a
considerable distance from the minimum. The black areas are where the
method is continually zigzagging from one side of the valley to another. Note
that toward the center of the plot, a number of larger steps are taken when a
point lands exactly at the center of the valley.

5-6



Unconstrained Optimization

Figure 5-1: Steepest Descent Method on Rosenbrock’s Function (Eq. 3-2)

This function, also known as the banana function, is notorious in
unconstrained examples because of the way the curvature bends around the
origin. Rosenbrock’s function is used throughout this section to illustrate the
use of a variety of optimization techniques. The contours have been plotted
in exponential increments because of the steepness of the slope surrounding
the U-shaped valley.

Quasi-Newton Methods
Of the methods that use gradient information, the most favored are the
quasi-Newton methods. These methods build up curvature information at
each iteration to formulate a quadratic model problem of the form

min ,
x

T Tx Hx c x b
1
2

+ +
(5-3)

where the Hessian matrix, H, is a positive definite symmetric matrix, c is a
constant vector, and b is a constant. The optimal solution for this problem
occurs when the partial derivatives of x go to zero, i.e.,

5-7



5 Standard Algorithms

∇f x Hx c( *) * .= + = 0 (5-4)

The optimal solution point, x*, can be written as

x H c* .= − −1 (5-5)

Newton-type methods (as opposed to quasi-Newton methods) calculate H
directly and proceed in a direction of descent to locate the minimum after a
number of iterations. Calculating H numerically involves a large amount
of computation. Quasi-Newton methods avoid this by using the observed
behavior of f(x) and ∇f(x) to build up curvature information to make an
approximation to H using an appropriate updating technique.

A large number of Hessian updating methods have been developed. However,
the formula of Broyden [3], Fletcher [12], Goldfarb [20], and Shanno [37]
(BFGS) is thought to be the most effective for use in a General Purpose
method.

The formula given by BFGS is

H H
q q

q s

H s s H

s H s
k k

k k
T

k
T

k

k
T

k
T

k k

k
T

k k
+ = + −1 ,

(5-6)

where

s x x

q f x f x
k k k

k k k

= −
= ( ) − ( )

+

+

1

1

,

.∇ ∇

As a starting point, H0 can be set to any symmetric positive definite matrix,
for example, the identity matrix I. To avoid the inversion of the Hessian H,
you can derive an updating method that avoids the direct inversion of H by
using a formula that makes an approximation of the inverse Hessian H–1 at
each update. A well-known procedure is the DFP formula of Davidon [7],
Fletcher, and Powell [14]. This uses the same formula as the BFGS method
(Equation 5-6) except that qk is substituted for sk.

The gradient information is either supplied through analytically calculated
gradients, or derived by partial derivatives using a numerical differentiation

5-8



Unconstrained Optimization

method via finite differences. This involves perturbing each of the design
variables, x, in turn and calculating the rate of change in the objective
function.

At each major iteration, k, a line search is performed in the direction

d H f xk k= − ⋅ ( )−1 ∇ . (5-7)

The quasi-Newton method is illustrated by the solution path on Rosenbrock’s
function in Figure 5-2, BFGS Method on Rosenbrock’s Function. The method
is able to follow the shape of the valley and converges to the minimum after
140 function evaluations using only finite difference gradients.

Figure 5-2: BFGS Method on Rosenbrock’s Function

Line Search
Line search is a search method that is used as part of a larger optimization
algorithm. At each step of the main algorithm, the line-search method
searches along the line containing the current point, xk, parallel to the search
direction, which is a vector determined by the main algorithm. That is, the
method finds the next iterate xk+1 of the form

5-9



5 Standard Algorithms

x x dk k k+ = +1 α * , (5-8)

where xk denotes the current iterate, dk is the search direction, and α* is a
scalar step length parameter.

The line search method attempts to decrease the objective function along the
line xk + α*dk by repeatedly minimizing polynomial interpolation models of
the objective function. The line search procedure has two main steps:

• The bracketing phase determines the range of points on the line

x x dk k k+ = +1 α * to be searched. The bracket corresponds to an interval
specifying the range of values of α.

• The sectioning step divides the bracket into subintervals, on which
the minimum of the objective function is approximated by polynomial
interpolation.

The resulting step length α satisfies the Wolfe conditions:

f x d f x c f dk k k k
T

k+( ) ≤ ( ) +α α1 ∇ , (5-9)

∇ ∇f x d d c f dk k
T

k k
T

k+( ) ≥α 2 , (5-10)

where c1 and c2 are constants with 0 < c1 < c2 < 1.

The first condition (Equation 5-9) requires that αk sufficiently decreases the
objective function. The second condition (Equation 5-10) ensures that the step
length is not too small. Points that satisfy both conditions (Equation 5-9 and
Equation 5-10) are called acceptable points.

The line search method is an implementation of the algorithm described in
Section 2-6 of [13]. See also [31] for more information about line search.

5-10



Quasi-Newton Implementation

Quasi-Newton Implementation

In this section...

“Hessian Update” on page 5-11

“Line Search Procedures” on page 5-11

Hessian Update
Many of the optimization functions determine the direction of search by
updating the Hessian matrix at each iteration, using the BFGS method
(Equation 5-6). The function fminunc also provides an option to use the
DFP method given in “Quasi-Newton Methods” on page 5-7 (set HessUpdate
to 'dfp' in options to select the DFP method). The Hessian, H, is always
maintained to be positive definite so that the direction of search, d, is always
in a descent direction. This means that for some arbitrarily small step α in
the direction d, the objective function decreases in magnitude. You achieve
positive definiteness of H by ensuring that H is initialized to be positive

definite and thereafter q sk
T

k (from Equation 5-11) is always positive. The

term q sk
T

k is a product of the line search step length parameter αk and
a combination of the search direction d with past and present gradient
evaluations,

q s f x d f x dk
T

k k k
T

k
T= ( ) − ( )( )+α ∇ ∇1 . (5-11)

You always achieve the condition that q sk
T

k is positive by performing a
sufficiently accurate line search. This is because the search direction, d, is a
descent direction, so that αk and the negative gradient –∇f(xk)

Td are always
positive. Thus, the possible negative term –∇f(xk+1)

Td can be made as small in
magnitude as required by increasing the accuracy of the line search.

Line Search Procedures
After choosing the direction of the search, the optimization function uses a
line search procedure to determine how far to move in the search direction.

5-11



5 Standard Algorithms

This section describes the line search procedures used by the functions
lsqnonlin, lsqcurvefit, and fsolve.

The functions use one of two line search strategies, depending on whether
gradient information is readily available or whether it must be calculated
using a finite difference method:

• When gradient information is available, the default is to use a cubic
polynomial method.

• When gradient information is not available, the default is to use a mixed
cubic and quadratic polynomial method.

Cubic Polynomial Method
In the proposed cubic polynomial method, a gradient and a function evaluation
are made at every iteration k. At each iteration an update is performed when
a new point is found, xk+1, that satisfies the condition

f x f xk k+( ) < ( )1 . (5-12)

At each iteration a step, αk, is attempted to form a new iterate of the form

x x dk k k+ = +1 α . (5-13)

If this step does not satisfy the condition (Equation 5-12), then αk is reduced
to form a new step, αk + 1. The usual method for this reduction is to use
bisection, i.e., to continually halve the step length until a reduction is achieved
in f(x). However, this procedure is slow when compared to an approach
that involves using gradient and function evaluations together with cubic
interpolation/extrapolation methods to identify estimates of step length.

When a point is found that satisfies the condition (Equation 5-12), an update

is performed if q sk
T

k is positive. If it is not, then further cubic interpolations
are performed until the univariate gradient term∇f(xk+1)

Td is sufficiently

small so that q sk
T

k is positive.

It is usual practice to reset αk to unity after every iteration. However, note
that the quadratic model (Equation 5-3) is generally only a good one near

5-12



Quasi-Newton Implementation

to the solution point. Therefore, αk is modified at each major iteration
to compensate for the case when the approximation to the Hessian is
monotonically increasing or decreasing. To ensure that, as xk approaches
the solution point, the procedure reverts to a value of αk close to unity, the

values of q s f x dk
T

k k
T− ( )∇ and αk + 1 are used to estimate the closeness to the

solution point and thus to control the variation in αk.

Cubic Polynomial Line Search Procedures. After each update procedure,
a step length αk is attempted, following which a number of scenarios are
possible. Consideration of all the possible cases is quite complicated and so
they are represented pictorially below.

For each case:

• The left point on the graph represents the point xk.

• The slope of the line bisecting each point represents the slope of the
univariate gradient, ∇f(xk)

Td, which is always negative for the left point.

• The right point is the point xk + 1 after a step of αk is taken in the direction d.

Case 1. f x f x f x dk k k
T

+ +( ) > ( ) ( ) >1 1 0,  ∇

Case 2. f x f x f x dk k k
T

+ +( ) ≤ ( ) ( ) ≥1 1 0,  ∇

5-13



5 Standard Algorithms

Case 3. f x f x f x dk k k
T

+ +( ) < ( ) ( ) <1 1 0,  ∇

Case 4. f x f x f x dk k k
T

+ +( ) ≥ ( ) ( ) ≤1 1 0, , ∇ where

p q s f x dk
T

k k
T

k= + − ( ) + { }+ +1 01 1∇ min , .α

Cases 1 and 2 show the procedures performed when the value ∇f(xk+1)
Td

is positive. Cases 3 and 4 show the procedures performed when the value

∇f x dk
T

+( )1 is negative. The notation min{a, b, c} refers to the smallest value
of the set {a, b, c}.

5-14



Quasi-Newton Implementation

At each iteration a cubically interpolated step length αc is calculated and
then used to adjust the step length parameter αk + 1. Occasionally, for very
nonlinear functions αc can be negative, in which case αc is given a value of 2αk.

Certain robustness measures have also been included so that, even in the case
when false gradient information is supplied, you can achieve a reduction in
f(x) by taking a negative step. You do this by setting αk + 1 = –αk/2 when αk falls
below a certain threshold value (e.g., 1e-8). This is important when extremely
high precision is required, if only finite difference gradients are available.

Mixed Cubic and Quadratic Polynomial Method
The cubic interpolation/extrapolation method has proved successful for a large
number of optimization problems. However, when analytic derivatives are not
available, evaluating finite difference gradients is computationally expensive.
Therefore, another interpolation/extrapolation method is implemented so
that gradients are not needed at every iteration. The approach in these
circumstances, when gradients are not readily available, is to use a quadratic
interpolation method. The minimum is generally bracketed using some form
of bisection method. This method, however, has the disadvantage that all
the available information about the function is not used. For instance, a
gradient calculation is always performed at each major iteration for the
Hessian update. Therefore, given three points that bracket the minimum, it is
possible to use cubic interpolation, which is likely to be more accurate than
using quadratic interpolation. Further efficiencies are possible if, instead of
using bisection to bracket the minimum, extrapolation methods similar to
those used in the cubic polynomial method are used.

Hence, the method that is used in lsqnonlin, lsqcurvefit, and fsolve is to
find three points that bracket the minimum and to use cubic interpolation
to estimate the minimum at each line search. The estimation of step length
at each minor iteration, j, is shown in the following graphs for a number of
point combinations. The leftmost point in each graph represents the function
value f(x1) and univariate gradient ∇ f(xk)obtained at the last update. The
remaining points represent the points accumulated in the minor iterations
of the line search procedure.

The terms αq and αc refer to the minimum obtained from a respective
quadratic and cubic interpolation or extrapolation. For highly nonlinear
functions, αq and αc can be negative, in which case they are set to a value of 2αk

5-15



5 Standard Algorithms

so that they are always maintained to be positive. Cases 1 and 2 use quadratic
interpolation with two points and one gradient to estimate a third point that
brackets the minimum. If this fails, cases 3 and 4 represent the possibilities
for changing the step length when at least three points are available.

When the minimum is finally bracketed, cubic interpolation is achieved using
one gradient and three function evaluations. If the interpolated point is
greater than any of the three used for the interpolation, then it is replaced
with the point with the smallest function value. Following the line search
procedure, the Hessian update procedure is performed as for the cubic
polynomial line search method.

The following graphs illustrate the line search procedures for Cases 1
through 4, with a gradient only for the first point.

Case 1. f(xj) ≥ f(xk)

Case 2. f(xj) < f(xk)

Case 3. f(xj + 1) < f(xk)

5-16



Quasi-Newton Implementation

Case 4. f(xj + 1) > f(xk)

5-17



5 Standard Algorithms

Least-Squares Optimization

In this section...

“Introduction” on page 5-18

“Gauss-Newton Method” on page 5-20

“Levenberg-Marquardt Method” on page 5-21

“Nonlinear Least-Squares Implementation” on page 5-22

Introduction
The line search procedures used in conjunction with a quasi-Newton method
are used as part of the nonlinear least-squares (LS) optimization routines,
lsqnonlin and lsqcurvefit. In the least-squares problem a function f(x) is
minimized that is a sum of squares.

min ( ) ( ) ( ).
x

i
i

f x F x F x= = ∑2
2 2

(5-14)

Problems of this type occur in a large number of practical applications,
especially when fitting model functions to data, i.e., nonlinear parameter
estimation. They are also prevalent in control where you want the output,
y(x,t), to follow some continuous model trajectory, φ(t), for vector x and scalar t.
This problem can be expressed as

min ( , ) ( ) ,
x

t

t

n
y x t t dt

∈ℜ
−( )∫ ϕ 2

1

2

(5-15)

where y(x,t) and φ(t) are scalar functions.

When the integral is discretized using a suitable quadrature formula, the
above can be formulated as a least-squares problem:

5-18



Least-Squares Optimization

min ( ) ( , ) ( ) ,
x

i i
i

m

n
f x y x t t

∈ℜ =
= −( )∑ ϕ 2

1 (5-16)

where y and ϕ include the weights of the quadrature scheme. Note that in
this problem the vector F(x) is

F x

y x t t
y x t t

y x t tm m

( )

( , ) ( )
( , ) ( )

...
( , ) ( )

=

−
−

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥

1 1

2 2

ϕ
ϕ

ϕ
⎥⎥
⎥
⎥

.

In problems of this kind, the residual ||F(x)|| is likely to be small at the
optimum since it is general practice to set realistically achievable target
trajectories. Although the function in LS can be minimized using a general
unconstrained minimization technique, as described in “Unconstrained
Optimization” on page 5-6, certain characteristics of the problem can often be
exploited to improve the iterative efficiency of the solution procedure. The
gradient and Hessian matrix of LS have a special structure.

Denoting the m-by-n Jacobian matrix of F(x) as J(x), the gradient vector of
f(x) as G(x), the Hessian matrix of f(x) as H(x), and the Hessian matrix of
each Fi(x) as Hi(x), you have

G x J x F x

H x J x J x Q x

T

T

( ) ( ) ( )

( ) ( ) ( ) ( ),

=

= +

2

2 2 (5-17)

where

Q x F x H xi i
i

m
( ) ( ) ( ).= ⋅

=
∑

1

The matrix Q(x) has the property that when the residual ||F(x)|| tends
to zero as xk approaches the solution, then Q(x) also tends to zero. Thus
when ||F(x)|| is small at the solution, a very effective method is to use the
Gauss-Newton direction as a basis for an optimization procedure.

5-19



5 Standard Algorithms

Gauss-Newton Method
In the Gauss-Newton method, a search direction, dk, is obtained at each major
iteration, k, that is a solution of the linear least-squares problem:

min ( ) ( ) .
x

k kn
J x F x

∈ℜ
− 2

2

(5-18)

The direction derived from this method is equivalent to the Newton direction
when the terms of Q(x) can be ignored. The search direction dk can be used
as part of a line search strategy to ensure that at each iteration the function
f(x) decreases.

Consider the efficiencies that are possible with the Gauss-Newton method.
Gauss-Newton Method on Rosenbrock’s Function on page 5-20 shows the path
to the minimum on Rosenbrock’s function when posed as a least-squares
problem. The Gauss-Newton method converges after only 48 function
evaluations using finite difference gradients, compared to 140 iterations using
an unconstrained BFGS method.

Figure 5-3: Gauss-Newton Method on Rosenbrock’s Function

The Gauss-Newton method often encounters problems when the second-order
term Q(x) is significant. A method that overcomes this problem is the
Levenberg-Marquardt method.

5-20



Least-Squares Optimization

Levenberg-Marquardt Method
The Levenberg-Marquardt [25], and [27] method uses a search direction that
is a solution of the linear set of equations

J x J x I d J x F xk
T

k k k k
T

k( ) ( ) +( ) = − ( ) ( )λ , (5-19)

where the scalar λ k controls both the magnitude and direction of dk. When
λ k is zero, the direction dk is identical to that of the Gauss-Newton method.
As λ k tends to infinity, dk tends toward a vector of zeros and a steepest
descent direction. This implies that for some sufficiently large λ k, the term
F(xk + dk) < F(xk) holds true. The term λ k can therefore be controlled to ensure
descent even when second-order terms, which restrict the efficiency of the
Gauss-Newton method, are encountered.

The Levenberg-Marquardt method therefore uses a search direction that is
a cross between the Gauss-Newton direction and the steepest descent. This
is illustrated in Figure 5-4, Levenberg-Marquardt Method on Rosenbrock’s
Function. The solution for Rosenbrock’s function converges after 90 function
evaluations compared to 48 for the Gauss-Newton method. The poorer
efficiency is partly because the Gauss-Newton method is generally more
effective when the residual is zero at the solution. However, such information
is not always available beforehand, and the increased robustness of the
Levenberg-Marquardt method compensates for its occasional poorer efficiency.

Figure 5-4: Levenberg-Marquardt Method on Rosenbrock’s Function

5-21



5 Standard Algorithms

Nonlinear Least-Squares Implementation
For a general survey of nonlinear least-squares methods, see Dennis [8].
Specific details on the Levenberg-Marquardt method can be found in
Moré [28]. Both the Gauss-Newton method and the Levenberg-Marquardt
method are implemented in Optimization Toolbox™ solvers. Details of the
implementations are discussed below:

• “Gauss-Newton Implementation” on page 5-22

• “Levenberg-Marquardt Implementation” on page 5-22

Gauss-Newton Implementation
The Gauss-Newton method is implemented using polynomial line search
strategies similar to those discussed for unconstrained optimization. In
solving the linear least-squares problem, you can avoid exacerbation of the
conditioning of the equations by using the QR decomposition of J(xk) and
applying the decomposition to F(xk) (using the MATLAB® \ operator). This
is in contrast to inverting the explicit matrix, J(xk)

TJ(xk), which can cause
unnecessary errors to occur.

Robustness measures are included in the method. These measures consist of
changing the algorithm to the Levenberg-Marquardt method when either the
step length goes below a threshold value (1e-15 in this implementation) or
when the condition number of J(xk) is below 1e-10. The condition number is a
ratio of the largest singular value to the smallest.

Levenberg-Marquardt Implementation
The main difficulty in the implementation of the Levenberg-Marquardt
method is an effective strategy for controlling the size of λ k at each iteration so
that it is efficient for a broad spectrum of problems. The method used in this
implementation is to estimate the relative nonlinearity of f(x) using a linear
predicted sum of squares fp(xk) and a cubically interpolated estimate of the
minimum fk(x*). In this way the size of λ k is determined at each iteration.

The linear predicted sum of squares is calculated as

5-22



Least-Squares Optimization

f x J x d F xp k k k k( ) = ( ) + ( )− − −1 1 1 , (5-20)

and the term fk(x*) is obtained by cubically interpolating the points f(xk) and
f(xk – 1). A step length parameter α* is also obtained from this interpolation,
which is the estimated step to the minimum. If fp(xk) is greater than fk(x*),
then λ k is reduced, otherwise it is increased. The justification for this is that
the difference between fp(xk) and fk(x*) is a measure of the effectiveness of the
Gauss-Newton method and the linearity of the problem. This determines
whether to use a direction approaching the steepest descent direction or the
Gauss-Newton direction.

The formulas for the reduction and increase in λ k, which have been developed
through consideration of a large number of test problems, are shown in the
following figure.

Figure 5-5: Updating λ k

Following the update of λ k, a solution of Equation 5-19 is used to obtain a
search direction, dk. A step length of unity is then taken in the direction dk,
which is followed by a line search procedure similar to that discussed for
the unconstrained implementation. The line search procedure ensures that
f(xk + 1) < f(xk) at each major iteration and the method is therefore a descent
method.

The implementation has been successfully tested on a large number of
nonlinear problems. It has proved to be more robust than the Gauss-Newton
method and iteratively more efficient than an unconstrained method. When

5-23



5 Standard Algorithms

the option 'LargeScale' is 'off', the Levenberg-Marquardt algorithm is the
default method used by lsqnonlin and lsqcurvefit. You can select the
Gauss-Newton method by setting LevenbergMarquardt to 'off' in options.

5-24



Nonlinear Systems of Equations

Nonlinear Systems of Equations

In this section...

“Introduction” on page 5-25

“Gauss-Newton Method” on page 5-25

“Trust-Region Dogleg Method” on page 5-26

“Nonlinear Equations Implementation” on page 5-27

Introduction
Solving a nonlinear system of equations F(x) involves finding a solution
such that every equation in the nonlinear system is 0. That is, there are
n equations and n unknowns. The objective is to find x, an element of the
n-dimensional real numbers, such that F(x) = 0, where

F x

F x
F x

F x

( )

( )
( )

( )

.=

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

1

1

1

�

The assumption is that a zero, or root, of the system exists. These equations
may represent economic constraints, for example, that must all be satisfied.

Gauss-Newton Method
One approach to solving this problem is to use a Nonlinear Least-Squares
solver, such as those described in “Least-Squares Optimization” on page
5-18. Since the assumption is the system has a root, it would have a small
residual; therefore, using the Gauss-Newton Method is effective. In this case,
each iteration solves a linear least-squares problem, as described in Equation
5-18, to find the search direction. (See “Gauss-Newton Method” on page 5-20
for more information.)

5-25



5 Standard Algorithms

Trust-Region Dogleg Method
Another approach is to solve a linear system of equations to find the search
direction, namely, Newton’s method says to solve for the search direction
dk such that

J(xk)dk = –F(xk)
xk + 1 = xk + dk,

where J(xk) is the n-by-n Jacobian

J x

F x

F x

F x

k

k
T

k
T

n k
T

( ) =

( )
( )

( )

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

∇

∇

∇

1

2

�
.

Newton’s method can run into difficulties. J(xk) may be singular, and so the
Newton step dk is not even defined. Also, the exact Newton step dk may be
expensive to compute. In addition, Newton’s method may not converge if the
starting point is far from the solution.

Using trust-region techniques (introduced in “Trust-Region Methods for
Nonlinear Minimization” on page 6-3) improves robustness when starting
far from the solution and handles the case when J(xk) is singular. To use a
trust-region strategy, a merit function is needed to decide if xk + 1 is better or
worse than xk. A possible choice is

min ( ) .
d

k
T

kf d F x d F x d= +( ) +( )1
2

But a minimum of f(d) is not necessarily a root of F(x).

The Newton step dk is a root of

M(xk + d) = F(xk) + J(xk)d,

and so it is also a minimum of m(d), where

5-26



Nonlinear Systems of Equations

min ( )
d

k k k

k
T

k
T

k

m d M x d F x J x d

F x F x d J x

= +( ) = ( ) + ( )

= ( ) ( ) + (

1
2

1
2

1
2

2
2

2
2

)) ( ) + ( ) ( )T
k

T
k

T
kF x d J x J x d

1
2

. (5-21)

Then m(d) is a better choice of merit function than f(d), and so the trust-region
subproblem is

min ,
d

k
T

k
T

k
T

k
T

k
T

kF x F x d J x F x d J x J x d
1
2

1
2

( ) ( ) + ( ) ( ) + ( ) ( )⎡
⎣⎢

⎤
⎦⎥ (5-22)

such that ||D·d|| ≤ Δ. This subproblem can be efficiently solved using a
dogleg strategy.

For an overview of trust-region methods, see Conn [4], and Nocedal [31].

Nonlinear Equations Implementation
Both the Gauss-Newton and trust-region dogleg methods are implemented
in Optimization Toolbox™ solvers. Details of their implementations are
discussed below.

Gauss-Newton Implementation
The Gauss-Newton implementation is the same as that for least-squares
optimization. It is described in “Gauss-Newton Implementation” on page 5-22.

Trust-Region Dogleg Implementation
The key feature of this algorithm is the use of the Powell dogleg procedure
for computing the step d, which minimizes Equation 5-22. For a detailed
description, see Powell [34].

The step d is constructed from a convex combination of a Cauchy step (a step
along the steepest descent direction) and a Gauss-Newton step for f(x). The
Cauchy step is calculated as

dC = –αJ(xk)
TF(xk),

where α is chosen to minimize Equation 5-21.

5-27



5 Standard Algorithms

The Gauss-Newton step is calculated by solving

J(xk)·dGN = –F(xk),

using the MATLAB® \ (matrix left division) operator.

The step d is chosen so that

d = dC + λ (dGN – dC),

where λ is the largest value in the interval [0,1] such that ||d|| ≤ Δ. If Jk is
(nearly) singular, d is just the Cauchy direction.

The dogleg algorithm is efficient since it requires only one linear solve per
iteration (for the computation of the Gauss-Newton step). Additionally, it can
be more robust than using the Gauss-Newton method with a line search.

5-28



Constrained Optimization

Constrained Optimization

In this section...

“Introduction” on page 5-29

“Sequential Quadratic Programming (SQP)” on page 5-30

“Quadratic Programming (QP) Subproblem” on page 5-31

“SQP Implementation” on page 5-32

“Simplex Algorithm” on page 5-39

Introduction
In constrained optimization, the general aim is to transform the problem
into an easier subproblem that can then be solved and used as the basis of
an iterative process. A characteristic of a large class of early methods is the
translation of the constrained problem to a basic unconstrained problem by
using a penalty function for constraints that are near or beyond the constraint
boundary. In this way the constrained problem is solved using a sequence
of parameterized unconstrained optimizations, which in the limit (of the
sequence) converge to the constrained problem. These methods are now
considered relatively inefficient and have been replaced by methods that
have focused on the solution of the Karush-Kuhn-Tucker (KKT) equations.
The KKT equations are necessary conditions for optimality for a constrained
optimization problem. If the problem is a so-called convex programming
problem, that is, f(x) and Gi(x), i = 1,...,m, are convex functions, then the KKT
equations are both necessary and sufficient for a global solution point.

Referring to GP (Equation 5-1), the Kuhn-Tucker equations can be stated as

∇ ∇f x G x

G x i m

i m

i i
i

m

i i e

i

* *

* , ,...,

,

( ) + ⋅ ( ) =

⋅ ( ) = =
≥ =

=
∑λ

λ

λ

1
0

0 1

0

  

  ee m+1,..., , (5-23)

in addition to the original constraints in Equation 5-1.

5-29



5 Standard Algorithms

The first equation describes a canceling of the gradients between the objective
function and the active constraints at the solution point. For the gradients to
be canceled, Lagrange multipliers (λ i, i = 1,...,m) are necessary to balance the
deviations in magnitude of the objective function and constraint gradients.
Because only active constraints are included in this canceling operation,
constraints that are not active must not be included in this operation and so
are given Lagrange multipliers equal to 0. This is stated implicitly in the last
two Kuhn-Tucker equations.

The solution of the KKT equations forms the basis to many nonlinear
programming algorithms. These algorithms attempt to compute the
Lagrange multipliers directly. Constrained quasi-Newton methods guarantee
superlinear convergence by accumulating second-order information regarding
the KKT equations using a quasi-Newton updating procedure. These methods
are commonly referred to as Sequential Quadratic Programming (SQP)
methods, since a QP subproblem is solved at each major iteration (also known
as Iterative Quadratic Programming, Recursive Quadratic Programming, and
Constrained Variable Metric methods).

Sequential Quadratic Programming (SQP)
SQP methods represent the state of the art in nonlinear programming
methods. Schittkowski [36], for example, has implemented and tested a
version that outperforms every other tested method in terms of efficiency,
accuracy, and percentage of successful solutions, over a large number of test
problems.

Based on the work of Biggs [1], Han [22], and Powell ([32] and [33]), the
method allows you to closely mimic Newton’s method for constrained
optimization just as is done for unconstrained optimization. At each major
iteration, an approximation is made of the Hessian of the Lagrangian function
using a quasi-Newton updating method. This is then used to generate a QP
subproblem whose solution is used to form a search direction for a line search
procedure. An overview of SQP is found in Fletcher [13], Gill et. al. [19],
Powell [35], and Schittkowski [23]. The general method, however, is stated
here.

Given the problem description in GP (Equation 5-1) the principal idea is the
formulation of a QP subproblem based on a quadratic approximation of the
Lagrangian function.

5-30



Constrained Optimization

L x f x g xi i
i

m
( , ) ( ) ( ).λ λ= + ⋅

=
∑

1 (5-24)

Here you simplify Equation 5-1 by assuming that bound constraints have
been expressed as inequality constraints. You obtain the QP subproblem by
linearizing the nonlinear constraints.

Quadratic Programming (QP) Subproblem

min

, ,...,

d

T
k k

T

i k
T

i k e

i

n
d H d f x d

g x d g x i m

g x

∈ℜ
+ ( )

( ) + ( ) = =

1
2

0 1

∇

∇

∇

  

kk
T

i k ed g x i m m( ) + ( ) ≤ = +0 1, ,..., .  (5-25)
This subproblem can be solved using any QP algorithm (see, for instance,
“Quadratic Programming Solution” on page 5-34). The solution is used to
form a new iterate

xk + 1 = xk + αkdk.

The step length parameter αk is determined by an appropriate line search
procedure so that a sufficient decrease in a merit function is obtained (see
“Updating the Hessian Matrix” on page 5-32). The matrix Hk is a positive
definite approximation of the Hessian matrix of the Lagrangian function
(Equation 5-24). Hk can be updated by any of the quasi-Newton methods,
although the BFGS method (see “Updating the Hessian Matrix” on page 5-32)
appears to be the most popular.

A nonlinearly constrained problem can often be solved in fewer iterations
than an unconstrained problem using SQP. One of the reasons for this is
that, because of limits on the feasible area, the optimizer can make informed
decisions regarding directions of search and step length.

Consider Rosenbrock’s function with an additional nonlinear inequality
constraint, g(x),

5-31



5 Standard Algorithms

x x1
2

2
2 1 5 0+ − ≤. . (5-26)

This was solved by an SQP implementation in 96 iterations compared to 140
for the unconstrained case. SQP Method on Nonlinear Linearly Constrained
Rosenbrock’s Function (Eq. 3-2) on page 5-32 shows the path to the solution
point x = [0.9072,0.8228] starting at x = [–1.9,2.0].

Figure 5-6: SQP Method on Nonlinear Linearly Constrained Rosenbrock’s
Function (Eq. 3-2)

SQP Implementation
The SQP implementation consists of three main stages, which are discussed
briefly in the following subsections:

• “Updating the Hessian Matrix” on page 5-32

• “Quadratic Programming Solution” on page 5-34

• “Line Search and Merit Function” on page 5-38

Updating the Hessian Matrix
At each major iteration a positive definite quasi-Newton approximation of the
Hessian of the Lagrangian function, H, is calculated using the BFGS method,
where λ i, i = 1,...,m, is an estimate of the Lagrange multipliers.

5-32



Constrained Optimization

H H
q q

q s

H s s H

s H s
k k

k k
T

k
T

k

k
T

k
T

k k

k
T

k k
+ = + −1 ,

(5-27)

where

s x x

q f x g x f x

k k k

k k i i k
i

m

k i

= −

= ( ) + ⋅ ( )
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ − ( ) + ⋅

+

+ +
=
∑

1

1 1
1

∇ ∇ ∇λ λ ∇∇g xi k
i

m
( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

=
∑

1
.

Powell [33] recommends keeping the Hessian positive definite even though
it might be positive indefinite at the solution point. A positive definite

Hessian is maintained providing q sk
T

k is positive at each update and that H

is initialized with a positive definite matrix. When q sk
T

k is not positive, qk

is modified on an element-by-element basis so that q sk
T

k > 0 . The general
aim of this modification is to distort the elements of qk, which contribute to a
positive definite update, as little as possible. Therefore, in the initial phase
of the modification, the most negative element of qk*sk is repeatedly halved.

This procedure is continued until q sk
T

k is greater than or equal to a small

negative tolerance. If, after this procedure, q sk
T

k is still not positive, modify
qk by adding a vector v multiplied by a constant scalar w, that is,

q q wvk k= + , (5-28)

where

v g x g x g x g x

q w
i i k i k i k i k

k i

= ( ) ⋅ ( ) − ( ) ⋅ ( )
( ) ⋅ <
+ +∇ ∇1 1

           if 00 0 1

0

 and  

  otherwise,

q s i m

v
k i k i

i

( ) ⋅ ( ) < =

=

, ,...,

and increase w systematically until q sk
T

k becomes positive.

The functions fmincon, fminimax, fgoalattain, and fseminf all use SQP.
If Display is set to 'iter' in options, then various information is given

5-33



5 Standard Algorithms

such as function values and the maximum constraint violation. When the
Hessian has to be modified using the first phase of the preceding procedure to
keep it positive definite, then Hessian modified is displayed. If the Hessian
has to be modified again using the second phase of the approach described
above, then Hessian modified twice is displayed. When the QP subproblem
is infeasible, then infeasible is displayed. Such displays are usually not
a cause for concern but indicate that the problem is highly nonlinear and
that convergence might take longer than usual. Sometimes the message no

update is displayed, indicating that q sk
T

k is nearly zero. This can be an
indication that the problem setup is wrong or you are trying to minimize a
noncontinuous function.

Quadratic Programming Solution
At each major iteration of the SQP method, a QP problem of the following
form is solved, where Ai refers to the ith row of the m-by-n matrix A.

min ( ) ,

, ,...,
, ,

d

T T

i i e

i i e

n
q d d Hd c d

A d b i m

A d b i m

∈ℜ
= +

= =
≤ = +

1
2

1
1

  
  ...., .m (5-29)

The method used in Optimization Toolbox™ functions is an active set strategy
(also known as a projection method) similar to that of Gill et. al., described in
[18] and [17]. It has been modified for both Linear Programming (LP) and
Quadratic Programming (QP) problems.

The solution procedure involves two phases. The first phase involves the
calculation of a feasible point (if one exists). The second phase involves the
generation of an iterative sequence of feasible points that converge to the

solution. In this method an active set, Ak , is maintained that is an estimate
of the active constraints (i.e., those that are on the constraint boundaries) at
the solution point. Virtually all QP algorithms are active set methods. This
point is emphasized because there exist many different methods that are very
similar in structure but that are described in widely different terms.

5-34



Constrained Optimization

Ak is updated at each iteration k, and this is used to form a basis for a search

direction d̂k . Equality constraints always remain in the active set Ak . The

notation for the variable d̂k is used here to distinguish it from dk in the major

iterations of the SQP method. The search direction d̂k is calculated and
minimizes the objective function while remaining on any active constraint

boundaries. The feasible subspace for d̂k is formed from a basis Zk whose

columns are orthogonal to the estimate of the active set Ak (i.e., A Zk k = 0 ).
Thus a search direction, which is formed from a linear summation of any
combination of the columns of Zk, is guaranteed to remain on the boundaries
of the active constraints.

The matrix Zk is formed from the last m – l columns of the QR decomposition

of the matrix Ak
T , where l is the number of active constraints and l < m.

That is, Zk is given by

Z Q l mk = +[ ]:, : ,1 (5-30)

where

Q A
RT

k
T =

⎡

⎣
⎢
⎤

⎦
⎥0
.

Once Zk is found, a new search direction d̂k is sought that minimizes q(d)

where d̂k is in the null space of the active constraints. That is, d̂k is a linear

combination of the columns of Zk: d̂ Z pk k= for some vector p.

Then if you view the quadratic as a function of p, by substituting for d̂k ,
you have

5-35



5 Standard Algorithms

q p p Z HZ p c Z pT
k
T

k
T

k( ) .= +1
2 (5-31)

Differentiating this with respect to p yields

∇q p Z HZ p Z ck
T

k k
T( ) .= + (5-32)

∇q(p) is referred to as the projected gradient of the quadratic function because

it is the gradient projected in the subspace defined by Zk. The term Z HZk
T

k
is called the projected Hessian. Assuming the Hessian matrix H is positive
definite (which is the case in this implementation of SQP), then the minimum
of the function q(p) in the subspace defined by Zk occurs when ∇q(p) = 0, which
is the solution of the system of linear equations

Z HZ p Z ck
T

k k
T= − . (5-33)

A step is then taken of the form

x x d d Z pk k k k k
T

+ = + =1 α ˆ , ˆ .  where (5-34)

At each iteration, because of the quadratic nature of the objective function,

there are only two choices of step length α. A step of unity along d̂k is the

exact step to the minimum of the function restricted to the null space of Ak .
If such a step can be taken, without violation of the constraints, then this

is the solution to QP (Equation 5-30). Otherwise, the step along d̂k to the
nearest constraint is less than unity and a new constraint is included in the
active set at the next iteration. The distance to the constraint boundaries in

any direction d̂k is given by

α =
− −( )⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪∈{ }
min ,

,...,i m

i k i

i k

A x b

A d1 (5-35)

which is defined for constraints not in the active set, and where the direction

d̂k is towards the constraint boundary, i.e., A d i mi k
ˆ , ,...,> =0 1 .

5-36



Constrained Optimization

When n independent constraints are included in the active set, without
location of the minimum, Lagrange multipliers, λ k, are calculated that satisfy
the nonsingular set of linear equations

A ck
T

kλ = . (5-36)

If all elements of λ k are positive, xk is the optimal solution of QP (Equation
5-30). However, if any component of λ k is negative, and the component does
not correspond to an equality constraint, then the corresponding element is
deleted from the active set and a new iterate is sought.

Initialization. The algorithm requires a feasible point to start. If the current
point from the SQP method is not feasible, then you can find a point by
solving the linear programming problem

min

, ,...,
,

,γ
γ

γ

∈ℜ ∈ℜ

= =
− ≤

 
  such that

      
  

x

i i e

i i

n

A x b i m

A x b

1
ii m me= +1,..., . (5-37)

The notation Ai indicates the ith row of the matrix A. You can find a feasible
point (if one exists) to Equation 5-37 by setting x to a value that satisfies
the equality constraints. You can determine this value by solving an under-
or overdetermined set of linear equations formed from the set of equality
constraints. If there is a solution to this problem, then the slack variable γ is
set to the maximum inequality constraint at this point.

You can modify the preceding QP algorithm for LP problems by setting the
search direction to the steepest descent direction at each iteration, where gk is
the gradient of the objective function (equal to the coefficients of the linear
objective function).

ˆ .d Z Z gk k k
T

k= − (5-38)

If a feasible point is found using the preceding LP method, the main QP phase

is entered. The search direction d̂k is initialized with a search direction d̂1
found from solving the set of linear equations

5-37



5 Standard Algorithms

Hd gk
ˆ ,1 = − (5-39)

where gk is the gradient of the objective function at the current iterate xk
(i.e., Hxk + c).

If a feasible solution is not found for the QP problem, the direction of search

for the main SQP routine d̂k is taken as one that minimizes γ .

Line Search and Merit Function
The solution to the QP subproblem produces a vector dk, which is used to
form a new iterate

x x dk k k+ = +1 α . (5-40)

The step length parameter αk is determined in order to produce a sufficient
decrease in a merit function. The merit function used by Han [22] and
Powell [33] of the following form is used in this implementation.

Ψ( ) ( ) ( ) max[ , ( )].x f x r g x r g xi i
i

m

i i
i m

me

e

= + ⋅ + ⋅
= = +
∑ ∑

1 1
0

(5-41)

Powell recommends setting the penalty parameter

r r
r

i mi k i i
i

k i i= ( ) =
( ) +⎧

⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
=+1 2

1max , , ,..., .λ
λ

  
(5-42)

This allows positive contribution from constraints that are inactive in the
QP solution but were recently active. In this implementation, the penalty
parameter ri is initially set to

r
f x

g xi
i

=
∇
∇

( )
( )

,
(5-43)

where  represents the Euclidean norm.

5-38



Constrained Optimization

This ensures larger contributions to the penalty parameter from constraints
with smaller gradients, which would be the case for active constraints at
the solution point.

Simplex Algorithm
The simplex algorithm, invented by George Dantzig in 1947, is one of the
earliest and best known optimization algorithms. The algorithm solves the
linear programming problem

min
,

,
.

x

Tf x
A x b

Aeq x beq
lb x ub

 such that 
⋅ ≤
⋅ =
≤ ≤

⎧
⎨
⎪

⎩⎪

The algorithm moves along the edges of the polyhedron defined by the
constraints, from one vertex to another, while decreasing the value of the
objective function, fTx, at each step. This section describes an improved version
of the original simplex algorithm that returns a vertex optimal solution.

This section covers the following topics:

• “Main Algorithm” on page 5-39

• “Preprocessing” on page 5-41

• “Using the Simplex Algorithm” on page 5-41

• “Basic and Nonbasic Variables” on page 5-42

• “References” on page 5-42

Main Algorithm
The simplex algorithm has two phases:

• Phase 1 — Compute an initial basic feasible point.

• Phase 2 — Compute the optimal solution to the original problem.

5-39



5 Standard Algorithms

Note You cannot supply an initial point x0 for linprog with the simplex
algorithm. If you pass in x0 as an input argument, linprog ignores x0 and
computes its own initial point for the algorithm.

Phase 1. In phase 1, the algorithm finds an initial basic feasible solution
(see “Basic and Nonbasic Variables” on page 5-42 for a definition) by solving
an auxiliary piecewise linear programming problem. The objective function of

the auxiliary problem is the linear penalty function P P xj j
j

= ( )∑ ,

where Pj(xj) is defined by

P x
x u x u

l x u
l x l x

j j

j j j j

j j j

j j j j

( ) =
− >

≤ ≤
− >

⎧

⎨
⎪

⎩
⎪

if 
if 
if 

0
.

P(x) measures how much a point x violates the lower and upper bound
conditions. The auxiliary problem is

min
.x

j
j

P
A x b

Aeq x beq∑ ⋅ ≤
⋅ =

⎧
⎨
⎩

  subject to 

The original problem has a feasible basis point if and only if the auxiliary
problem has minimum value 0.

The algorithm finds an initial point for the auxiliary problem by a heuristic
method that adds slack and artificial variables as necessary. The algorithm
then uses this initial point together with the simplex algorithm to solve the
auxiliary problem. The optimal solution is the initial point for phase 2 of
the main algorithm.

Phase 2. In phase 2, the algorithm applies the simplex algorithm, starting at
the initial point from phase 1, to solve the original problem. At each iteration,
the algorithm tests the optimality condition and stops if the current solution
is optimal. If the current solution is not optimal, the algorithm

5-40



Constrained Optimization

1 Chooses one variable, called the entering variable, from the nonbasic
variables and adds the corresponding column of the nonbasis to the basis
(see “Basic and Nonbasic Variables” on page 5-42 for definitions).

2 Chooses a variable, called the leaving variable, from the basic variables and
removes the corresponding column from the basis.

3 Updates the current solution and the current objective value.

The algorithm chooses the entering and the leaving variables by solving two
linear systems while maintaining the feasibility of the solution.

Preprocessing
The simplex algorithm uses the same preprocessing steps as the large-scale
linear programming solver, which are described in “Preprocessing” on page
6-23. In addition, the algorithm uses two other steps:

1 Eliminates columns that have only one nonzero element and eliminates
their corresponding rows.

2 For each constraint equation a·x = b, where a is a row of Aeq, the algorithm
computes the lower and upper bounds of the linear combination a·x as rlb
and rub if the lower and upper bounds are finite. If either rlb or rub equals
b, the constraint is called a forcing constraint. The algorithm sets each
variable corresponding to a nonzero coefficient of a·x equal to its upper or
lower bound, depending on the forcing constraint. The algorithm then
deletes the columns corresponding to these variables and deletes the rows
corresponding to the forcing constraints.

Using the Simplex Algorithm
To use the simplex method, set 'LargeScale' to 'off' and 'Simplex' to
'on' in options.

options = optimset('LargeScale','off','Simplex','on')

Then call the function linprog with the options input argument. See the
reference page for linprog for more information.

5-41



5 Standard Algorithms

linprog returns empty output arguments for x and fval if it detects
infeasibility or unboundedness in the preprocessing procedure. linprog
returns the current point when it

• Exceeds the maximum number of iterations

• Detects that the problem is infeasible or unbounded in phases 1 or 2

When the problem is unbounded, linprog returns x and fval in the
unbounded direction.

Basic and Nonbasic Variables
This section defines the terms basis, nonbasis, and basic feasible solutions for
a linear programming problem. The definition assumes that the problem is
given in the following standard form:

min
,

.x

Tf x
A x b

lb x ub
 such that 

⋅ =
≤ ≤

⎧
⎨
⎩

(Note that A and b are not the matrix and vector defining the inequalities in
the original problem.) Assume that A is an m-by-n matrix, of rank m < n,

whose columns are {a1, a2, ..., an}. Suppose that a a ai i im1 2
, ,...,{ } is a basis

for the column space of A, with index set B = {i1, i2, ..., im}, and that N =
{1, 2, ..., n}\B is the complement of B. The submatrix AB is called a basis and
the complementary submatrix AN is called a nonbasis. The vector of basic
variables is xB and the vector of nonbasic variables is xN. At each iteration in
phase 2, the algorithm replaces one column of the current basis with a column
of the nonbasis and updates the variables xB and xN accordingly.

If x is a solution to A·x = b and all the nonbasic variables in xN are equal to
either their lower or upper bounds, x is called a basic solution. If, in addition,
the basic variables in xB satisfy their lower and upper bounds, so that x is a
feasible point, x is called a basic feasible solution.

References

[1] Chvatal, Vasek, Linear Programming, W. H. Freeman and Company, 1983.

5-42



Constrained Optimization

[2] Bixby, Robert E., “Implementing the Simplex Method: The Initial Basis,”
ORSA Journal on Computing, Vol. 4, No. 3, 1992.

[3] Andersen, Erling D. and Knud D. Andersen, “Presolving in Linear
Programming,” Mathematical Programming, Vol. 71, pp. 221-245, 1995.

5-43



5 Standard Algorithms

Multiobjective Optimization

In this section...

“Multiobjective Optimization Toolbox™ Solvers” on page 5-44

“Goal Attainment Method” on page 5-44

“Algorithm Improvements for the Goal Attainment Method” on page 5-46

“Minimizing the Maximum Objective” on page 5-47

Multiobjective Optimization Toolbox™ Solvers
There are two Optimization Toolbox™ solvers that address problems with
multiple objective functions: fgoalattain and fminimax. Both solvers
use the same method of problem formulation and use the same underlying
algorithms. The problem formulation is to convert the multiple objective
functions into multiple constraints, and then to use an auxiliary function to
minimize. The details of the formulation are given below.

Goal Attainment Method
The method described here is the goal attainment method of Gembicki [16].

This involves expressing a set of design goals, F F F Fm
* * * *, ,...,= { }1 2 , which is

associated with a set of objectives, F(x) = {F1(x),F2(x),...,Fm(x)}. The problem
formulation allows the objectives to be under- or overachieved, enabling the
designer to be relatively imprecise about initial design goals. The relative
degree of under- or overachievement of the goals is controlled by a vector
of weighting coefficients, w = {w1,w2,...,wm}, and is expressed as a standard
optimization problem using the following formulation.

minimize
 γ

γ
∈ℜ ∈, x Ω (5-44)

such that F x w F i mi i i( ) , ,..., .*− ≤ =γ   1

The term wiγ introduces an element of slackness into the problem, which
otherwise imposes that the goals be rigidly met. The weighting vector, w,
enables the designer to express a measure of the relative tradeoffs between

5-44



Multiobjective Optimization

the objectives. For instance, setting the weighting vector w equal to the
initial goals indicates that the same percentage under- or overachievement
of the goals, F*, is achieved. You can incorporate hard constraints into the
design by setting a particular weighting factor to zero (i.e., wi = 0). The goal
attainment method provides a convenient intuitive interpretation of the
design problem, which is solvable using standard optimization procedures.
Illustrative examples of the use of the goal attainment method in control
system design can be found in Fleming ([10] and [11]).

The goal attainment method is represented geometrically in the figure below
in two dimensions.

Figure 5-7: Geometrical Representation of the Goal Attainment Method

Specification of the goals, F F1 2
* *,{ } , defines the goal point, P. The weighting

vector defines the direction of search from P to the feasible function space,
Λ(γ ). During the optimization γ is varied, which changes the size of the
feasible region. The constraint boundaries converge to the unique solution
point F1s, F2s.

5-45



5 Standard Algorithms

Algorithm Improvements for the Goal Attainment
Method
The goal attainment method has the advantage that it can be posed as a
nonlinear programming problem. Characteristics of the problem can also be
exploited in a nonlinear programming algorithm. In sequential quadratic
programming (SQP), the choice of merit function for the line search is not
easy because, in many cases, it is difficult to “define” the relative importance
between improving the objective function and reducing constraint violations.
This has resulted in a number of different schemes for constructing the
merit function (see, for example, Schittkowski [36]). In goal attainment
programming there might be a more appropriate merit function, which you
can achieve by posing Equation 5-44 as the minimax problem

minimize  
x i

in∈ℜ
{ }max ,Λ

(5-45)

where Λi
i i

i

F x F
w

i m=
−

=
( )

, ,..., .
*

  1

Following the argument of Brayton et. al. [2] for minimax optimization using
SQP, using the merit function of Equation 5-41 for the goal attainment
problem of Equation 5-45 gives

ψ γ γ γ( , ) max , ( ) .*x r F x w Fi i i i
i

m
= + ⋅ − −{ }

=
∑ 0

1 (5-46)

When the merit function of Equation 5-46 is used as the basis of a line search
procedure, then, although ψ(x,γ ) might decrease for a step in a given search
direction, the function max Λi might paradoxically increase. This is accepting
a degradation in the worst case objective. Since the worst case objective is
responsible for the value of the objective function γ , this is accepting a step
that ultimately increases the objective function to be minimized. Conversely,
ψ(x,γ ) might increase when max Λi decreases, implying a rejection of a step
that improves the worst case objective.

Following the lines of Brayton et. al. [2], a solution is therefore to set ψ(x)
equal to the worst case objective, i.e.,

5-46



Multiobjective Optimization

ψ ( ) max .x
i

i= Λ
(5-47)

A problem in the goal attainment method is that it is common to use a
weighting coefficient equal to 0 to incorporate hard constraints. The merit
function of Equation 5-47 then becomes infinite for arbitrary violations of
the constraints.

To overcome this problem while still retaining the features of Equation
5-47, the merit function is combined with that of Equation 5-42, giving the
following:

ψ
γ

( )
max , ( )

max , ,...,

*

x
r F x w F w

i m

i i i i i

i
i

=
⋅ − −{ } =

=

0 0

1

if 

 otherwΛ iise.

⎧
⎨
⎪

⎩⎪=
∑
i

m

1 (5-48)

Another feature that can be exploited in SQP is the objective function γ . From
the KKT equations it can be shown that the approximation to the Hessian
of the Lagrangian, H, should have zeros in the rows and columns associated
with the variable γ . However, this property does not appear if H is initialized
as the identity matrix. H is therefore initialized and maintained to have zeros
in the rows and columns associated with γ .

These changes make the Hessian, H, indefinite. Therefore H is set to have
zeros in the rows and columns associated with γ , except for the diagonal
element, which is set to a small positive number (e.g., 1e-10). This allows use
of the fast converging positive definite QP method described in “Quadratic
Programming Solution” on page 5-34.

The preceding modifications have been implemented in fgoalattain and
have been found to make the method more robust. However, because of
the rapid convergence of the SQP method, the requirement that the merit
function strictly decrease sometimes requires more function evaluations than
an implementation of SQP using the merit function of Equation 5-41.

Minimizing the Maximum Objective
fminimax uses a goal attainment method. It takes goals of 0, and weights of 1.
With this formulation, the goal attainment problem becomes

5-47



5 Standard Algorithms

min max
( )

minmax ( ),
i x

i i

i i x
i

f x goal
weight

f x
−⎛

⎝
⎜

⎞

⎠
⎟ =

which is the minimax problem.

Parenthetically, you might expect fminimax to turn the multiobjective
function into a single objective. The function

f(x) = max(F1(x),...Fj(x))

is a single objective function to minimize. However, it is not differentiable,
and Optimization Toolbox objectives are required to be smooth. Therefore the
minimax problem is formulated as a smooth goal attainment problem.

5-48



Selected Bibliography

Selected Bibliography
[1] Biggs, M.C., “Constrained Minimization Using Recursive Quadratic
Programming,” Towards Global Optimization (L.C.W. Dixon and G.P. Szergo,
eds.), North-Holland, pp 341-349, 1975.

[2] Brayton, R.K., S.W. Director, G.D. Hachtel, and L. Vidigal, “A New
Algorithm for Statistical Circuit Design Based on Quasi-Newton Methods and
Function Splitting,” IEEE Transactions on Circuits and Systems, Vol. CAS-26,
pp 784-794, Sept. 1979.

[3] Broyden, C.G., “The Convergence of a Class of Double-rank Minimization
Algorithms,”; J. Inst. Maths. Applics., Vol. 6, pp 76-90, 1970.

[4] Conn, N.R., N.I.M. Gould, and Ph.L. Toint, Trust-Region Methods,
MPS/SIAM Series on Optimization, SIAM and MPS, 2000.

[5] Dantzig, G., Linear Programming and Extensions, Princeton University
Press, Princeton, 1963.

[6] Dantzig, G., A. Orden, and P. Wolfe, “Generalized Simplex Method for
Minimizing a Linear from Under Linear Inequality Constraints,” Pacific J.
Math. Vol. 5, pp 183-195.

[7] Davidon, W.C., “Variable Metric Method for Minimization,” A.E.C.
Research and Development Report, ANL-5990, 1959.

[8] Dennis, J.E., Jr., “Nonlinear least-squares,” State of the Art in Numerical
Analysis ed. D. Jacobs, Academic Press, pp 269-312, 1977.

[9] Dennis, J.E., Jr. and R.B. Schnabel, Numerical Methods for Unconstrained
Optimization and Nonlinear Equations, Prentice-Hall Series in Computational
Mathematics, Prentice-Hall, 1983.

[10] Fleming, P.J., “Application of Multiobjective Optimization to Compensator
Design for SISO Control Systems,” Electronics Letters, Vol. 22, No. 5, pp
258-259, 1986.

5-49



5 Standard Algorithms

[11] Fleming, P.J., “Computer-Aided Control System Design of Regulators
using a Multiobjective Optimization Approach,” Proc. IFAC Control
Applications of Nonlinear Prog. and Optim., Capri, Italy, pp 47-52, 1985.

[12] Fletcher, R., “A New Approach to Variable Metric Algorithms,” Computer
Journal, Vol. 13, pp 317-322, 1970.

[13] Fletcher, R., “Practical Methods of Optimization,” John Wiley and Sons,
1987.

[14] Fletcher, R. and M.J.D. Powell, “A Rapidly Convergent Descent Method
for Minimization,” Computer Journal, Vol. 6, pp 163-168, 1963.

[15] Forsythe, G.F., M.A. Malcolm, and C.B. Moler, Computer Methods for
Mathematical Computations, Prentice Hall, 1976.

[16] Gembicki, F.W., “Vector Optimization for Control with Performance and
Parameter Sensitivity Indices,” Ph.D. Thesis, Case Western Reserve Univ.,
Cleveland, Ohio, 1974.

[17] Gill, P.E., W. Murray, M.A. Saunders, and M.H. Wright, “Procedures
for Optimization Problems with a Mixture of Bounds and General Linear
Constraints,” ACM Trans. Math. Software, Vol. 10, pp 282-298, 1984.

[18] Gill, P.E., W. Murray, and M.H. Wright, Numerical Linear Algebra and
Optimization, Vol. 1, Addison Wesley, 1991.

[19] Gill, P.E., W. Murray, and M.H.Wright, Practical Optimization, London,
Academic Press, 1981.

[20] Goldfarb, D., “A Family of Variable Metric Updates Derived by Variational
Means,” Mathematics of Computing, Vol. 24, pp 23-26, 1970.

[21] Grace, A.C.W., “Computer-Aided Control System Design Using
Optimization Techniques,” Ph.D. Thesis, University of Wales, Bangor,
Gwynedd, UK, 1989.

[22] Han, S.P., “A Globally Convergent Method for Nonlinear Programming,”
J. Optimization Theory and Applications, Vol. 22, p. 297, 1977.

5-50



Selected Bibliography

[23] Hock, W. and K. Schittkowski, “A Comparative Performance Evaluation
of 27 Nonlinear Programming Codes,” Computing, Vol. 30, p. 335, 1983.

[24] Hollingdale, S.H., Methods of Operational Analysis in Newer Uses of
Mathematics (James Lighthill, ed.), Penguin Books, 1978.

[25] Levenberg, K., “A Method for the Solution of Certain Problems in Least
Squares,” Quart. Appl. Math. Vol. 2, pp 164-168, 1944.

[26] Madsen, K. and H. Schjaer-Jacobsen, “Algorithms for Worst Case
Tolerance Optimization,” IEEE Transactions of Circuits and Systems, Vol.
CAS-26, Sept. 1979.

[27] Marquardt, D., “An Algorithm for Least-Squares Estimation of Nonlinear
Parameters,” SIAM J. Appl. Math. Vol. 11, pp 431-441, 1963.

[28] Moré, J.J., “The Levenberg-Marquardt Algorithm: Implementation and
Theory,” Numerical Analysis, ed. G. A. Watson, Lecture Notes in Mathematics
630, Springer Verlag, pp 105-116, 1977.

[29] NAG Fortran Library Manual, Mark 12, Vol. 4, E04UAF, p. 16.

[30] Nelder, J.A. and R. Mead, “A Simplex Method for Function Minimization,”
Computer J., Vol.7, pp 308-313, 1965.

[31] Nocedal, J. and S.J. Wright, Numerical Optimization, Springer Series in
Operations Research, Springer Verlag, 1999.

[32] Powell, M.J.D., “The Convergence of Variable Metric Methods for
Nonlinearly Constrained Optimization Calculations,” Nonlinear Programming
3, (O.L. Mangasarian, R.R. Meyer and S.M. Robinson, eds.), Academic Press,
1978.

[33] Powell, M.J.D., “A Fast Algorithm for Nonlinearly Constrained
Optimization Calculations,” Numerical Analysis, G.A.Watson ed., Lecture
Notes in Mathematics, Springer Verlag, Vol. 630, 1978.

[34] Powell, M.J.D., “A Fortran Subroutine for Solving Systems of Nonlinear
Algebraic Equations,” Numerical Methods for Nonlinear Algebraic Equations,
(P. Rabinowitz, ed.), Ch.7, 1970.

5-51



5 Standard Algorithms

[35] Powell, M.J.D., “Variable Metric Methods for Constrained Optimization,”
Mathematical Programming: The State of the Art, (A. Bachem, M. Grotschel
and B. Korte, eds.) Springer Verlag, pp 288-311, 1983.

[36] Schittkowski, K., “NLQPL: A FORTRAN-Subroutine Solving Constrained
Nonlinear Programming Problems,” Annals of Operations Research, Vol. 5,
pp 485-500, 1985.

[37] Shanno, D.F., “Conditioning of Quasi-Newton Methods for Function
Minimization,” Mathematics of Computing, Vol. 24, pp 647-656, 1970.

[38] Waltz, F.M., “An Engineering Approach: Hierarchical Optimization
Criteria,” IEEE Trans., Vol. AC-12, pp 179-180, April, 1967.

5-52



6

Large-Scale Algorithms

Trust-Region Methods for Nonlinear
Minimization (p. 6-3)

Introduces trust regions and
describes their use for unconstrained
nonlinear minimization.

Interior-Point Method (p. 6-6) Describes the interior-point approach
to constrained minimization, and the
effect of certain options.

Demos of Large-Scale Methods
(p. 6-11)

Functions that demonstrate
large-scale methods.

Preconditioned Conjugate Gradients
(p. 6-12)

Presents an algorithm that uses
Preconditioned Conjugate Gradients
(PCG) for solving large symmetric
positive definite systems of linear
equations.

Linearly Constrained Problems
(p. 6-14)

Discusses the solution of linear
equality constrained and box
constrained minimization problems.

Nonlinear Least-Squares (p. 6-17) Describes the solution of nonlinear
least-squares problems.

Quadratic Programming (p. 6-18) Describes the solution of
minimization problems with
quadratic objective functions.

Linear Least-Squares (p. 6-19) Describes the solution of linear
least-squares problems.



6 Large-Scale Algorithms

Large-Scale Linear Programming
(p. 6-20)

Describes the use of LIPSOL (Linear
Interior Point Solver) for the solution
of large-scale linear programming
problems.

Selected Bibliography (p. 6-25) Lists published materials that
support concepts implemented in the
large-scale algorithms.

6-2



Trust-Region Methods for Nonlinear Minimization

Trust-Region Methods for Nonlinear Minimization
Many of the methods used in Optimization Toolbox™ solvers are based on
trust regions, a simple yet powerful concept in optimization.

To understand the trust-region approach to optimization, consider the
unconstrained minimization problem, minimize f(x), where the function takes
vector arguments and returns scalars. Suppose you are at a point x in n-space
and you want to improve, i.e., move to a point with a lower function value.
The basic idea is to approximate f with a simpler function q, which reasonably
reflects the behavior of function f in a neighborhood N around the point x. This
neighborhood is the trust region. A trial step s is computed by minimizing (or
approximately minimizing) over N. This is the trust-region subproblem,

min ( ), .
s

q s s N ∈{ }
(6-1)

The current point is updated to be x + s if f(x + s) < f(x); otherwise, the current
point remains unchanged and N, the region of trust, is shrunk and the trial
step computation is repeated.

The key questions in defining a specific trust-region approach to minimizing
f(x) are how to choose and compute the approximation q (defined at the
current point x), how to choose and modify the trust region N, and how
accurately to solve the trust-region subproblem. This section focuses on the
unconstrained problem. Later sections discuss additional complications due
to the presence of constraints on the variables.

In the standard trust-region method ([10]), the quadratic approximation q
is defined by the first two terms of the Taylor approximation to F at x; the
neighborhood N is usually spherical or ellipsoidal in shape. Mathematically
the trust-region subproblem is typically stated

min ,
1
2

s Hs s g DsT T+ ≤⎧
⎨
⎩

⎫
⎬
⎭

  such that  Δ
(6-2)

where g is the gradient of f at the current point x, H is the Hessian matrix (the
symmetric matrix of second derivatives), D is a diagonal scaling matrix, Δ is a
positive scalar, and || . || is the 2-norm. Good algorithms exist for solving

6-3



6 Large-Scale Algorithms

Equation 6-2 (see [10]); such algorithms typically involve the computation of a
full eigensystem and a Newton process applied to the secular equation

1 1
0

Δ
− =

s
.

Such algorithms provide an accurate solution to Equation 6-2. However,
they require time proportional to several factorizations of H. Therefore, for
large-scale problems a different approach is needed. Several approximation
and heuristic strategies, based on Equation 6-2, have been proposed in the
literature ([4] and [12]). The approximation approach followed in Optimization
Toolbox solvers is to restrict the trust-region subproblem to a two-dimensional
subspace S ([1] and [4]). Once the subspace S has been computed, the work to
solve Equation 6-2 is trivial even if full eigenvalue/eigenvector information
is needed (since in the subspace, the problem is only two-dimensional). The
dominant work has now shifted to the determination of the subspace.

The two-dimensional subspace S is determined with the aid of a
preconditioned conjugate gradient process described below. The solver assigns
S = 〈 s1,s2〉 , where s1 is in the direction of the gradient g, and s2 is either an
approximate Newton direction, i.e., a solution to

H s g⋅ = −2 , (6-3)

or a direction of negative curvature,

s H sT
2 2 0⋅ ⋅ < . (6-4)

The philosophy behind this choice of S is to force global convergence (via the
steepest descent direction or negative curvature direction) and achieve fast
local convergence (via the Newton step, when it exists).

A sketch of unconstrained minimization using trust-region ideas is now easy
to give:

1 Formulate the two-dimensional trust-region subproblem.

2 Solve Equation 6-2 to determine the trial step s.

6-4



Trust-Region Methods for Nonlinear Minimization

3 If f(x + s) < f(x), then x = x + s.

4 Adjust Δ.

These four steps are repeated until convergence. The trust-region dimension
Δ is adjusted according to standard rules. In particular, it is decreased if the
trial step is not accepted, i.e., f(x + s) ≥ f(x) See [8] and [11] for a discussion of
this aspect.

Optimization Toolbox solvers treat a few important special cases of f with
specialized functions: nonlinear least-squares, quadratic functions, and linear
least-squares. However, the underlying algorithmic ideas are the same as for
the general case. These special cases are discussed in later sections.

6-5



6 Large-Scale Algorithms

Interior-Point Method

In this section...

“Barrier Function” on page 6-6

“Direct Step” on page 6-7

“Conjugate Gradient Step” on page 6-8

“Interior-Point Algorithm Options” on page 6-9

Barrier Function
The interior-point approach to constrained minimization is to solve a sequence
of approximate minimization problems. The original problem is

min ( ), ( ) ( ) .
x

f x h x g x subject to  and = ≤0 0
(6-5)

For each μ > 0, the approximate problem is

min ( , ) min ( ) ln , ( )
, ,x s x s

i
i

f x s f x s h xμ μ= − ( ) =∑  subject to  and 0 gg x s( ) .+ = 0
(6-6)

There are as many slack variables si as there are inequality constraints g. The
si are restricted to be positive to keep ln(si) bounded. As μ decreases to zero,
the minimum of fμ should approach the minimum of f. The added logarithmic
term is called a barrier function. This method is described in [2], [3], and [13].

The approximate problem Equation 6-6 is a sequence of equality constrained
problems. These are easier to solve than the original inequality-constrained
problem Equation 6-5.

To solve the approximate problem, the algorithm uses one of two main types
of steps at each iteration:

• A direct step in (x, s). This step attempts to solve the KKT equations,
Equation 2-3 and Equation 2-4, for the approximate problem via a linear
approximation. This is also called a Newton step.

• A CG (conjugate gradient) step, using a trust region.

6-6



Interior-Point Method

By default, the algorithm first attempts to take a direct step. If it cannot, it
attempts a CG step. One case where it does not take a direct step is when the
approximate problem is not locally convex near the current iterate.

At each iteration the algorithm decreases a merit function, such as

f x s h x g x sμ ν( , ) ( ), ( ) .+ +( )
The parameter ν may increase with iteration number in order to force the
solution towards feasibility. If an attempted step does not decrease the merit
function, the algorithm rejects the attempted step, and attempts a new step.

Direct Step
The following variables are used in defining the direct step:

• H denotes the Hessian of the Lagrangian of fμ:

H f x g x h xi i
i

j j
j

= + +∑ ∑∇ ∇ ∇2 2 2( ) ( ) ( ).λ λ
(6-7)

• Jg denotes the Jacobian of the constraint function g.

• Jh denotes the Jacobian of the constraint function h.

• S = diag(s).

• λ denotes the Lagrange multiplier vector associated with constraints g

• Λ = diag(λ ).

• y denotes the Lagrange multiplier vector associated with h.

• e denote the vector of ones the same size as g.

Equation 6-8 defines the direct step (Δx, Δs):

6-7



6 Large-Scale Algorithms

H J J
S S

J I
J S I

x
s
y

h
T

g
T

h

g

0
0 0

0 0
0

Λ
Δ
Δ
Δ
Δ

−

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
−
−

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦λ

⎥⎥
⎥
⎥
⎥
⎥

= −

− −
−

+

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

∇f J y J
S e

h
g s

h
T

g
Tλ

λ μ .

(6-8)

This equation comes directly from attempting to solve Equation 2-3 and
Equation 2-4 using a linearized Lagrangian.

In order to solve this equation for (Δx, Δs), the algorithm makes an LDL
factorization of the matrix. (See Example 4 — The Structure of D in the
MATLAB® ldl function reference page.) This is the most computationally
expensive step. One result of this factorization is a determination of whether
the projected Hessian is positive definite or not; if not, the algorithm uses a
conjugate gradient step, described in the next section.

Conjugate Gradient Step
The conjugate gradient approach to solving the approximate problem
Equation 6-6 is similar to other conjugate gradient calculations. In this
case, the algorithm adjusts both x and s, keeping the slacks s positive. The
approach is to minimize a quadratic approximation to the approximate
problem in a trust region, subject to linearized constraints.

Specifically, let R denote the radius of the trust region, and let other variables
be defined as in “Direct Step” on page 6-7. The algorithm obtains Lagrange
multipliers by approximately solving the KKT equations

∇ ∇ ∇ ∇x x i i
i

j j
j

L f x g x y h x= + + =∑ ∑( ) ( ) ( ) ,λ 0

in the least-squares sense, subject to λ being positive. Then it takes a step
(Δx, Δs) to approximately solve

min ,
,Δ Δ

Δ Δ Δ Δ Δ ΛΔ
x s

T T
xx

T Tf x x L x e S s s S s∇ ∇2+ + +− −1
2

1
2

1 1μ
(6-9)

subject to the linearized constraints

6-8



Interior-Point Method

g x J x s h x J xg h( ) , ( ) .+ + = + =Δ Δ Δ0 0  (6-10)

To solve Equation 6-10, the algorithm tries to minimize a norm of the
linearized constraints inside a region with radius scaled by R. Then Equation
6-9 is solved with the constraints being to match the residual from solving
Equation 6-10, staying within the trust region of radius R, and keeping s
strictly positive. For details of the algorithm and the derivation, see [2], [3],
and [13]. For another description of conjugate gradients, see “Preconditioned
Conjugate Gradients” on page 6-12.

Interior-Point Algorithm Options
Here are the meanings and effects of several options in the interior-point
algorithm.

• AlwaysHonorConstraints — When set to 'bounds', every iterate satisfies
the bound constraints you have set. When set to 'none', the algorithm may
violate bounds during intermediate iterations.

• Hessian — When set to:

- 'user-supplied', pass the Hessian of the Lagrangian in a user-supplied
function, whose function handle must be given in the option HessFcn.

- 'bfgs', fmincon calculates the Hessian by a dense quasi-Newton
approximation.

- 'lbfgs', fmincon calculates the Hessian by a limited-memory,
large-scale quasi-Newton approximation.

- 'fin-diff-grads', fmincon calculates a Hessian-times-vector product
by finite differences of the gradient(s); other options need to be set
appropriately.

You can also give a separate function for Hessian-times-vector. See
“Hessian” on page 11-42 for more details on these options.

• InitBarrierParameter — The starting value for μ. By default, this is 0.1.

• ScaleProblem — When set to 'obj-and-constr', the algorithm works
with scaled versions of the objective function and constraints. It carefully
scales them by their initial values. Disable scaling by setting ScaleProblem
to 'none'.

6-9



6 Large-Scale Algorithms

• SubproblemAlgorithm — Determines whether or not to attempt the direct
Newton step. The default setting 'ldl-factorization' allows this type of
step to be attempted. The setting 'cg' allows only conjugate gradient steps.

For a complete list of options see “Interior-Point Algorithm” on page 11-50.

6-10



Demos of Large-Scale Methods

Demos of Large-Scale Methods
From the MATLAB® Help browser or the MathWorks™ Web site
documentation, you can click the demo name to display the demo.

circustent Quadratic programming to find the shape of a circus
tent

molecule Molecule conformation solution using unconstrained
nonlinear minimization

optdeblur Image deblurring using bounded linear least squares

6-11



6 Large-Scale Algorithms

Preconditioned Conjugate Gradients

In this section...

“Introduction” on page 6-12

“Algorithm” on page 6-12

Introduction
A popular way to solve large symmetric positive definite systems of linear
equations Hp = –g is the method of Preconditioned Conjugate Gradients
(PCG). This iterative approach requires the ability to calculate matrix-vector
products of the form H·v where v is an arbitrary vector. The symmetric
positive definite matrix M is a preconditioner for H. That is, M = C2, where
C–1HC–1 is a well-conditioned matrix or a matrix with clustered eigenvalues.

Algorithm
Optimization Toolbox™ solvers use this PCG algorithm, which it refers to as
Algorithm PCG.

% Initializations
r = -g; p = zeros(n,1);
% Precondition
z = M\r; inner1 = r'*z; inner2 = 0; d = z;
% Conjugate gradient iteration
for k = 1:kmax

if k > 1
beta = inner1/inner2;
d = z + beta*d;

end
w = H*d; denom = d'*w;
if denom <= 0

p = d/norm(d); % Direction of negative/zero curvature
break % Exit if zero/negative curvature detected

else
alpha = inner1/denom;
p = p + alpha*d;
r = r - alpha*w;

6-12



Preconditioned Conjugate Gradients

end
z = M\r;
if norm(z) <= tol % Exit if Hp=-g solved within tolerance

break
end
inner2 = inner1;
inner1 = r'*z;

end

In a minimization context, you can assume that the Hessian matrix H is
symmetric. However, H is guaranteed to be positive definite only in the
neighborhood of a strong minimizer. Algorithm PCG exits when a direction of
negative (or zero) curvature is encountered, i.e., dTHd ≤ 0. The PCG output
direction, p, is either a direction of negative curvature or an approximate
(tol controls how approximate) solution to the Newton system Hp = –g. In
either case p is used to help define the two-dimensional subspace used in
the trust-region approach discussed in “Trust-Region Methods for Nonlinear
Minimization” on page 6-3.

6-13



6 Large-Scale Algorithms

Linearly Constrained Problems

In this section...

“Linear Equality Constraints” on page 6-14

“Box Constraints” on page 6-15

Linear Equality Constraints
Linear constraints complicate the situation described for unconstrained
minimization. However, the underlying ideas described previously can be
carried through in a clean and efficient way. The large-scale methods in
Optimization Toolbox™ solvers generate strictly feasible iterates.

The general linear equality constrained minimization problem can be written

min ( ) ,f x Ax b  such that  ={ } (6-11)

where A is an m-by-n matrix (m ≤ n). Optimization Toolbox solvers preprocess
A to remove strict linear dependencies using a technique based on the
LU-factorization of AT [8]. Here A is assumed to be of rank m.

The method used to solve Equation 6-11 differs from the unconstrained
approach in two significant ways. First, an initial feasible point x0 is
computed, using a sparse least-squares step, so that Ax0 = b. Second,
Algorithm PCG is replaced with Reduced Preconditioned Conjugate Gradients
(RPCG), see [8], in order to compute an approximate reduced Newton step
(or a direction of negative curvature in the null space of A). The key linear
algebra step involves solving systems of the form

C A

A

s
t

rT�

� 0 0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎤

⎦
⎥ =

⎡

⎣
⎢
⎤

⎦
⎥ ,

(6-12)

where �A approximates A (small nonzeros of A are set to zero provided rank is
not lost) and C is a sparse symmetric positive-definite approximation to H,
i.e., C = H. See [8] for more details.

6-14



Linearly Constrained Problems

Box Constraints
The box constrained problem is of the form

min ( ) ,f x l x u  such that  ≤ ≤{ } (6-13)

where l is a vector of lower bounds, and u is a vector of upper bounds. Some
(or all) of the components of l can be equal to –∞ and some (or all) of the
components of u can be equal to ∞. The method generates a sequence of
strictly feasible points. Two techniques are used to maintain feasibility while
achieving robust convergence behavior. First, a scaled modified Newton
step replaces the unconstrained Newton step (to define the two-dimensional
subspace S). Second, reflections are used to increase the stepsize.

The scaled modified Newton step arises from examining the Kuhn-Tucker
necessary conditions for Equation 6-13,

D x g( ) ,( ) =−2 0 (6-14)

where

D x vk( ) ,/= ( )−diag 1 2

and the vector v(x) is defined below, for each 1 ≤ i ≤ n:

• If gi < 0 and ui < ∞ then vi = xi – ui

• If gi ≥ 0 and li > –∞ then vi = xi – li

• If gi < 0 and ui = ∞ then vi = –1

• If gi ≥ 0 and li = –∞ then vi = 1

The nonlinear system Equation 6-14 is not differentiable everywhere.
Nondifferentiability occurs when vi = 0. You can avoid such points by
maintaining strict feasibility, i.e., restricting l < x < u.

The scaled modified Newton step sk for the nonlinear system of equations
given by Equation 6-14 is defined as the solution to the linear system

6-15



6 Large-Scale Algorithms

ˆ ˆMDs gN = − (6-15)

at the kth iteration, where

ˆ ,/g D g v g= = ( )−1 1 2diag (6-16)

and

ˆ ( ) .M D HD g Jv= +− −1 1 diag (6-17)

Here Jv plays the role of the Jacobian of |v|. Each diagonal component of the
diagonal matrix Jv equals 0, –1, or 1. If all the components of l and u are
finite, Jv = diag(sign(g)). At a point where gi = 0, vi might not be differentiable.

Jii
v = 0 is defined at such a point. Nondifferentiability of this type is not a

cause for concern because, for such a component, it is not significant which
value vi takes. Further, |vi| will still be discontinuous at this point, but the
function |vi|·gi is continuous.

Second, reflections are used to increase the stepsize. A (single) reflection
step is defined as follows. Given a step p that intersects a bound constraint,
consider the first bound constraint crossed by p; assume it is the ith bound
constraint (either the ith upper or ith lower bound). Then the reflection step
pR = p except in the ith component, where pR

i = –pi.

6-16



Nonlinear Least-Squares

Nonlinear Least-Squares
An important special case for f(x) is the nonlinear least-squares problem

min ( ) min ( ) ,
x

i
i x

f x F x2
2
2∑ =

(6-18)

where F(x) is a vector-valued function with component i of F(x) equal to fi(x).
The basic method used to solve this problem is the same as in the general
case described in “Trust-Region Methods for Nonlinear Minimization” on
page 6-3. However, the structure of the nonlinear least-squares problem is
exploited to enhance efficiency. In particular, an approximate Gauss-Newton
direction, i.e., a solution s to

min ,Js F+ 2
2

(6-19)

(where J is the Jacobian of F(x)) is used to help define the two-dimensional
subspace S. Second derivatives of the component function fi(x) are not used.

In each iteration the method of preconditioned conjugate gradients is used
to approximately solve the normal equations, i.e.,

J Js J FT T= − ,

although the normal equations are not explicitly formed.

6-17



6 Large-Scale Algorithms

Quadratic Programming
In this case the function f(x) is the quadratic equation

q x x Hx f xT T( ) .= +1
2

The subspace trust-region method is used to determine a search direction.
However, instead of restricting the step to (possibly) one reflection step,
as in the nonlinear minimization case, a piecewise reflective line search is
conducted at each iteration. See [7] for details of the line search.

6-18



Linear Least-Squares

Linear Least-Squares
In this case the function f(x) to be solved is

f x Cx d( ) .= + 2
2

The algorithm generates strictly feasible iterates converging, in the limit, to
a local solution. Each iteration involves the approximate solution of a large
linear system (of order n, where n is the length of x). The iteration matrices
have the structure of the matrix C. In particular, the method of preconditioned
conjugate gradients is used to approximately solve the normal equations, i.e.,

C Cx C dT T= − ,

although the normal equations are not explicitly formed.

The subspace trust-region method is used to determine a search direction.
However, instead of restricting the step to (possibly) one reflection step,
as in the nonlinear minimization case, a piecewise reflective line search is
conducted at each iteration, as in the quadratic case. See [7] for details of the
line search. Ultimately, the linear systems represent a Newton approach
capturing the first-order optimality conditions at the solution, resulting in
strong local convergence rates.

6-19



6 Large-Scale Algorithms

Large-Scale Linear Programming

In this section...

“Introduction” on page 6-20

“Main Algorithm” on page 6-20

“Preprocessing” on page 6-23

Introduction
Linear programming is defined as

min
,

,
.

x

Tf x
A x b

Aeq x beq
lb x ub

 such that 
⋅ ≤
⋅ =
≤ ≤

⎧
⎨
⎪

⎩⎪ (6-20)

The large-scale method is based on LIPSOL ([14]), which is a variant of
Mehrotra’s predictor-corrector algorithm ([9]), a primal-dual interior-point
method.

Main Algorithm
The algorithm begins by applying a series of preprocessing steps (see
“Preprocessing” on page 6-23). After preprocessing, the problem has the form

min
.x

Tf x
A x b

x u
 such that 

⋅ =
≤ ≤

⎧
⎨
⎩0 (6-21)

The upper bounds constraints are implicitly included in the constraint matrix
A. With the addition of primal slack variables s, Equation 6-21 becomes

min
, .

x

Tf x
A x b
x s u

x s
 such that 

 

⋅ =
+ =
≥ ≥

⎧
⎨
⎪

⎩⎪ 0 0 (6-22)

which is referred to as the primal problem: x consists of the primal variables
and s consists of the primal slack variables. The dual problem is

6-20



Large-Scale Linear Programming

max
, ,

b y u w A y w z f
z w

T T
T

− ⋅ − + =
≥ ≥

⎧
⎨
⎪

⎩⎪
  such that  

 0 0 (6-23)

where y and w consist of the dual variables and z consists of the dual slacks.
The optimality conditions for this linear program, i.e., the primal Equation
6-22 and the dual Equation 6-23, are

F x y z s w

A x b
x s u

A y w z f
x z
s w

T

i i

i i

( , , , , ) =

⋅ −
+ −

⋅ − + −

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

= 00

0 0 0 0

,

, , , ,                    x z s w≥ ≥ ≥ ≥ (6-24)

where xizi and siwi denote component-wise multiplication.

The quadratic equations xizi = 0 and siwi = 0 are called the complementarity
conditions for the linear program; the other (linear) equations are called the
feasibility conditions. The quantity

xTz + sTw

is the duality gap, which measures the residual of the complementarity
portion of F when (x,z,s,w) ≥ 0.

The algorithm is a primal-dual algorithm, meaning that both the primal
and the dual programs are solved simultaneously. It can be considered a
Newton-like method, applied to the linear-quadratic system F(x,y,z,s,w) = 0
in Equation 6-24, while at the same time keeping the iterates x, z, w, and s
positive, thus the name interior-point method. (The iterates are in the strictly
interior region represented by the inequality constraints in Equation 6-22.)

The algorithm is a variant of the predictor-corrector algorithm proposed by
Mehrotra. Consider an iterate v = [x;y;z;s;w], where [x;z;s;w] > 0 First compute
the so-called prediction direction

6-21



6 Large-Scale Algorithms

Δv F v F vp
T= −( )−( ) ( ),

1

which is the Newton direction; then the so-called corrector direction

Δ Δv F v F v v ec
T

p= −( ) +( ) −−
( ) ,

1
μ

where μ > 0 is called the centering parameter and must be chosen carefully.
ê is a zero-one vector with the ones corresponding to the quadratic equations
in F(v) ,i.e., the perturbations are only applied to the complementarity
conditions, which are all quadratic, but not to the feasibility conditions, which
are all linear. The two directions are combined with a step length parameter
α > 0 and update v to obtain the new iterate v+:

v v v vp c
+ = + +( )α Δ Δ ,

where the step length parameter α is chosen so that

v+ = [x+;y+;z+;s+;w+]

satisfies

[x+;z+;s+;w+] > 0.

In solving for the preceding steps, the algorithm computes a (sparse) direct
factorization on a modification of the Cholesky factors of A·AT. If A has dense
columns, it instead uses the Sherman-Morrison formula. If that solution is
not adequate (the residual is too large), it performs an LDL factorization of an
augmented form of the step equations to find a solution. (See Example 4 —
The Structure of D in the MATLAB® ldl function reference page.)

The algorithm then repeats these steps until the iterates converge. The main
stopping criteria is a standard one:

6-22



Large-Scale Linear Programming

r

b

r

f

r

u

f x b y u w

f x b y u

b f u
T T T

T Tmax , max , max , max , ,1 1 1 1( ) + ( ) + ( ) +
− +

− TTw
tol( ) ≤ ,

where

r Ax b

r A y w z f

r x s u

b

f
T

u

= −

= − + −

= + −

are the primal residual, dual residual, and upper-bound feasibility
respectively, and

f x b y u wT T T− +

is the difference between the primal and dual objective values, and tol is some
tolerance. The sum in the stopping criteria measures the total relative errors
in the optimality conditions in Equation 6-24.

Preprocessing
A number of preprocessing steps occur before the actual iterative algorithm
begins. The resulting transformed problem is one where

• All variables are bounded below by zero.

• All constraints are equalities.

• Fixed variables, those with equal upper and lower bounds, are removed.

• Rows of all zeros in the constraint matrix are removed.

• The constraint matrix has full structural rank.

• Columns of all zeros in the constraint matrix are removed.

• When a significant number of singleton rows exist in the constraint matrix,
the associated variables are solved for and the rows removed.

6-23



6 Large-Scale Algorithms

While these preprocessing steps can do much to speed up the iterative part
of the algorithm, if the Lagrange multipliers are required, the preprocessing
steps must be undone since the multipliers calculated during the algorithm
are for the transformed problem, and not the original. Thus, if the multipliers
are not requested, this transformation back is not computed, and might save
some time computationally.

6-24



Selected Bibliography

Selected Bibliography
[1] Branch, M.A., T.F. Coleman, and Y. Li, “A Subspace, Interior, and
Conjugate Gradient Method for Large-Scale Bound-Constrained Minimization
Problems,” SIAM Journal on Scientific Computing, Vol. 21, Number 1, pp
1-23, 1999.

[2] Byrd, R.H., J. C. Gilbert, and J. Nocedal, “A Trust Region Method Based
on Interior Point Techniques for Nonlinear Programming,” Mathematical
Programming, Vol 89, No. 1, pp. 149–185, 2000.

[3] Byrd, R.H., Mary E. Hribar, and Jorge Nocedal, “An Interior Point
Algorithm for Large-Scale Nonlinear Programming, SIAM Journal on
Optimization,” SIAM Journal on Optimization, Vol 9, No. 4, pp. 877–900,
1999.

[4] Byrd, R.H., R.B. Schnabel, and G.A. Shultz, “Approximate Solution of the
Trust Region Problem by Minimization over Two-Dimensional Subspaces,”
Mathematical Programming, Vol. 40, pp 247-263, 1988.

[5] Coleman, T.F. and Y. Li, “On the Convergence of Reflective Newton
Methods for Large-Scale Nonlinear Minimization Subject to Bounds,”
Mathematical Programming, Vol. 67, Number 2, pp 189-224, 1994.

[6] Coleman, T.F. and Y. Li, “An Interior, Trust Region Approach for Nonlinear
Minimization Subject to Bounds,” SIAM Journal on Optimization, Vol. 6,
pp 418-445, 1996.

[7] Coleman, T.F. and Y. Li, “A Reflective Newton Method for Minimizing
a Quadratic Function Subject to Bounds on some of the Variables,” SIAM
Journal on Optimization, Vol. 6, Number 4, pp 1040-1058, 1996.

[8] Coleman, T.F. and A. Verma, “A Preconditioned Conjugate Gradient
Approach to Linear Equality Constrained Minimization,” submitted to
Computational Optimization and Applications.

[9] Mehrotra, S., “On the Implementation of a Primal-Dual Interior Point
Method,” SIAM Journal on Optimization, Vol. 2, pp 575-601, 1992.

6-25



6 Large-Scale Algorithms

[10] Moré, J.J. and D.C. Sorensen, “Computing a Trust Region Step,” SIAM
Journal on Scientific and Statistical Computing, Vol. 3, pp 553-572, 1983.

[11] Sorensen, D.C., “Minimization of a Large Scale Quadratic Function
Subject to an Ellipsoidal Constraint,” Department of Computational and
Applied Mathematics, Rice University, Technical Report TR94-27, 1994.

[12] Steihaug, T., “The Conjugate Gradient Method and Trust Regions in
Large Scale Optimization,” SIAM Journal on Numerical Analysis, Vol. 20,
pp 626-637, 1983.

[13] Waltz, R. A. , J. L. Morales, J. Nocedal, and D. Orban, “An interior
algorithm for nonlinear optimization that combines line search and trust
region steps,” Mathematical Programming, Vol 107, No. 3, pp. 391–408, 2006.

[14] Zhang, Y., “Solving Large-Scale Linear Programs by Interior-Point
Methods Under the MATLAB Environment,” Department of Mathematics
and Statistics, University of Maryland, Baltimore County, Baltimore, MD,
Technical Report TR96-01, July, 1995.

6-26



7

Parallel Computing for
Optimization

Parallel Computing in Optimization
Toolbox™ Functions (p. 7-2)

Using multiple processors for
optimization

Using Parallel Computing with
fmincon, fgoalattain, and fminimax
(p. 7-5)

Automatic gradient estimation in
parallel

Improving Performance with
Parallel Computing (p. 7-8)

Considerations for speeding
optimizations



7 Parallel Computing for Optimization

Parallel Computing in Optimization Toolbox™ Functions

In this section...

“Parallel Optimization Functionality” on page 7-2

“Parallel Estimation of Gradients” on page 7-2

“Nested Parallel Functions” on page 7-3

Parallel Optimization Functionality
Parallel computing is the technique of using multiple processors on a single
problem. The reason to use parallel computing is to speed computations.

The Optimization Toolbox™ solvers fmincon, fgoalattain, and fminimax can
automatically distribute the numerical estimation of gradients of objective
functions and nonlinear constraint functions to multiple processors. These
solvers use parallel gradient estimation under the following conditions:

• You have a license for Parallel Computing Toolbox™ software.

• The option GradObj is set to 'off', or, if there is a nonlinear constraint
function, the option GradConstr is set to 'off'. Since 'off' is the default
value of these options, you don’t have to set them with optimset; just don’t
set them both to 'on'.

• Parallel computing is enabled with matlabpool, a Parallel Computing
Toolbox function.

• The option UseParallel is set to 'always'. The default value of this
option is 'never'.

When these conditions hold, the solvers compute estimated gradients in
parallel.

Currently, UseParallel cannot be accessed using the Optimization Tool GUI.

Parallel Estimation of Gradients
One subroutine was made parallel in the functions fmincon, fgoalattain,
and fminimax: the subroutine that estimates the gradient of the objective

7-2



Parallel Computing in Optimization Toolbox™ Functions

function and constraint functions. This calculation involves computing
function values at points near the current location x. Essentially, the
calculation is

∇f(x) ≈ [(f(x + Δ1e1) – f(x))/Δ1, (f(x + Δ2e2) – f(x))/Δ2,...,(f(x + Δnen) – f(x))/Δn],

where

• f represents objective or constraint functions

• ei are the unit direction vectors

• Δi is the size of a step in the ei direction

To estimate ∇f(x) in parallel, Optimization Toolbox solvers distribute the
evaluation of (f(x + Δiei) – f(x))/Δi to extra processors.

fmincon uses the parallel subroutine only with the active-set algorithm.
fgoalattain and fminimax always use the parallel subroutine.

Nested Parallel Functions
Solvers employ the Parallel Computing Toolbox function parfor to perform
parallel estimation of gradients. parfor does not work in parallel when called
from within another parfor loop. Therefore, you cannot simultaneously use
parallel gradient estimation and parallel functionality within your objective
or constraint functions.

Suppose, for example, your objective function userfcn calls parfor, and
you wish to call fmincon in a loop. Suppose also that the conditions for
parallel gradient evaluation of fmincon, as given in “Parallel Optimization
Functionality” on page 7-2, are satisfied. Figure When parfor Runs In Parallel
on page 7-4 shows three cases:

1 The outermost loop is parfor. Only that loop runs in parallel.

2 The outermost parfor loop is in fmincon. Only fmincon runs in parallel.

3 The outermost parfor loop is in userfcn. userfcn can use parfor in
parallel.

7-3



7 Parallel Computing for Optimization

���
��������	
���
�
����
��)�������
*������������
������
���

���
����
�)�+�,�
����
��)��	����
*������������
������
���

���
����
�)�+�,�
����
��)�������
�������������
������
���

-� ��	.����	�����	�������� ���
������������  � 

���/��0���  � �)�1� %���2
��������������������  � 

���/��0���  � �)�1��!��2
������������������������������  � 

�����������	���	.������	����	.�	�������������  � 

�

"

(

When parfor Runs In Parallel

7-4



Using Parallel Computing with fmincon, fgoalattain, and fminimax

Using Parallel Computing with fmincon, fgoalattain, and
fminimax

In this section...

“Using Parallel Computing with Multicore Processors” on page 7-5

“Using Parallel Computing with a Multiprocessor Network” on page 7-6

“Testing Parallel Computations” on page 7-7

Using Parallel Computing with Multicore Processors
If you have a multicore processor, you might see speedup using parallel
processing. You can establish a matlabpool of up to 4 parallel workers with a
basic Parallel Computing Toolbox™ license.

Suppose you have a dual-core processor, and wish to use parallel computing:

• Enter

matlabpool open 2

at the command line. The 2 specifies the number of processors to use.

• Enter

options = optimset('UseParallel','always');

When you run an applicable solver with options, applicable solvers
automatically use parallel computing.

To stop computing optimizations in parallel, set UseParallel to 'never'. To
halt all parallel computation, enter

matlabpool close

7-5



7 Parallel Computing for Optimization

Using Parallel Computing with a Multiprocessor
Network
If you have multiple processors on a network, use Parallel Computing Toolbox
functions and MATLAB® Distributed Computing Server™ software to
establish parallel computation. Here are the steps to take:

1 Obtain a license for Parallel Computing Toolbox functions and MATLAB
Distributed Computing Server software.

2 Configure your system for parallel processing. See the Parallel Computing
Toolbox documentation, or MATLAB Distributed Computing Server System
Administrator’s Guide.

In particular, if network_file_path is the network path to your objective
or constraint functions, enter

pctRunOnAll('addpath network_file_path')

so the worker processors can access your objective or constraint M-files.

Check whether an M-file is on the path of every worker by entering

pctRunOnAll('which filename')

If any worker does not have a path to the M-file, it reports

filename not found.

3 At the command line enter

matlabpool open conf

or

matlabpool open conf n

where conf is your configuration, and n is the number of processors you
wish to use.

4 Enter

options = optimset('UseParallel','always');

7-6



Using Parallel Computing with fmincon, fgoalattain, and fminimax

Once your parallel computing environment is established, applicable solvers
automatically use parallel computing whenever called with options.

To stop computing optimizations in parallel, set UseParallel to 'never'. To
halt all parallel computation, enter

matlabpool close

Testing Parallel Computations
To test see if a problem runs correctly in parallel,

1 Try your problem without parallel computation to ensure that it runs
properly serially. Make sure this is successful (gives correct results) before
going to the next test.

2 Set UseParallel to 'always', and ensure matlabpool is closed. Your
problem runs parfor serially, with loop iterations in reverse order from a
for loop. Make sure this is successful (gives correct results) before going
to the next test.

3 Set UseParallel to 'always', and open matlabpool. Unless you have a
multicore processor or a network set up, you won’t see any speedup. This
testing is simply to verify the correctness of the computations.

Remember to call your solver using an options structure to test or use parallel
functionality.

7-7



7 Parallel Computing for Optimization

Improving Performance with Parallel Computing

In this section...

“Factors That Affect Speed” on page 7-8

“Factors That Affect Results” on page 7-8

“Searching for Global Optima” on page 7-9

Factors That Affect Speed
Some factors may affect the speed of execution of parallel processing:

• parfor overhead. There is overhead in calling parfor instead of for. If
function evaluations are fast, this overhead could become appreciable.

• No nested parfor loops. This is described in “Nested Parallel Functions” on
page 7-3. parfor does not work in parallel when called from within another
parfor loop. If you have programmed your objective or constraint functions
to take advantage of parallel processing, the limitation of no nested parfor
loops may cause a solver to run more slowly than you expect. In particular,
the parallel computation of finite differences takes precedence, since that
is an outer loop. This causes any parallel code within the objective or
constraint functions to execute serially.

• Passing parameters. Parameters are automatically passed to worker
machines during the execution of parallel computations. If there are a large
number of parameters, or they take a large amount of memory, passing
them may slow the execution of your computation.

• Contention for resources: network and computing. If the network of worker
machines has low bandwidth or high latency, computation could be slowed.

Factors That Affect Results
Some factors may affect numerical results when using parallel processing.
There are more caveats related to parfor listed in the “Limitations” section of
the Parallel Computing Toolbox™ documentation.

• Persistent or global variables. If your objective or constraint functions use
persistent or global variables, these variables may take different values on

7-8



Improving Performance with Parallel Computing

different worker processors. Furthermore, they may not be cleared properly
on the worker processors.

• Accessing external files. External files may be accessed in an unpredictable
fashion during a parallel computation. The order of computations is not
guaranteed during parallel processing, so external files may be accessed in
unpredictable order, leading to unpredictable results.

• Accessing external files. If two or more processors try to read an external
file simultaneously, the file may become locked, leading to a read error, and
halting the execution of the optimization.

• If your objective function calls Simulink®, results may be unreliable with
parallel gradient estimation.

• Noncomputational functions, such as input, plot, and keyboard, might
behave badly when used in objective or constraint functions. When called
in a parfor loop, these functions are executed on worker machines. This
can cause a worker to become nonresponsive, since it is waiting for input.

• parfor does not allow break or return statements.

Searching for Global Optima
To search for global optima, one approach is to evaluate a solver from a
variety of initial points. If you distribute those evaluations over a number
of processors using the parfor function, you disable parallel gradient
estimation, since parfor loops cannot be nested. Your optimization usually
runs more quickly if you distribute the evaluations over all the processors,
rather than running them serially with parallel gradient estimation, so
disabling parallel estimation probably won’t slow your computation. If you
have more processors than initial points, though, it is not clear whether it is
better to distribute initial points or to enable parallel gradient estimation.

7-9



7 Parallel Computing for Optimization

7-10



8

External Interface

ktrlink: An Interface to KNITRO®

Libraries (p. 8-2)
Describes how to use an interface
to KNITRO® libraries to perform
optimizations



8 External Interface

ktrlink: An Interface to KNITRO® Libraries

In this section...

“What Is ktrlink?” on page 8-2

“Installation and Configuration” on page 8-2

“Example Using ktrlink” on page 8-4

“Setting Options” on page 8-7

“Sparse Matrix Considerations” on page 8-9

What Is ktrlink?
ktrlink calls Ziena Optimization’s KNITRO® libraries in order to perform an
optimization. ktrlink can address constrained and unconstrained problems.
To use ktrlink, you must purchase a copy of KNITRO libraries from Ziena
Optimization, Inc. (http://www.ziena.com/).

Use ktrlink the same as any other Optimization Toolbox™ function.

ktrlink’s syntax is similar to fmincon’s. The main differences are:

• ktrlink has additional options input for KNITRO libraries so you can
access its options.

• ktrlink has no provision for obtaining a returned Hessian or gradient,
since KNITRO software doesn’t return them.

• Sparse matrix representations differ between KNITRO software and
MATLAB®.

Furthermore, many returned flags and messages differ from fmincon’s,
because they are returned directly from KNITRO libraries.

Installation and Configuration
The system requirements for MATLAB and KNITRO software may differ.
Check the system requirements for both products before attempting to use
ktrlink. For recent and planned MATLAB platform support, see

8-2

http://www.ziena.com/


ktrlink: An Interface to KNITRO® Libraries

http://www.mathworks.com/support/sysreq/roadmap.html

Note ktrlink is not compatible with the Solaris™ 64-bit architecture.

Perform the following steps to configure your system to use ktrlink:

1 Install MATLAB and the KNITRO libraries on your system.

2 Set the system path to include the KNITRO libraries (see “Setting the
System Path to Include KNITRO® Libraries” on page 8-3). Make sure to
perform this step before starting MATLAB.

3 Start MATLAB.

Setting the System Path to Include KNITRO® Libraries
In order to use ktrlink, you need to tell MATLAB where the KNITRO binary
file (libknitro.so, libknitro.dylib, knitro520.dll, or a similar file)
resides. You do this by setting a system-wide environment variable. Enter the
following system-level commands. Replace <file_absolute_path> with the
full path to your KNITRO libraries:

• Linux:

setenv LD_LIBRARY_PATH <file_absolute_path>:$LD_LIBRARY_PATH

• Macintosh:

a In Terminal (available in the Utilities folder of the Applications
folder) enter the following:

edit /etc/profile

b Add the following line to the end of the file:

export
DYLD_LIBRARY_PATH=<file_absolute_path>:$DYLD_LIBRARY_PATH

• Windows:

8-3

http://www.mathworks.com/support/sysreq/roadmap.html


8 External Interface

a At the Windows desktop, right-click My Computer (Windows XP) or
Computer (Vista).

b Select Properties.

c Click the Advanced tab (Windows XP) or Advanced System Settings
(Vista).

d Click Environment Variables.

e Under System variables, edit the Path variable to add the KNITRO
library directory.

Check if the installation was successful by starting MATLAB and running
the following command:

[x fval] = ktrlink(@(x)cos(x),1)

If you receive an error message, check your system path, and make sure the
KNITRO libraries are on the path. When installed correctly, ktrlink returns
x = 3.1416, fval = -1.

Example Using ktrlink
1 This example uses the same constraint function as the example in

“Nonlinear Constraints” on page 2-17. The constraint function is the
intersection of the interior of an ellipse with the region above a parabola:

function [c ceq gradc gradceq]=ellipseparabola(x)
% Inside the ellipse bounded by (-3<x<3),(-2<y<2)
% Above the line y=x^2-1
c(1) = x(1)^2/9 + x(2)^2/4 - 1;% ellipse
c(2) = x(1)^2 - x(2) - 1;% parabola
ceq = [];

if nargout > 2
gradc = [2*x(1)/9, 2*x(1);...

x(2)/2, -1];
gradceq = [];

end

2 The objective function is a tilted sinh:

8-4



ktrlink: An Interface to KNITRO® Libraries

function [f gradf]=sinhtilt(x)

A=[2,1;1,2];
m=[1,1];
f=sinh(x'*A*x/100) + sinh(m*A*x/10);

if nargout > 1
gradf=cosh(x'*A*x/100)*(A*x)/50;
gradf=gradf+cosh(m*A*x/10)*[3;3]/10;

end

3 Set the options so that ktrlink has iterative display and uses the gradients
included in the objective and constraint functions:

ktropts = optimset('Display','iter',...
'GradConstr','on','GradObj','on');

4 Run the optimization starting at [0;0], using the structure ktropts:

[x fval flag] = ktrlink(@sinhtilt,[0;0],...
[],[],[],[],[],[],@ellipseparabola,ktropts)

KNITRO software returns the following output:

======================================

KNITRO 5.2

Ziena Optimization, Inc.

website: www.ziena.com

email: info@ziena.com

======================================

algorithm: 1

hessopt: 2

honorbnds: 1

outlev: 4

KNITRO changing bar_murule from AUTO to 1.

KNITRO changing bar_initpt from AUTO to 2.

KNITRO changing honorbnds to 0 (because there are no bounds).

Problem Characteristics

-----------------------

8-5



8 External Interface

Objective goal: Minimize

Number of variables: 2

bounded below: 0

bounded above: 0

bounded below and above: 0

fixed: 0

free: 2

Number of constraints: 2

linear equalities: 0

nonlinear equalities: 0

linear inequalities: 0

nonlinear inequalities: 2

range: 0

Number of nonzeros in Jacobian: 4

Number of nonzeros in Hessian: 3

Iter(maj/min) Res Objective Feas err Opt err ||Step|| CG its

--------------- --- ------------- ---------- ---------- ---------- -------

0/ 0 --- 0.000000e+000 0.000e+000

1/ 1 Acc -1.371022e-001 0.000e+000 1.976e-001 3.432e-001 0

2/ 2 Acc -3.219187e-001 0.000e+000 1.003e-001 4.748e-001 0

3/ 3 Acc -3.442829e-001 0.000e+000 6.287e-002 8.198e-002 0

4/ 4 Acc -3.598395e-001 8.358e-003 2.989e-002 1.904e-001 0

5/ 5 Acc -3.619202e-001 6.453e-003 2.812e-003 1.481e-001 0

6/ 6 Acc -3.591357e-001 0.000e+000 9.999e-004 1.901e-002 0

7/ 7 Acc -3.599184e-001 0.000e+000 2.441e-004 3.406e-003 0

8/ 8 Acc -3.599195e-001 0.000e+000 2.000e-004 1.749e-004 0

9/ 9 Acc -3.601176e-001 0.000e+000 1.076e-005 6.823e-004 0

10/ 10 Acc -3.601176e-001 0.000e+000 2.000e-006 9.351e-007 0

11/ 11 Acc -3.601196e-001 0.000e+000 2.001e-008 7.893e-006 0

EXIT: LOCALLY OPTIMAL SOLUTION FOUND.

Final Statistics

----------------

Final objective value = -3.60119556291455e-001

Final feasibility error (abs / rel) = 0.00e+000 / 0.00e+000

Final optimality error (abs / rel) = 2.00e-008 / 2.00e-008

# of iterations (major / minor) = 11 / 11

# of function evaluations = 13

8-6



ktrlink: An Interface to KNITRO® Libraries

# of gradient evaluations = 12

Total program time (secs) = 0.081 ( 0.156 CPU time)

Time spent in evaluations (secs) = 0.079

=========================================================================

x =

-0.5083

-0.7416

fval =

-0.3601

flag =

0

Note Exit flags have different meanings for ktrlink and fmincon. Flag 0 for
KNITRO libraries means the first-order optimality condition was satisfied; for
fmincon, the corresponding flag is 1. For more information about the output,
see the KNITRO documentation at http://www.ziena.com/.

Setting Options
ktrlink takes up to two options inputs: one in fmincon format, and another
in KNITRO format. You can use either or both types of options. If you use
both types of options, MATLAB reads only four fmincon-format options:
HessFcn, HessMult, HessPattern, and JacobPattern. KNITRO options
override fmincon-format options.

To use KNITRO options, create an options text file, whose format can be found
in the KNITRO documentation. For example, if you have a KNITRO options
file named knitropts, and an fmincon-format options structure named
ktropts, you can pass them both by calling ktrlink like this:

[x fval] = ktrlink(@bigtoleft,[-1,-1,-1],...
[],[],[],[],[],[],@twocone,ktropts,'knitropts')

If knitropts resides in a different directory, pass the path to the file. For
example:

8-7

http://www.ziena.com/


8 External Interface

[x fval] = ktrlink(@bigtoleft,[-1,-1,-1],...
[],[],[],[],[],[],@twocone,ktropts,...
'C:\Documents\Knitro\knitropts')

The following shows how fmincon-format options are mapped to KNITRO
options.

fmincon Option KNITRO Option Default Value

Algorithm algorithm 'interior-point'

AlwaysHonorConstraints honorbounds 'bounds'

Display outlev 'none'

FinDiffType gradopt 'forward'

GradConstr gradopt 'off'

GradObj gradopt 'off'

HessFcn hessopt [ ]

MaxIter maxit 10000

TolFun opttol 1.00E–06

TolX xtol 1.00E–15

Hessian, LBFGS pairs hessopt, lmsize 'bfgs'

HessMult hessopt [ ]

HessPattern [ ]

InitBarrierParam bar_initmu 0.1

InitTrustRegionRadius delta sqrt(numberOfVariables)

JacobPattern [ ]

MaxProjCGIter maxcgit 2*(numberOfVariables–numberOfEqualities)

ObjectiveLimit objrange –1.0E20

ScaleProblem scale 'obj-and-constr'

SubProblemAlgorithm algorithm 'ldl-factorization'

TolCon feastol 1.00E-06

8-8



ktrlink: An Interface to KNITRO® Libraries

Note KNITRO libraries allow you to pass simultaneously either the
gradients of the objective function and all nonlinear constraints, or no
gradients. Therefore, setting GradObj = 'on' and GradConstr = 'off' is
inconsistent. If you attempt to pass inconsistent options, ktrlink warns you,
and treats all gradients as if they had not been passed.

Sparse Matrix Considerations
When the Hessian of the Lagrangian is sparse, or the Jacobian of the
nonlinear constraints is sparse, ktrlink makes use of the sparsity structure
to speed the optimization and use less memory doing so.

ktrlink handles sparse matrices differently than other MATLAB functions.
If you choose to use sparse matrices, ktrlink requires a sparsity pattern
for nonlinear constraint Jacobians and for Hessians. The next two sections
give the details of the sparsity patterns for nonlinear constraint Jacobians
and for Hessians.

Sparsity Pattern for Nonlinear Constraints
The sparsity pattern for constraint Jacobians is a matrix. You pass the matrix
as the JacobPattern option. The structure of the matrix follows.

Let c denote the vector of m nonlinear inequality constraints, and let ceq
denote the vector of m2 nonlinear equality constraints. If there are n
dimensions, the Jacobian is an (m + m2)-by-n matrix. The Jacobian pattern
J is

J

c x
x

c x
x

i m

J

i j

i

j

i

j

i m j

,

,

( )

( )
, ,=

∂
∂

≠

∂
∂

≡

⎧

⎨
⎪
⎪

⎩
⎪
⎪

≤ ≤

+

1 0

0 0
1

 if 

 if 
 

==

∂
∂

≠

∂
∂

≡

⎧

⎨
⎪
⎪

⎩
⎪
⎪

≤ ≤

1 0

0 0
1 2

 if 

 if 
 

ceq x
x

ceq x
x

i m

i

j

i

j

( )

( )
, .

8-9



8 External Interface

In other words, the ith row of the Jacobian pattern corresponds to the
gradient of ci. Inequality gradients lie above equality gradients (they have
lower row numbers).

All that matters for the Jacobian pattern is whether or not the entries are
zero. You can pass single-precision numbers, doubles, or logical true or false.
You can pass the sparsity pattern as a MATLAB sparse matrix. If you have
a large sparse matrix of constraints, it is more efficient to pass the pattern
as a sparse matrix. Linear constraint matrices are automatically passed as
sparse matrices.

The gradient of the constraints, calculated in the constraint function, has the
transpose of the Jacobian pattern. For more information about the form of
constraint gradients, see “Nonlinear Constraints” on page 2-17.

Sparsity Pattern for Hessians
The Hessian is the matrix of second derivatives of the Lagrangian:

H
f

x x
c

x x
ceq

x xi j
i j

k
k

i jk
m

m

i jm
, .= ∂

∂ ∂
+

∂
∂ ∂

+
∂
∂ ∂∑ ∑

2 2 2
λ λ

Give the matrix H as a full or sparse matrix of zero and nonzero elements.
The elements can be single-precision numbers, doubles, or logical true or false.

The Hessian is a symmetric matrix. You can pass just the upper triangular
pattern, or pass the whole matrix pattern.

8-10



9

Argument and Options
Reference

Function Arguments (p. 9-2) Describes the input and output
arguments of the toolbox functions.

Optimization Options (p. 9-8) Describes optimization options.



9 Argument and Options Reference

Function Arguments

In this section...

“Input Arguments” on page 9-2

“Output Arguments” on page 9-5

Input Arguments
Input Arguments

Argument Description Used by Functions

A, b The matrix A and vector b are,
respectively, the coefficients of the
linear inequality constraints and
the corresponding right-side vector:
A*x ≤ b.

bintprog, fgoalattain, fmincon,
fminimax, fseminf, linprog,
lsqlin, quadprog

Aeq, beq The matrix Aeq and vector beq are,
respectively, the coefficients of the
linear equality constraints and the
corresponding right-side vector:
Aeq*x = beq.

bintprog, fgoalattain, fmincon,
fminimax, fseminf, linprog,
lsqlin, quadprog

C, d The matrix C and vector d are,
respectively, the coefficients of the
over or underdetermined linear
system and the right-side vector to
be solved.

lsqlin, lsqnonneg

f The vector of coefficients for the
linear term in the linear equation
f'*x or the quadratic equation
x'*H*x+f'*x.

bintprog, linprog, quadprog

9-2



Function Arguments

Input Arguments (Continued)

Argument Description Used by Functions

fun The function to be optimized. fun
is a function handle for an M-file
function or a function handle for
an anonymous function. See the
individual function reference pages
for more information on fun.

fgoalattain, fminbnd, fmincon,
fminimax, fminsearch, fminunc,
fseminf, fsolve, fzero,
lsqcurvefit, lsqnonlin

goal Vector of values that the objectives
attempt to attain. The vector is
the same length as the number of
objectives.

fgoalattain

H The matrix of coefficients for the
quadratic terms in the quadratic
equation x'*H*x+f'*x. H must be
symmetric.

quadprog

lb, ub Lower and upper bound vectors
(or matrices). The arguments
are normally the same size as x.
However, if lb has fewer elements
than x, say only m, then only the
first m elements in x are bounded
below; upper bounds in ub can
be defined in the same manner.
You can also specify unbounded
variables using -Inf (for lower
bounds) or Inf (for upper bounds).
For example, if lb(i) = -Inf, the
variable x(i) is unbounded below.

fgoalattain, fmincon, fminimax,
fseminf, linprog, lsqcurvefit,
lsqlin, lsqnonlin, quadprog

9-3



9 Argument and Options Reference

Input Arguments (Continued)

Argument Description Used by Functions

nonlcon The function that computes the
nonlinear inequality and equality
constraints. “Passing Extra
Parameters” on page 2-10 explains
how to parameterize the function
nonlcon, if necessary.

See the individual reference pages
for more information on nonlcon.

fgoalattain, fmincon, fminimax

ntheta The number of semi-infinite
constraints.

fseminf

options An structure that defines options
used by the optimization functions.
For information about the options,
see “Optimization Options” on
page 9-8 or the individual function
reference pages.

All functions

seminfcon The function that computes the
nonlinear inequality and equality
constraints and the semi-infinite
constraints. seminfcon is the name
of an M-file or MEX-file. “Passing
Extra Parameters” on page 2-10
explains how to parameterize
seminfcon, if necessary.

See the function reference pages
for fseminf for more information
on seminfcon.

fseminf

weight A weighting vector to control
the relative underattainment or
overattainment of the objectives.

fgoalattain

9-4



Function Arguments

Input Arguments (Continued)

Argument Description Used by Functions

xdata, ydata The input data xdata and the
observed output data ydata that
are to be fitted to an equation.

lsqcurvefit

x0 Starting point (a scalar, vector or
matrix).

(For fzero, x0 can also be a
two-element vector representing an
interval that is known to contain
a zero.)

All functions except fminbnd

x1, x2 The interval over which the
function is minimized.

fminbnd

Output Arguments
Output Arguments

Argument Description Used by Functions

attainfactor The attainment factor at the
solution x.

fgoalattain

exitflag An integer identifying the reason
the optimization algorithm
terminated. See the function
reference pages for descriptions of
exitflag specific to each function.

You can also return a message
stating why an optimization
terminated by calling the
optimization function with
the output argument output and
then displaying output.message.

All functions

9-5



9 Argument and Options Reference

Output Arguments (Continued)

Argument Description Used by Functions

fval The value of the objective function
fun at the solution x.

bintprog, fgoalattain, fminbnd,
fmincon, fminimax, fminsearch,
fminunc, fseminf, fsolve, fzero,
linprog, quadprog

grad The value of the gradient of fun
at the solution x. If fun does not
compute the gradient, grad is a
finite-differencing approximation
of the gradient.

fmincon, fminunc

hessian The value of the Hessian of fun
at the solution x. For large-scale
methods, if fun does not compute
the Hessian, hessian is a
finite-differencing approximation
of the Hessian. For medium-scale
methods, hessian is the value of
the Quasi-Newton approximation
to the Hessian at the solution x.

fmincon, fminunc

jacobian The value of the Jacobian of fun
at the solution x. If fun does not
compute the Jacobian, jacobian is
a finite-differencing approximation
of the Jacobian.

lsqcurvefit, lsqnonlin, fsolve

lambda The Lagrange multipliers at the
solution x. lambda is a structure
where each field is for a different
constraint type. For structure field
names, see individual function
descriptions. (For lsqnonneg,
lambda is simply a vector, as
lsqnonneg only handles one kind
of constraint.)

fgoalattain, fmincon, fminimax,
fseminf, linprog, lsqcurvefit,
lsqlin, lsqnonlin, lsqnonneg,
quadprog

maxfval max{fun(x)} at the solution x. fminimax

9-6



Function Arguments

Output Arguments (Continued)

Argument Description Used by Functions

output An output structure that contains
information about the results of
the optimization. For structure
field names, see individual function
descriptions.

All functions

residual The value of the residual at the
solution x.

lsqcurvefit, lsqlin, lsqnonlin,
lsqnonneg

resnorm The value of the squared 2-norm of
the residual at the solution x.

lsqcurvefit, lsqlin, lsqnonlin,
lsqnonneg

x The solution found by the
optimization function. If exitflag
> 0, then x is a solution; otherwise,
x is the value of the optimization
routine when it terminated
prematurely.

All functions

9-7



9 Argument and Options Reference

Optimization Options

In this section...

“Options Structure” on page 9-8

“Output Function” on page 9-18

“Plot Functions” on page 9-27

Options Structure
The following table describes fields in the optimization options structure
options. You can set values of these fields using the function optimset. The
column labeled L, M, B indicates whether the option applies to large-scale
methods, medium scale methods, or both:

• L — Large-scale methods only

• M — Medium-scale methods only

• B — Both large- and medium-scale methods

• I — Interior-point method only

See the optimset reference page and the individual function reference pages
for information about option values and defaults.

The default values for the options vary depending on which optimization
function you call with options as an input argument. You can determine
the default option values for any of the optimization functions by entering
optimset followed by the name of the function. For example,

optimset fmincon

returns a list of the options and the default values for fmincon. Options whose
default values listed as [] are not used by the function.

9-8



Optimization Options

Optimization Options

Option Name Description
L, M, B,
I Used by Functions

Algorithm Chooses the algorithm used by the
solver.

B, I fmincon

AlwaysHonorConstraints The default 'bounds' ensures that
bound constraints are satisfied at
every iteration. Turn off by setting
to 'none'.

I fmincon

BranchStrategy Strategy bintprog uses to select
branch variable.

M bintprog

DerivativeCheck Compare user-supplied analytic
derivatives (gradients or Jacobian,
depending on the selected solver)
to finite differencing derivatives.

B fgoalattain,
fmincon,
fminimax, fminunc,
fseminf, fsolve,
lsqcurvefit,
lsqnonlin

Diagnostics Display diagnostic information
about the function to be minimized
or solved.

B All but fminbnd,
fminsearch, fzero,
and lsqnonneg

DiffMaxChange Maximum change in variables for
finite differencing.

M fgoalattain,
fmincon,
fminimax, fminunc,
fseminf, fsolve,
lsqcurvefit,
lsqnonlin

DiffMinChange Minimum change in variables for
finite differencing.

M fgoalattain,
fmincon,
fminimax, fminunc,
fseminf, fsolve,
lsqcurvefit,
lsqnonlin

9-9



9 Argument and Options Reference

Optimization Options (Continued)

Option Name Description
L, M, B,
I Used by Functions

Display Level of display. 'off' displays no
output; 'iter' displays output at
each iteration; 'final' displays
just the final output; 'notify'
displays output only if function
does not converge.

B All. See the
individual function
reference pages
for the values that
apply.

FinDiffType Finite differences, used to estimate
gradients, are either the default
'forward', or else are 'central'
(centered), which take twice
as many function evaluations
but should be more accurate.
'central' differences might
violate bounds during their
evaluation.

I fmincon

FunValCheck Check whether objective function
and constraints values are valid.
'on' displays an error when the
objective function or constraints
return a value that is complex,
NaN, or Inf.

Note FunValCheck does not
return an error for Inf when
used with fminbnd, fminsearch,
or fzero, which handle Inf
appropriately.

'off' displays no error.

B fgoalattain,
fminbnd, fmincon,
fminimax,
fminsearch,
fminunc, fseminf,
fsolve, fzero,
lsqcurvefit,
lsqnonlin

9-10



Optimization Options

Optimization Options (Continued)

Option Name Description
L, M, B,
I Used by Functions

GoalsExactAchieve Specify the number of objectives
required for the objective fun to
equal the goal goal. Objectives
should be partitioned into the first
few elements of F.

M fgoalattain

GradConstr User-defined gradients for the
nonlinear constraints.

M fgoalattain,
fmincon, fminimax

GradObj User-defined gradients for the
objective functions.

B fgoalattain,
fmincon, fminimax,
fminunc, fseminf

HessFcn Function handle to a user-supplied
Hessian (see “Hessian” on page
11-42).

I fmincon

Hessian If 'user-supplied', function
uses user-defined Hessian or
Hessian information (when using
HessMult), for the objective
function. If 'off', function
approximates the Hessian using
finite differences.

L, I fmincon, fminunc

HessMult Handle to a user-supplied Hessian
multiply function. Ignored unless
Hessian is 'user-supplied' or
'on'.

L, I fmincon, fminunc,
quadprog

HessPattern Sparsity pattern of the Hessian
for finite differencing. The size of
the matrix is n-by-n, where n is
the number of elements in x0, the
starting point.

L fmincon, fminunc

HessUpdate Quasi-Newton updating scheme. M fminunc

InitBarrierParameter Initial barrier value. I fmincon

9-11



9 Argument and Options Reference

Optimization Options (Continued)

Option Name Description
L, M, B,
I Used by Functions

InitialHessMatrix Initial quasi-Newton matrix. M fminunc

InitialHessType Initial quasi-Newton matrix type. M fminunc

InitTrustRegionRadius Initial radius of the trust region. I fmincon

Jacobian If 'on', function uses user-defined
Jacobian or Jacobian information
(when using JacobMult), for
the objective function. If 'off',
function approximates the
Jacobian using finite differences.

B fsolve,
lsqcurvefit,
lsqnonlin

JacobMult User-defined Jacobian multiply
function. Ignored unless Jacobian
is 'on' for fsolve, lsqcurvefit,
and lsqnonlin.

L fsolve,
lsqcurvefit,
lsqlin, lsqnonlin

JacobPattern Sparsity pattern of the Jacobian
for finite differencing. The size
of the matrix is m-by-n, where
m is the number of values in the
first argument returned by the
user-specified function fun, and n
is the number of elements in x0,
the starting point.

L fsolve,
lsqcurvefit,
lsqnonlin

LargeScale Use large-scale algorithm if
possible.

B fminunc, fsolve,
linprog,
lsqcurvefit,
lsqlin, lsqnonlin,
quadprog

LevenbergMarquardt Choose Levenberg-Marquardt over
Gauss-Newton algorithm. 'on'
specifies the Levenberg-Marquardt
algorithm. 'off' specifies the
Gauss-Newton algorithm.

M lsqcurvefit,
lsqnonlin

9-12



Optimization Options

Optimization Options (Continued)

Option Name Description
L, M, B,
I Used by Functions

LineSearchType Line search algorithm choice. M fsolve,
lsqcurvefit,
lsqnonlin

MaxFunEvals Maximum number of function
evaluations allowed.

B fgoalattain,
fminbnd, fmincon,
fminimax,
fminsearch,
fminunc,
fseminf, fsolve,
lsqcurvefit,
lsqnonlin

MaxIter Maximum number of iterations
allowed.

B All but fzero and
lsqnonneg

MaxNodes Maximum number of possible
solutions, or nodes, the binary
integer programming function
bintprog searches.

M bintprog

MaxPCGIter Maximum number of iterations of
preconditioned conjugate gradients
method allowed.

L fmincon,
fminunc, fsolve,
lsqcurvefit,
lsqlin, lsqnonlin,
quadprog

MaxProjPCGIter A tolerance for the number of
projected conjugate gradient
iterations; this is an inner
iteration, not the number of
iterations of the algorithm.

I fmincon

MaxRLPIter Maximum number of iterations
of linear programming relaxation
method allowed.

M bintprog

9-13



9 Argument and Options Reference

Optimization Options (Continued)

Option Name Description
L, M, B,
I Used by Functions

MaxSQPIter Maximum number of iterations of
sequential quadratic programming
method allowed.

M fgoalattain,
fmincon, fminimax

MaxTime Maximum amount of time in
seconds allowed for the algorithm.

M bintprog

MeritFunction Use goal attainment/minimax
merit function (multiobjective) vs.
fmincon (single objective).

M fgoalattain,
fminimax

MinAbsMax Number of F(x) to minimize the
worst case absolute values.

M fminimax

NodeDisplayInterval Node display interval for bintprog. M bintprog

NodeSearchStrategy Search strategy that bintprog
uses.

M bintprog

NonlEqnAlgorithm Specify one of the following
algorithms for solving nonlinear
equations:

• 'dogleg' — Trust-region dogleg
algorithm (default)

• 'lm' — Levenberg-Marquardt

• 'gn' — Gauss-Newton

M fsolve

ObjectiveLimit If the objective function value
goes below ObjectiveLimit and
the iterate is feasible, then the
iterations halt.

I fmincon

9-14



Optimization Options

Optimization Options (Continued)

Option Name Description
L, M, B,
I Used by Functions

OutputFcn Specify one or more user-defined
functions that the optimization
function calls at each iteration. See
“Output Function” on page 9-18.

B fgoalattain,
fminbnd, fmincon,
fminimax,
fminsearch,
fminunc, fseminf,
fsolve, fzero,
lsqcurvefit,
lsqnonlin

PlotFcns Plots various measures of progress
while the algorithm executes, select
from predefined plots or write your
own. Specifying @optimplotx
plots the current point;
@optimplotfunccount plots the
function count; @optimplotfval
plots the function value;
@optimplotconstrviolation
plots the maximum constraint
violation; @optimplotresnorm
plots the norm of the residuals;
@optimplotstepsize plots the step
size; @optimplotfirstorderopt
plots the first-order of optimality.
See “Plot Functions” on page 9-27.

B fgoalattain,
fminbnd, fmincon,
fminimax,
fminsearch,
fminunc, fseminf,
fsolve, fzero,
lsqcurvefit, and
lsqnonlin. See the
individual function
reference pages
for the values that
apply.

PrecondBandWidth Upper bandwidth of preconditioner
for PCG. Setting to 'Inf' uses a
direct factorization instead of CG.

L fmincon,
fminunc, fsolve,
lsqcurvefit,
lsqlin, lsqnonlin,
quadprog

RelLineSrchBnd Relative bound on line search step
length.

M fgoalattain,
fmincon, fminimax,
fseminf

9-15



9 Argument and Options Reference

Optimization Options (Continued)

Option Name Description
L, M, B,
I Used by Functions

RelLineSrchBndDuration Number of iterations for which the
bound specified in RelLineSrchBnd
should be active.

M fgoalattain,
fmincon, fminimax,
fseminf

ScaleProblem The default 'obj-and-constr'
causes the algorithm to normalize
all constraints and the objective
function. Disable by setting to
'none'.

I fmincon

Simplex If 'on', function uses the simplex
algorithm.

M linprog

SubproblemAlgorithm Determines how the iteration step
is calculated.

I fmincon

TolCon Termination tolerance on the
constraint violation.

B bintprog,
fgoalattain,
fmincon, fminimax,
fseminf

TolConSQP Constraint violation tolerance for
the inner SQP iteration.

M fgoalattain,
fmincon, fminimax,
fseminf

TolFun Termination tolerance on the
function value.

B bintprog,
fgoalattain,
fmincon, fminimax,
fminsearch,
fminunc,
fseminf, fsolve,
linprog (L only),
lsqcurvefit,
lsqlin (L only),
lsqnonlin,
quadprog (L only)

9-16



Optimization Options

Optimization Options (Continued)

Option Name Description
L, M, B,
I Used by Functions

TolPCG Termination tolerance on the PCG
iteration.

L fmincon,
fminunc, fsolve,
lsqcurvefit,
lsqlin, lsqnonlin,
quadprog

TolProjCG A relative tolerance for projected
conjugate gradient algorithm; this
is for an inner iteration, not the
algorithm iteration.

I fmincon

TolProjCGAbs Absolute tolerance for projected
conjugate gradient algorithm; this
is for an inner iteration, not the
algorithm iteration.

I fmincon

TolRLPFun Termination tolerance on the
function value of a linear
programming relaxation problem.

M bintprog

TolX Termination tolerance on x. B All functions except
the medium-scale
algorithms for
linprog, lsqlin,
and quadprog

TolXInteger Tolerance within which bintprog
considers the value of a variable to
be an integer.

M bintprog

9-17



9 Argument and Options Reference

Optimization Options (Continued)

Option Name Description
L, M, B,
I Used by Functions

TypicalX Array that specifies typical
magnitude of array of parameters
x. The size of the array is equal to
the size of x0, the starting point.

B fgoalattain,
fmincon,
fminunc, fsolve,
lsqcurvefit,
lsqlin, lsqnonlin,
quadprog

UseParallel When 'always', applicable solvers
estimate gradients in parallel.
Disable by setting to 'never'.

M fgoalattain,
fmincon, fminimax.

Output Function
The Outputfcn field of the options structure specifies one or more functions
that an optimization function calls at each iteration. Typically, you might use
an output function to plot points at each iteration or to display optimization
quantities from the algorithm. Using an output function you can view, but not
set, optimization quantities. To set up an output function, do the following:

1 Write the output function as an M-file function or subfunction.

2 Use optimset to set the value of Outputfcn to be a function handle, that is,
the name of the function preceded by the @ sign. For example, if the output
function is outfun.m, the command

options = optimset('OutputFcn', @outfun);

specifies OutputFcn to be the handle to outfun. To specify more than one
output function, use the syntax

options = optimset('OutputFcn',{@outfun, @outfun2});

3 Call the optimization function with options as an input argument.

See “Output Functions” on page 2-31 for an example of an output function.

9-18



Optimization Options

“Passing Extra Parameters” on page 2-10 explains how to parameterize the
output function OutputFcn, if necessary.

Structure of the Output Function
The function definition line of the output function has the following form:

stop = outfun(x, optimValues, state)

where

• x is the point computed by the algorithm at the current iteration.

• optimValues is a structure containing data from the current iteration.
“Fields in optimValues” on page 9-19 describes the structure in detail.

• state is the current state of the algorithm. “States of the Algorithm” on
page 9-26 lists the possible values.

• stop is a flag that is true or false depending on whether the optimization
routine should quit or continue. See “Stop Flag” on page 9-26 for more
information.

The optimization function passes the values of the input arguments to outfun
at each iteration.

Fields in optimValues
The following table lists the fields of the optimValues structure. A particular
optimization function returns values for only some of these fields. For each
field, the Returned by Functions column of the table lists the functions that
return the field.

Corresponding Output Arguments. Some of the fields of optimValues
correspond to output arguments of the optimization function. After the final
iteration of the optimization algorithm, the value of such a field equals
the corresponding output argument. For example, optimValues.fval
corresponds to the output argument fval. So, if you call fmincon with an
output function and return fval, the final value of optimValues.fval equals
fval. The Description column of the following table indicates the fields that
have a corresponding output argument.

9-19



9 Argument and Options Reference

Command-Line Display. The values of some fields of optimValues are
displayed at the command line when you call the optimization function with
the Display field of options set to 'iter', as described in “Displaying
Iterative Output” on page 4-84. For example, optimValues.fval is displayed
in the f(x) column. The Command-Line Display column of the following table
indicates the fields that you can display at the command line.

In the following table, L, M, and B indicate:

• L — Function returns a value to the field when using a large-scale
algorithm.

• M — Function returns a value to the field when using a medium-scale
algorithm.

• B — Function returns a value to the field when using both large- and
medium-scale algorithms.

optimValues Fields

OptimValues Field
(optimValues.field) Description

Returned by
Functions

Command-Line
Display

cgiterations Number of conjugate
gradient iterations at
current optimization
iteration.

fmincon (L), fsolve
(L), lsqcurvefit (L),
lsqnonlin (L)

CG-iterations

See “Displaying
Iterative
Output” on page
4-84.

constrviolation Maximum constraint
violation.

fgoalattain (M),
fmincon (M), fminimax
(M), fseminf (M)

max constraint

See “Displaying
Iterative
Output” on page
4-84.

9-20



Optimization Options

optimValues Fields (Continued)

OptimValues Field
(optimValues.field) Description

Returned by
Functions

Command-Line
Display

degenerate Measure of degeneracy.
A point is degenerate if

The partial derivative
with respect to one of
the variables is 0 at the
point.

A bound constraint is
active for that variable
at the point.

See “Degeneracy” on
page 9-25.

fmincon (L), fsolve
(L), lsqcurvefit (L),
lsqnonlin (L)

None

directionalderivative Directional derivative in
the search direction.

fgoalattain (M),
fmincon (M), fminimax
(M), fminunc (M),
fseminf (M), fsolve
(M, NonlEqn-
Algorithm='lm','gn'),
lsqcurvefit (M),
lsqnonlin (M)

Directional
derivative

See “Displaying
Iterative
Output” on page
4-84.

firstorderopt First-order optimality
(depends on algorithm).
Final value equals
optimization
function output
output.firstorderopt.

fgoalattain (M),
fmincon (B), fminimax
(M), fminunc (M),
fseminf (M), fsolve
(B), lsqcurvefit (B),
lsqnonlin (B)

First-order
optimality

See “Displaying
Iterative
Output” on page
4-84.

9-21



9 Argument and Options Reference

optimValues Fields (Continued)

OptimValues Field
(optimValues.field) Description

Returned by
Functions

Command-Line
Display

funccount Cumulative number of
function evaluations.
Final value equals
optimization
function output
output.funcCount.

fgoalattain (M),
fminbnd (B), fmincon
(B), fminimax (M),
fminsearch (B),
fminunc (B),
fsolve (B), fzero (B),
fseminf (M),
lsqcurvefit (B),
lsqnonlin (B)

F-count

See “Displaying
Iterative
Output” on page
4-84.

fval Function value
at current point.
Final value equals
optimization function
output fval.

fgoalattain (M),
fminbnd (B), fmincon
(B), fminimax (M),
fminsearch (B),
fminunc (B), fseminf
(M), fsolve (B),
fzero (B)

f(x)

See “Displaying
Iterative
Output” on page
4-84.

gradient Current gradient of
objective function —
either analytic gradient
if you provide it or
finite-differencing
approximation.
Final value equals
optimization function
output grad.

fgoalattain (M),
fmincon (B), fminimax
(M), fminunc (M),
fseminf (M), fsolve
(B), lsqcurvefit (B),
lsqnonlin (B)

None

9-22



Optimization Options

optimValues Fields (Continued)

OptimValues Field
(optimValues.field) Description

Returned by
Functions

Command-Line
Display

iteration Iteration number —
starts at 0. Final value
equals optimization
function output
output.iterations.

fgoalattain (M),
fminbnd (B),fmincon
(B), fminimax (M),
fsolve (B), fminsearch
(B), fminunc (B),
fseminf (M), fsolve
(M),
fzero (B), lsqcurvefit
(B), lsqnonlin (B)

Iteration

See “Displaying
Iterative
Output” on page
4-84.

lambda The
Levenberg-Marquardt
parameter, lambda,
at the current
iteration. See
“Levenberg-Marquardt
Method” on page 5-21.

fgoalattain (M),
fmincon (M), fminimax
(M), fseminf (M),
fsolve (M, NonlEqn-
Algorithm='lm','gn'),
lsqcurvefit (M),
lsqnonlin (M)

Lambda

positivedefinite 0 if algorithm detects
negative curvature while
computing Newton step.

1 otherwise.

fmincon (L), fsolve
(L), lsqcurvefit (L),
lsqnonlin (L)

None

procedure Procedure messages. fgoalattain (M),
fminbnd (B), fmincon
(M), fminimax (M),
fminsearch (B),
fseminf (M),
fzero (B)

Procedure

See “Displaying
Iterative
Output” on page
4-84.

ratio Ratio of change in the
objective function to
change in the quadratic
approximation.

fmincon (L), fsolve
(L), lsqcurvefit (L),
lsqnonlin (L)

None

9-23



9 Argument and Options Reference

optimValues Fields (Continued)

OptimValues Field
(optimValues.field) Description

Returned by
Functions

Command-Line
Display

residual The residual vector.
For fsolve, residual
means the 2-norm of the
residual squared.

lsqcurvefit (B),
lsqnonlin (B), fsolve
(B)

Residual

See “Displaying
Iterative
Output” on page
4-84.

resnorm 2-norm of the residual
squared.

lsqcurvefit (B),
lsqnonlin (B)

Resnorm

See “Displaying
Iterative
Output” on page
4-84.

searchdirection Search direction. fgoalattain (M),
fmincon (M), fminimax
(M), fminunc (M),
fseminf (M), fsolve
(M, NonlEqn-
Algorithm='lm','gn'),
lsqcurvefit (M),
lsqnonlin (M)

None

stepaccept Status of the current
trust-region step.
Returns true if the
current trust-region step
was successful, and false
if the trust-region step
was unsuccessful.

fsolve (M, NonlEqn-
Algorithm='dogleg')

None

9-24



Optimization Options

optimValues Fields (Continued)

OptimValues Field
(optimValues.field) Description

Returned by
Functions

Command-Line
Display

stepsize Current step size
(displacement in
x). Final value
equals optimization
function output
output.stepsize.

fgoalattain (M),
fmincon (B), fminimax
(M), fminunc (B),
fseminf (M), fsolve
(B), lsqcurvefit (B),
lsqnonlin (B)

Step-size or
Norm of Step

See “Displaying
Iterative
Output” on page
4-84.

trustregionradius Radius of trust region. fmincon (L), fsolve
(L, M, NonlEqn-
Algorithm='lm','gn'),
lsqcurvefit, fsolve
(L), lsqnonlin (L)

Trust-region
radius

See “Displaying
Iterative
Output” on page
4-84.

Degeneracy. The value of the field degenerate, which measures the
degeneracy of the current optimization point x, is defined as follows. First,
define a vector r, of the same size as x, for which r(i) is the minimum distance
from x(i) to the ith entries of the lower and upper bounds, lb and ub. That is,

r = min(abs(ub-x, x-lb))

Then the value of degenerate is the minimum entry of the vector
r + abs(grad), where grad is the gradient of the objective function. The
value of degenerate is 0 if there is an index i for which both of the following
are true:

• grad(i) = 0

• x(i) equals the ith entry of either the lower or upper bound.

9-25



9 Argument and Options Reference

States of the Algorithm
The following table lists the possible values for state:

State Description

'init' The algorithm is in the initial state before the first
iteration.

'interrupt' The algorithm is in some computationally expensive
part of the iteration. In this state, the output function
can interrupt the current iteration of the optimization.
At this time, the values of x and optimValues are the
same as at the last call to the output function in which
state=='iter'.

'iter' The algorithm is at the end of an iteration.

'done' The algorithm is in the final state after the last iteration.

The following code illustrates how the output function might use the value of
state to decide which tasks to perform at the current iteration:

switch state
case 'iter'

% Make updates to plot or guis as needed
case 'interrupt'

% Probably no action here. Check conditions to see
% whether optimization should quit.

case 'init'
% Setup for plots or guis

case 'done'
% Cleanup of plots, guis, or final plot

otherwise
end

Stop Flag
The output argument stop is a flag that is true or false. The flag tells the
optimization function whether the optimization should quit or continue. The
following examples show typical ways to use the stop flag.

9-26



Optimization Options

Stopping an Optimization Based on Data in optimValues. The output
function can stop an optimization at any iteration based on the current data
in optimValues. For example, the following code sets stop to true if the
directional derivative is less than .01:

function stop = outfun(x, optimValues)
stop = false;
% Check if directional derivative is less than .01.
if optimValues.directionalderivative < .01

stop = true;
end

Stopping an Optimization Based on GUI Input. If you design a GUI to
perform optimizations, you can make the output function stop an optimization
when a user clicks a Stop button on the GUI. The following code shows how
to do this, assuming that the Stop button callback stores the value true in
the optimstop field of a handles structure called hObject:

function stop = outfun(x)
stop = false;
% Check if user has requested to stop the optimization.
stop = getappdata(hObject,'optimstop');

Plot Functions
The PlotFcns field of the options structure specifies one or more functions
that an optimization function calls at each iteration to plot various measures
of progress while the algorithm executes. The structure of a plot function is
the same as that for an output function. For more information on writing and
calling a plot function, see “Output Function” on page 9-18.

To view and modify a predefined plot function listed for PlotFcns in the
previous table, you can open it in the MATLAB® Editor. For example, to view
the M-file corresponding to the norm of residuals, type:

edit optimplotresnorm.m

9-27



9 Argument and Options Reference

9-28



10

Function Reference

Minimization (p. 10-2) Solve minimization problems

Equation Solving (p. 10-2) Equation solving

Least Squares (Curve Fitting)
(p. 10-3)

Solve least-squares problems

Graphical User Interface (p. 10-3) Open Optimization Tool to select
solver, optimization options, and run
problems

Utility (p. 10-4) Get and set optimization options



10 Function Reference

Minimization
bintprog Solve binary integer programming

problems

fgoalattain Solve multiobjective goal attainment
problems

fminbnd Find minimum of single-variable
function on fixed interval

fmincon Find minimum of constrained
nonlinear multivariable function

fminimax Solve minimax constraint problem

fminsearch Find minimum of unconstrained
multivariable function using
derivative-free method

fminunc Find minimum of unconstrained
multivariable function

fseminf Find minimum of semi-infinitely
constrained multivariable nonlinear
function

ktrlink Find minimum of constrained
or unconstrained nonlinear
multivariable function using
KNITRO® third-party libraries

linprog Solve linear programming problems

quadprog Solve quadratic programming
problems

Equation Solving
See \ for solving linear equations of the form Ax = b.

10-2



Least Squares (Curve Fitting)

fsolve Solve system of nonlinear equations

fzero Find root of continuous function of
one variable

Least Squares (Curve Fitting)
See \ for minimizing ||Ax – b||.

lsqcurvefit Solve nonlinear curve-fitting
(data-fitting) problems in
least-squares sense

lsqlin Solve constrained linear
least-squares problems

lsqnonlin Solve nonlinear least-squares
(nonlinear data-fitting) problems

lsqnonneg Solve nonnegative least-squares
constraint problem

Graphical User Interface
optimtool Tool to select solver, optimization

options, and run problems

10-3



10 Function Reference

Utility
color Column partition for sparse finite

differences

fzmult Multiplication with fundamental
nullspace basis

gangstr Zero out “small” entries subject to
structural rank

optimget Optimization options values

optimset Create or edit optimization options
structure

10-4



11

Functions — Alphabetical
List



bintprog

Purpose Solve binary integer programming problems

Equation Solves binary integer programming problems of the form

min
,

,
x

Tf x
A x b

Aeq x beq
x

 such that 
 binary.

⋅ ≤
⋅ =

⎧
⎨
⎪

⎩⎪

f, b, and beq are vectors, A and Aeq are matrices, and the solution x
is required to be a binary integer vector—that is, its entries can only
take on the values 0 or 1.

Syntax x = bintprog(f)
x = bintprog(f,A,b)
x = bintprog(f,A,b,Aeq,beq)
x = bintprog(f,A,b,Aeq,beq,x0)
x = bintprog(f,A,b,Aeq,Beq,x0,options)
x = bintprog(problem)
[x,fval] = bintprog(...)
[x,fval,exitflag] = bintprog(...)
[x,fval,exitflag,output] = bintprog(...)

Description x = bintprog(f) solves the binary integer programming problem

min .
x

Tf x

x = bintprog(f,A,b) solves the binary integer programming problem

min .
x

Tf x A x b such that ⋅ ≤

x = bintprog(f,A,b,Aeq,beq) solves the preceding problem with
the additional equality constraint.

Aeq·x = beq.

11-2



bintprog

x = bintprog(f,A,b,Aeq,beq,x0) sets the starting point for the
algorithm to x0. If x0 is not in the feasible region, bintprog uses the
default initial point.

x = bintprog(f,A,b,Aeq,Beq,x0,options) minimizes with the
default optimization options replaced by values in the structure
options, which you can create using the function optimset.

x = bintprog(problem) finds the minimum for problem, where
problem is a structure described in “Input Arguments” on page 11-3.

Create the structure problem by exporting a problem from Optimization
Tool, as described in “Exporting to the MATLAB® Workspace” on page
3-14.

[x,fval] = bintprog(...) returns fval, the value of the objective
function at x.

[x,fval,exitflag] = bintprog(...) returns exitflag that
describes the exit condition of bintprog. See “Output Arguments” on
page 11-4.

[x,fval,exitflag,output] = bintprog(...) returns a structure
output that contains information about the optimization. See “Output
Arguments” on page 11-4.

Input
Arguments

The following table lists the input arguments for bintprog. “Function
Arguments” on page 9-2 contains general descriptions of input
arguments for optimization functions.

f Vector containing the coefficients of the linear objective
function.

A Matrix containing the coefficients of the linear inequality
constraints A·x≤ b.

b Vector corresponding to the right-hand side of the linear
inequality constraints.

Aeq Matrix containing the coefficients of the linear equality
constraints Aeq·x = beq.

11-3



bintprog

beq Vector containing the constants of the linear equality
constraints.

x0 Initial point for the algorithm.

options Options structure containing options for the algorithm.

f Linear objective function vector f

Aineq Matrix for linear inequality constraints

bineq Vector for linear inequality constraints

Aeq Matrix for linear equality constraints

beq Vector for linear equality constraints

x0 Initial point for x

solver 'bintprog'

problem

options Options structure created with
optimset

Output
Arguments

“Function Arguments” on page 9-2 contains general descriptions of
arguments returned by bintprog. This section provides specific details
for the arguments exitflag and output:

exitflag Integer identifying the reason the algorithm terminated.
The following lists the values of exitflag and the
corresponding reasons the algorithm terminated.

1 Function converged to a solution x.

0 Number of iterations exceeded
options.MaxIter.

-2 The problem is infeasible.

-4 Number of searched nodes exceeded
options.MaxNodes.

-5 Search time exceeded
options.MaxTime.

11-4



bintprog

-6 Number of iterations the LP-solver
performed at a node to solve the
LP-relaxation problem exceeded
options.MaxRLP.

output Structure containing information about the optimization.
The fields of the structure are

iterations Number of iterations taken

nodes Number of nodes searched

time Execution time of the algorithm

algorithm Optimization algorithm used

branchStrategy Strategy used to select branch
variable—see “Options” on page
11-5

nodeSearchStrategy Strategy used to select next node in
search tree—see “Options” on page
11-5

message Exit message

Options Optimization options used by bintprog. You can use optimset to set or
change the values of these fields in the options structure options. See
“Optimization Options” on page 9-8 for detailed information.

BranchStrategy Strategy the algorithm uses to select the
branch variable in the search tree — see
“Branching” on page 11-7. The choices are

• 'mininfeas' — Choose the variable with
the minimum integer infeasibility, that
is, the variable whose value is closest to
0 or 1 but not equal to 0 or 1.

• 'maxinfeas' — Choose the variable with
the maximum integer infeasibility, that

11-5



bintprog

is, the variable whose value is closest to
0.5 (default).

Diagnostics Display diagnostic information about the
function

Display Level of display. 'off' displays no output;
'iter' displays output at each iteration;
'final' (default) displays just the final
output.

MaxIter Maximum number of iterations allowed

MaxNodes Maximum number of solutions, or nodes,
the function searches

MaxRLPIter Maximum number of iterations the
LP-solver performs to solve the
LP-relaxation problem at each node

MaxTime Maximum amount of time in seconds the
function runs

NodeDisplayInterval Node display interval

NodeSearchStrategy Strategy the algorithm uses to select the
next node to search in the search tree — see
“Branching” on page 11-7. The choices are

• 'df' — Depth first search strategy. At
each node in the search tree, if there is
child node one level down in the tree
that has not already been explored,
the algorithm chooses one such child to
search. Otherwise, the algorithm moves
to the node one level up in the tree and
chooses a child node one level down from
that node.

11-6



bintprog

• 'bn' — Best node search strategy, which
chooses the node with lowest bound on
the objective function.

TolFun Termination tolerance on the function value

TolXInteger Tolerance within which the value of a
variable is considered to be integral

TolRLPFun Termination tolerance on the function value
of a linear programming relaxation problem

Algorithm bintprog uses a linear programming (LP)-based branch-and-bound
algorithm to solve binary integer programming problems. The algorithm
searches for an optimal solution to the binary integer programming
problem by solving a series of LP-relaxation problems, in which the
binary integer requirement on the variables is replaced by the weaker
constraint 0 ≤ x ≤ 1. The algorithm

• Searches for a binary integer feasible solution

• Updates the best binary integer feasible point found so far as the
search tree grows

• Verifies that no better integer feasible solution is possible by solving
a series of linear programming problems

The following sections describe the branch-and-bound method in
greater detail.

Branching

The algorithm creates a search tree by repeatedly adding constraints to
the problem, that is, "branching." At a branching step, the algorithm
chooses a variable xj whose current value is not an integer and adds the
constraint xj = 0 to form one branch and the constraint xj = 1 to form
the other branch. This process can be represented by a binary tree, in
which the nodes represent the added constraints. The following picture
illustrates a complete binary tree for a problem that has three variables,

11-7



bintprog

x1, x2, and x3. Note that, in general, the order of the variables going
down the levels in the tree is not the usual order of their subscripts

Deciding Whether to Branch

At each node, the algorithm solves an LP-relaxation problem using the
constraints at that node and decides whether to branch or to move to
another node depending on the outcome. There are three possibilities:

• If the LP-relaxation problem at the current node is infeasible or
its optimal value is greater than that of the best integer point,
the algorithm removes the node from the tree, after which it
does not search any branches below that node. The algorithm
then moves to a new node according to the method you specify in
NodeSearchStrategy option.

• If the algorithm finds a new feasible integer point with lower
objective value than that of the best integer point, it updates the
current best integer point and moves to the next node.

• If the LP-relaxation problem is optimal but not integer and the
optimal objective value of the LP relaxation problem is less than the
best integer point, the algorithm branches according to the method
you specify in the BranchStrategy option.

See “Options” on page 11-5 for a description of the NodeSearchStrategy
and BranchStrategy options.

11-8



bintprog

Bounds

The solution to the LP-relaxation problem provides a lower bound
for the binary integer programming problem. If the solution to the
LP-relaxation problem is already a binary integer vector, it provides an
upper bound for the binary integer programming problem.

As the search tree grows more nodes, the algorithm updates the lower
and upper bounds on the objective function, using the bounds obtained
in the bounding step. The bound on the objective value serves as the
threshold to cut off unnecessary branches.

Limits for the Algorithm

The algorithm for bintprog could potentially search all 2n binary
integer vectors, where n is the number of variables. As a complete
search might take a very long time, you can limit the search using the
following options

• MaxNodes — Maximum number of nodes the algorithm searches

• MaxRLPIter — Maximum number of iterations the LP-solver
performs at any node

• MaxTime — Maximum amount of time in seconds the algorithm runs

See “Options” on page 11-5 for more information.

Example To minimize the function

f(x) = –9x1 – 5x2 – 6x3 – 4x4,

subject to the constraints

6 3 5 2
0 0 1 1
1 0 1 0

0 1 0 1

9
1
0

1

2

3

4

−
−

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

≤

x
x
x
x 00

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

,

11-9



bintprog

where x1, x2, x3, and x4 are binary integers, enter the following
commands:

f = [-9; -5; -6; -4];
A = [6 3 5 2; 0 0 1 1; -1 0 1 0; 0 -1 0 1];
b = [9; 1; 0; 0];
x = bintprog(f,A,b)
Optimization terminated successfully.

x =
1
1
0
0

References [1] Wolsey, Laurence A., Integer Programming, John Wiley & Sons,
1998.

[2] Nemhauser, George L. and Laurence A. Wolsey, Integer and
Combinatorial Optimization, John Wiley & Sons, 1988.

[3] Hillier, Frederick S. and Lieberman Gerald J., Introduction to
Operations Research, McGraw-Hill, 2001.

See Also linprog, optimset, optimtool

11-10



color

Purpose Column partition for sparse finite differences

Syntax group = color(J,P)

Description group = color(J,P) returns a partition of the column corresponding
to a coloring of the column-intersection graph. GROUP(I) = J means
column I is colored J.

All columns belonging to a color can be estimated in a single finite
difference.

11-11



fgoalattain

Purpose Solve multiobjective goal attainment problems

Equation Finds the minimum of a problem specified by

minimize such that
x

F x weight goal
c x

ceq x
A x b,

( )
( )
( )

γ
γ

γ− ⋅ ≤
≤
=

⋅ ≤

0
0

AAeq x beq
lb x ub

⋅ =
≤ ≤

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪ .

x, weight, goal, b, beq, lb, and ub are vectors, A and Aeq are matrices,
and c(x), ceq(x), and F(x) are functions that return vectors. F(x), c(x),
and ceq(x) can be nonlinear functions.

Syntax x = fgoalattain(fun,x0,goal,weight)
x = fgoalattain(fun,x0,goal,weight,A,b)
x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq)
x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq,lb,ub)
x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq,lb,ub,

nonlcon)
x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq,lb,ub,nonlcon,

... options)
x = fgoalattain(problem)
[x,fval] = fgoalattain(...)
[x,fval,attainfactor] = fgoalattain(...)
[x,fval,attainfactor,exitflag] = fgoalattain(...)
[x,fval,attainfactor,exitflag,output] = fgoalattain(...)
[x,fval,attainfactor,exitflag,output,

lambda] = fgoalattain(...)

Description fgoalattain solves the goal attainment problem, which is one
formulation for minimizing a multiobjective optimization problem.

11-12



fgoalattain

x = fgoalattain(fun,x0,goal,weight) tries to make the objective
functions supplied by fun attain the goals specified by goal by varying
x, starting at x0, with weight specified by weight.

x = fgoalattain(fun,x0,goal,weight,A,b) solves the goal
attainment problem subject to the linear inequalities A*x ≤ b.

x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq) solves the goal
attainment problem subject to the linear equalities Aeq*x = beq as
well. Set A = [] and b = [] if no inequalities exist.

x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq,lb,ub) defines
a set of lower and upper bounds on the design variables in x, so that the
solution is always in the range lb ≤ x ≤ ub.

x =
fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq,lb,ub,nonlcon)
subjects the goal attainment problem to the nonlinear inequalities c(x)
or nonlinear equality constraints ceq(x) defined in nonlcon.
fgoalattain optimizes such that c(x) ≤ 0 and ceq(x) = 0. Set lb =
[] and/or ub = [] if no bounds exist.

x =
fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq,lb,ub,nonlcon,...
options) minimizes with the optimization options specified in the
structure options. Use optimset to set these options.

x = fgoalattain(problem) finds the minimum for problem, where
problem is a structure described in “Input Arguments” on page 11-14.

Create the structure problem by exporting a problem from Optimization
Tool, as described in “Exporting to the MATLAB® Workspace” on page
3-14.

[x,fval] = fgoalattain(...) returns the values of the objective
functions computed in fun at the solution x.

[x,fval,attainfactor] = fgoalattain(...) returns the
attainment factor at the solution x.

[x,fval,attainfactor,exitflag] = fgoalattain(...) returns a
value exitflag that describes the exit condition of fgoalattain.

11-13



fgoalattain

[x,fval,attainfactor,exitflag,output] = fgoalattain(...)
returns a structure output that contains information about the
optimization.

[x,fval,attainfactor,exitflag,output,lambda] =
fgoalattain(...) returns a structure lambda whose fields contain the
Lagrange multipliers at the solution x.

“Passing Extra Parameters” on page 2-10 explains how to parameterize
the objective function fun, if necessary.

Note If the specified input bounds for a problem are inconsistent, the
output x is x0 and the output fval is [].

Input
Arguments

“Function Arguments” on page 9-2 contains general descriptions
of arguments passed into fgoalattain. This section provides
function-specific details for fun, goal, nonlcon, options, weight, and
problem:

fun The function to be minimized. fun is a function that
accepts a vector x and returns a vector F, the objective
functions evaluated at x. The function fun can be
specified as a function handle for an M-file function

x = fgoalattain(@myfun,x0,goal,weight)

where myfun is a MATLAB® function such as

function F = myfun(x)
F = ... % Compute function values at x.

fun can also be a function handle for an anonymous
function.

x = fgoalattain(@(x)sin(x.*x),x0,goal,weight);

11-14



fgoalattain

If the user-defined values for x and F are matrices, they
are converted to a vector using linear indexing.

To make an objective function as near as possible to a
goal value, (i.e., neither greater than nor less than) use
optimset to set the GoalsExactAchieve option to the
number of objectives required to be in the neighborhood
of the goal values. Such objectives must be partitioned
into the first elements of the vector F returned by fun.

If the gradient of the objective function can also be
computed and the GradObj option is 'on', as set by

options = optimset('GradObj','on')

then the function fun must return, in the second output
argument, the gradient value G, a matrix, at x. The
gradient consists of the partial derivative dF/dx of each
F at the point x. If F is a vector of length m and x has
length n, where n is the length of x0, then the gradient G
of F(x) is an n-by-m matrix where G(i,j) is the partial
derivative of F(j) with respect to x(i) (i.e., the jth
column of G is the gradient of the jth objective function
F(j)).

goal Vector of values that the objectives attempt to attain.
The vector is the same length as the number of objectives
F returned by fun. fgoalattain attempts to minimize
the values in the vector F to attain the goal values given
by goal.

11-15



fgoalattain

nonlcon The function that computes the nonlinear inequality
constraints c(x) ≤ 0 and the nonlinear equality
constraints ceq(x) = 0. The function nonlcon accepts a
vector x and returns two vectors c and ceq. The vector c
contains the nonlinear inequalities evaluated at x, and
ceq contains the nonlinear equalities evaluated at x. The
function nonlcon can be specified as a function handle.

x = fgoalattain(@myfun,x0,goal,weight,A,b,Aeq,beq,...

lb,ub,@mycon)

where mycon is a MATLAB function such as

function [c,ceq] = mycon(x)

c = ... % compute nonlinear inequalities at x.

ceq = ... % compute nonlinear equalities at x.

If the gradients of the constraints can also be computed
and the GradConstr option is 'on', as set by

options = optimset('GradConstr','on')

then the function nonlcon must also return, in
the third and fourth output arguments, GC, the
gradient of c(x), and GCeq, the gradient of ceq(x).
“Nonlinear Constraints” on page 2-17 explains how to
“conditionalize” the gradients for use in solvers that do
not accept supplied gradients.

If nonlcon returns a vector c of m components and x has
length n, where n is the length of x0, then the gradient
GC of c(x) is an n-by-m matrix, where GC(i,j) is the
partial derivative of c(j) with respect to x(i) (i.e., the
jth column of GC is the gradient of the jth inequality
constraint c(j)). Likewise, if ceq has p components,
the gradient GCeq of ceq(x) is an n-by-p matrix, where
GCeq(i,j) is the partial derivative of ceq(j) with

11-16



fgoalattain

respect to x(i) (i.e., the jth column of GCeq is the
gradient of the jth equality constraint ceq(j)).

Note Because Optimization Toolbox™ functions only
accept inputs of type double, user-supplied objective
and nonlinear constraint functions must return outputs
of type double.

“Passing Extra Parameters” on page 2-10 explains
how to parameterize the nonlinear constraint function
nonlcon, if necessary.

options “Options” on page 11-20 provides the function-specific
details for the options values.

A weighting vector to control the relative
underattainment or overattainment of the objectives
in fgoalattain. When the values of goal are all
nonzero, to ensure the same percentage of under- or
overattainment of the active objectives, set the weighting
function to abs(goal). (The active objectives are the set
of objectives that are barriers to further improvement of
the goals at the solution.)

Note Setting a component of the weight vector to zero
will cause the corresponding goal constraint to be treated
as a hard constraint rather than as a goal constraint. An
alternative method to set a hard constraint is to use the
input argument nonlcon.

weight

When the weighting function weight is positive,
fgoalattain attempts to make the objectives less than
the goal values. To make the objective functions greater
than the goal values, set weight to be negative rather
than positive. To make an objective function as near as

11-17



fgoalattain

possible to a goal value, use the GoalsExactAchieve
option and put that objective as the first element of the
vector returned by fun (see the preceding description
of fun and options).

objective Vector of objective functions

x0 Initial point for x

goal Goals to attain

weight Relative importance factors of goals

Aineq Matrix for linear inequality constraints

bineq Vector for linear inequality constraints

Aeq Matrix for linear equality constraints

beq Vector for linear equality constraints

lb Vector of lower bounds

ub Vector of upper bounds

nonlcon Nonlinear constraint function

solver 'fgoalattain'

problem

options Options structure created with optimset

Output
Arguments

“Function Arguments” on page 9-2 contains general descriptions
of arguments returned by fgoalattain. This section provides
function-specific details for attainfactor, exitflag, lambda, and
output:

11-18



fgoalattain

attainfactor The amount of over- or underachievement of the
goals. If attainfactor is negative, the goals have
been overachieved; if attainfactor is positive, the
goals have been underachieved.

attainfactor contains the value of γ at the solution.
A negative value of γ indicates overattainment in
the goals.

exitflag Integer identifying the reason the algorithm
terminated. The following lists the values of
exitflag and the corresponding reasons the
algorithm terminated.

1 Function converged to a solutions
x.

4 Magnitude of the search direction
less than the specified tolerance
and constraint violation less than
options.TolCon

5 Magnitude of directional
derivative less than the specified
tolerance and constraint violation
less than options.TolCon

0 Number of iterations exceeded
options.MaxIter or number of
function evaluations exceeded
options.FunEvals

-1 Algorithm was terminated by the
output function.

-2 No feasible point was found.

lambda Structure containing the Lagrange multipliers at
the solution x (separated by constraint type). The
fields of the structure are

lower Lower bounds lb

11-19



fgoalattain

upper Upper bounds ub

ineqlin Linear inequalities

eqlin Linear equalities

ineqnonlin Nonlinear inequalities

eqnonlin Nonlinear equalities

output Structure containing information about the
optimization. The fields of the structure are

iterations Number of iterations taken

funcCount Number of function evaluations

lssteplength Size of line search step relative to
search direction

stepsize Final displacement in x

algorithm Optimization algorithm used

firstorderopt Measure of first-order optimality

constrviolationMaximum of nonlinear constraint
functions

message Exit message

Options Optimization options used by fgoalattain. You can use optimset to
set or change the values of these fields in the options structure options.
See “Optimization Options” on page 9-8 for detailed information.

DerivativeCheck Compare user-supplied derivatives
(gradients of objective or constraints) to
finite-differencing derivatives.

Diagnostics Display diagnostic information about
the function to be minimized or solved.

DiffMaxChange Maximum change in variables for
finite-difference gradients.

11-20



fgoalattain

DiffMinChange Minimum change in variables for
finite-difference gradients.

Display Level of display. 'off' displays no
output; 'iter' displays output at
each iteration; 'notify' displays
output only if the function does not
converge;'final' (default) displays
just the final output.

FunValCheck Check whether objective function and
constraints values are valid. 'on'
displays an error when the objective
function or constraints return a value
that is complex, Inf, or NaN. 'off'
displays no error.

GoalsExactAchieve Specifies the number of objectives for
which it is required for the objective fun
to equal the goal goal. Such objectives
should be partitioned into the first few
elements of F.

GradConstr Gradient for the constraints defined by
the user. See the preceding description
of nonlcon to see how to define the
gradient in nonlcon.

GradObj Gradient for the user-defined objective
function. See the preceding description
of fun to see how to define the gradient
in fun.

MaxFunEvals Maximum number of function
evaluations allowed.

MaxIter Maximum number of iterations allowed.

MaxSQPIter Maximum number of SQP iterations
allowed.

11-21



fgoalattain

MeritFunction Use goal attainment/minimax merit
function if set to 'multiobj'. Use
fmincon merit function if set to
'singleobj'.

OutputFcn Specify one or more user-defined
functions that an optimization function
calls at each iteration. See “Output
Function” on page 9-18.

PlotFcns Plots various measures of progress
while the algorithm executes, select
from predefined plots or write your
own. Specifying @optimplotx plots the
current point; @optimplotfunccount
plots the function count;
@optimplotfval plots the function
value; @optimplotconstrviolation
plots the maximum constraint violation;
@optimplotstepsize plots the step
size; @optimplotfirstorderopt plots
the first-order of optimality.

RelLineSrchBnd Relative bound (a real nonnegative
scalar value) on the line search step
length such that the total displacement
in x satisfies |Δx(i)| ≤ relLineSrchBnd·
max(|x(i)|,|typicalx(i)|). This option
provides control over the magnitude
of the displacements in x for cases in
which the solver takes steps that are
considered too large.

RelLineSrchBndDuration Number of iterations for which the
bound specified in RelLineSrchBnd
should be active (default is 1).

TolCon Termination tolerance on the constraint
violation.

11-22



fgoalattain

TolConSQP Termination tolerance on inner
iteration SQP constraint violation.

TolFun Termination tolerance on the function
value.

TolX Termination tolerance on x.

TypicalX Typical x values. The length of the
vector is equal to the number of
elements in x0, the starting point.

UseParallel When 'always', estimate gradients in
parallel. Disable by setting to 'never'.

Examples Consider a linear system of differential equations.

An output feedback controller, K, is designed producing a closed loop
system

�x A BKC x Bu
y Cx
= + +
=

( ) ,
.

The eigenvalues of the closed loop system are determined from the
matrices A, B, C, and K using the command eig(A+B*K*C). Closed loop
eigenvalues must lie on the real axis in the complex plane to the left of
the points [-5,-3,-1]. In order not to saturate the inputs, no element
in K can be greater than 4 or be less than -4.

The system is a two-input, two-output, open loop, unstable system,
with state-space matrices.

A B C=
−

−
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= −
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
0 5 0 0
0 2 10
0 1 2

1 0
2 2

0 1

1 0
.

        
00

0 0 1
⎡

⎣
⎢

⎤

⎦
⎥ .

The set of goal values for the closed loop eigenvalues is initialized as

11-23



fgoalattain

goal = [-5,-3,-1];

To ensure the same percentage of under- or overattainment in the
active objectives at the solution, the weighting matrix, weight, is set to
abs(goal).

Starting with a controller, K = [-1,-1; -1,-1], first write an M-file,
eigfun.m.

function F = eigfun(K,A,B,C)
F = sort(eig(A+B*K*C)); % Evaluate objectives

Next, enter system matrices and invoke an optimization routine.

A = [-0.5 0 0; 0 -2 10; 0 1 -2];

B = [1 0; -2 2; 0 1];

C = [1 0 0; 0 0 1];

K0 = [-1 -1; -1 -1]; % Initialize controller matrix

goal = [-5 -3 -1]; % Set goal values for the eigenvalues

weight = abs(goal) % Set weight for same percentage

lb = -4*ones(size(K0)); % Set lower bounds on the controller

ub = 4*ones(size(K0)); % Set upper bounds on the controller

options = optimset('Display','iter'); % Set display parameter

[K,fval,attainfactor] = fgoalattain(@(K)eigfun(K,A,B,C),...

K0,goal,weight,[],[],[],[],lb,ub,[],options)

You can run this example by using the demonstration script goaldemo.
(From the MATLAB Help browser or the MathWorks™ Web site
documentation, you can click the demo name to display the demo.) After
about 12 iterations, a solution is

Active constraints:
1
2
4
9

10
K =

11-24



fgoalattain

-4.0000 -0.2564
-4.0000 -4.0000

fval =
-6.9313
-4.1588
-1.4099

attainfactor =
-0.3863

Discussion The attainment factor indicates that each of the objectives has been
overachieved by at least 38.63% over the original design goals. The
active constraints, in this case constraints 1 and 2, are the objectives
that are barriers to further improvement and for which the percentage
of overattainment is met exactly. Three of the lower bound constraints
are also active.

In the preceding design, the optimizer tries to make the objectives
less than the goals. For a worst-case problem where the objectives
must be as near to the goals as possible, use optimset to set the
GoalsExactAchieve option to the number of objectives for which this
is required.

Consider the preceding problem when you want all the eigenvalues
to be equal to the goal values. A solution to this problem is found by
invoking fgoalattain with the GoalsExactAchieve option set to 3.

options = optimset('GoalsExactAchieve',3);

[K,fval,attainfactor] = fgoalattain(...

@(K)eigfun(K,A,B,C),K0,goal,weight,[],[],[],[],lb,ub,[],...

options)

After about seven iterations, a solution is

K =
-1.5954 1.2040
-0.4201 -2.9046

11-25



fgoalattain

fval =
-5.0000
-3.0000
-1.0000

attainfactor =
1.0859e-20

In this case the optimizer has tried to match the objectives to the goals.
The attainment factor (of 1.0859e-20) indicates that the goals have
been matched almost exactly.

Notes This problem has discontinuities when the eigenvalues become complex;
this explains why the convergence is slow. Although the underlying
methods assume the functions are continuous, the method is able
to make steps toward the solution because the discontinuities do not
occur at the solution point. When the objectives and goals are complex,
fgoalattain tries to achieve the goals in a least-squares sense.

Algorithm Multiobjective optimization concerns the minimization of a set of
objectives simultaneously. One formulation for this problem, and
implemented in fgoalattain, is the goal attainment problem of
Gembicki [3]. This entails the construction of a set of goal values for
the objective functions. Multiobjective optimization is discussed fully in
Chapter 5, “Standard Algorithms”.

In this implementation, the slack variable γ is used as a dummy
argument to minimize the vector of objectives F(x) simultaneously;
goal is a set of values that the objectives attain. Generally, prior to
the optimization, it is not known whether the objectives will reach
the goals (under attainment) or be minimized less than the goals
(overattainment). A weighting vector, weight, controls the relative
underattainment or overattainment of the objectives.

fgoalattain uses a sequential quadratic programming (SQP)
method, which is described fully in Chapter 5, “Standard Algorithms”.

11-26



fgoalattain

Modifications are made to the line search and Hessian. In the line
search an exact merit function (see [1] and [4]) is used together with the
merit function proposed by [5] and [6]. The line search is terminated
when either merit function shows improvement. A modified Hessian,
which takes advantage of the special structure of the problem, is also
used (see [1] and [4]). A full description of the modifications used is
found in “Goal Attainment Method” on page 5-44 in “Introduction to
Algorithms.” Setting the MeritFunction option to 'singleobj' with

options = optimset(options,'MeritFunction','singleobj')

uses the merit function and Hessian used in fmincon.

See also “SQP Implementation” on page 5-32 for more details on
the algorithm used and the types of procedures displayed under the
Procedures heading when the Display option is set to 'iter'.

Limitations The objectives must be continuous. fgoalattain might give only local
solutions.

References [1] Brayton, R.K., S.W. Director, G.D. Hachtel, and L.Vidigal, “A New
Algorithm for Statistical Circuit Design Based on Quasi-Newton
Methods and Function Splitting,” IEEE Transactions on Circuits and
Systems, Vol. CAS-26, pp 784-794, Sept. 1979.

[2] Fleming, P.J. and A.P. Pashkevich, Computer Aided Control System
Design Using a Multi-Objective Optimisation Approach, Control 1985
Conference, Cambridge, UK, pp. 174-179.

[3] Gembicki, F.W., “Vector Optimization for Control with Performance
and Parameter Sensitivity Indices,” Ph.D. Dissertation, Case Western
Reserve Univ., Cleveland, OH, 1974.

[4] Grace, A.C.W., “Computer-Aided Control System Design Using
Optimization Techniques,” Ph.D. Thesis, University of Wales, Bangor,
Gwynedd, UK, 1989.

11-27



fgoalattain

[5] Han, S.P., “A Globally Convergent Method For Nonlinear
Programming,” Journal of Optimization Theory and Applications, Vol.
22, p. 297, 1977.

[6] Powell, M.J.D., “A Fast Algorithm for Nonlinear Constrained
Optimization Calculations,” Numerical Analysis, ed. G.A. Watson,
Lecture Notes in Mathematics, Vol. 630, Springer Verlag, 1978.

See Also @ (function_handle), fmincon, fminimax, optimset, optimtool

11-28



fminbnd

Purpose Find minimum of single-variable function on fixed interval

Equation Finds a minimum for a problem specified by

min ( ) .
x

f x x x x such that 1 2< <

x, x1, and x2 are scalars and f(x) is a function that returns a scalar.

Syntax x = fminbnd(fun,x1,x2)
x = fminbnd(fun,x1,x2,options)
x = fminbnd(problem)
[x,fval] = fminbnd(...)
[x,fval,exitflag] = fminbnd(...)
[x,fval,exitflag,output] = fminbnd(...)

Description fminbnd attempts to find a minimum of a function of one variable
within a fixed interval.

x = fminbnd(fun,x1,x2) returns a value x that is a local minimizer
of the scalar valued function that is described in fun in the interval
x1 < x < x2. fun is a function handle for either an M-file function
or an anonymous function.

x = fminbnd(fun,x1,x2,options) minimizes with the optimization
options specified in the structure options. Use optimset to set these
options.

x = fminbnd(problem) finds the minimum for problem, where
problem is a structure described in “Input Arguments” on page 11-30.

Create the structure problem by exporting a problem from Optimization
Tool, as described in “Exporting to the MATLAB® Workspace” on page
3-14.

[x,fval] = fminbnd(...) returns the value of the objective function
computed in fun at the solution x.

[x,fval,exitflag] = fminbnd(...) returns a value exitflag that
describes the exit condition of fminbnd.

11-29



fminbnd

[x,fval,exitflag,output] = fminbnd(...) returns a structure
output that contains information about the optimization.

“Passing Extra Parameters” on page 2-10 explains how to parameterize
the objective function fun, if necessary.

Input
Arguments

“Function Arguments” on page 9-2 contains general descriptions of
arguments passed into fminbnd. This section provides function-specific
details for fun, options, and problem:

fun The function to be minimized. fun is a function handle
for a function that accepts a scalar x and returns a
scalar f, the objective function evaluated at x. The
function fun can be specified as a function handle for an
M-file function

x = fminbnd(@myfun,x1,x2)

where myfun is a MATLAB® function such as

function f = myfun(x)
f = ... % Compute function value at x.

fun can also be a function handle for an anonymous
function.

x = fminbnd(@(x)sin(x^2),x1,x2);

options “Options” on page 11-31 provides the function-specific
details for the options values.

f Objective function

x1 Left endpoint

x2 Right endpoint

solver 'fminbnd'

problem

options Options structure created with optimset

11-30



fminbnd

Output
Arguments

“Function Arguments” on page 9-2 contains general descriptions of
arguments returned by fminbnd. This section provides function-specific
details for exitflag and output:

exitflag Integer identifying the reason the algorithm terminated.
The following lists the values of exitflag and the
corresponding reasons the algorithm terminated.

1 Function converged to a solution x.

0 Number of iterations exceeded
options.MaxIter or number of function
evaluations exceeded options.FunEvals.

-1 Algorithm was terminated by the output
function.

-2 The bounds are inconsistent.

output Structure containing information about the
optimization. The fields of the structure are

iterations Number of iterations taken

funcCount Number of function evaluations

algorithm Optimization algorithm used

message Exit message

Options Optimization options used by fminbnd. You can use optimset to set or
change the values of these fields in the options structure options. See
“Optimization Options” on page 9-8 for detailed information.

11-31



fminbnd

Display Level of display. 'off' displays no output; 'iter'
displays output at each iteration; 'final' displays
just the final output; 'notify' (default) displays
output only if the function does not converge.

FunValCheck Check whether objective function values are valid.
'on' displays an error when the objective function
returns a value that is complex or NaN. 'off'
displays no error.

MaxFunEvals Maximum number of function evaluations
allowed.

MaxIter Maximum number of iterations allowed.

OutputFcn Specify one or more user-defined functions that an
optimization function calls at each iteration. See
“Output Function” on page 9-18.

PlotFcns Plots various measures of progress while the
algorithm executes, select from predefined plots
or write your own. Specifying @optimplotx plots
the current point; @optimplotfunccount plots the
function count; @optimplotfval plots the function
value.

TolX Termination tolerance on x.

Examples A minimum of sin(x) occurs at

x = fminbnd(@sin,0,2*pi)
x =

4.7124

The value of the function at the minimum is

y = sin(x)
y =

-1.0000

11-32



fminbnd

To find the minimum of the function

f(x) = (x – 3)2 – 1,

on the interval (0,5), first write an M-file.

function f = myfun(x)
f = (x-3)^2 - 1;

Next, call an optimization routine.

x = fminbnd(@myfun,0,5)

This generates the solution

x =
3

The value at the minimum is

y = f(x)

y =
-1

If fun is parameterized, you can use anonymous functions to capture
the problem-dependent parameters. For example, suppose you want to
minimize the objective function myfun defined by the following M-file
function.

function f = myfun(x,a)
f = (x - a)^2;

Note that myfun has an extra parameter a, so you cannot pass it directly
to fminbind. To optimize for a specific value of a, such as a = 1.5.

1 Assign the value to a.

11-33



fminbnd

a = 1.5; % define parameter first

2 Call fminbnd with a one-argument anonymous function that captures
that value of a and calls myfun with two arguments:

x = fminbnd(@(x) myfun(x,a),0,1)

Algorithm fminbnd is an M-file. The algorithm is based on golden section search
and parabolic interpolation. Unless the left endpoint x1 is very close to
the right endpoint x2, fminbnd never evaluates fun at the endpoints,
so fun need only be defined for x in the interval x1 < x < x2. If the
minimum actually occurs at x1 or x2, fminbnd returns an interior point
at a distance of no more than 2*TolX from x1 or x2, where TolX is the
termination tolerance. See [1] or [2] for details about the algorithm.

Limitations The function to be minimized must be continuous. fminbnd might only
give local solutions.

fminbnd often exhibits slow convergence when the solution is on a
boundary of the interval. In such a case, fmincon often gives faster and
more accurate solutions.

fminbnd only handles real variables.

References [1] Forsythe, G.E., M.A. Malcolm, and C.B. Moler, Computer Methods
for Mathematical Computations, Prentice Hall, 1976.

[2] Brent, Richard. P., Algorithms for Minimization without Derivatives,
Prentice-Hall, Englewood Cliffs, New Jersey, 1973.

See Also @ (function_handle), fminsearch, fmincon, fminunc, optimset,
optimtool, “Anonymous Functions”

11-34



fmincon

Purpose Find minimum of constrained nonlinear multivariable function

Equation Finds the minimum of a problem specified by

min ( )

( )
( )

,

x
f x

c x
ceq x

A x b
Aeq x beq

lb x ub

 such that 

≤
=

⋅ ≤
⋅ =
≤ ≤

⎧

⎨

⎪
0
0⎪⎪⎪

⎩

⎪
⎪
⎪

x, b, beq, lb, and ub are vectors, A and Aeq are matrices, c(x) and ceq(x)
are functions that return vectors, and f(x) is a function that returns a
scalar. f(x), c(x), and ceq(x) can be nonlinear functions.

Syntax x = fmincon(fun,x0,A,b)
x = fmincon(fun,x0,A,b,Aeq,beq)
x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub)
x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon)
x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)
x = fmincon(problem)
[x,fval] = fmincon(...)
[x,fval,exitflag] = fmincon(...)
[x,fval,exitflag,output] = fmincon(...)
[x,fval,exitflag,output,lambda] = fmincon(...)
[x,fval,exitflag,output,lambda,grad] = fmincon(...)
[x,fval,exitflag,output,lambda,grad,hessian] = fmincon(...)

Description fmincon attempts to find a constrained minimum of a scalar function
of several variables starting at an initial estimate. This is generally
referred to as constrained nonlinear optimization or nonlinear
programming.

x = fmincon(fun,x0,A,b) starts at x0 and attempts to find a
minimizer x of the function described in fun subject to the linear
inequalities A*x ≤ b. x0 can be a scalar, vector, or matrix.

11-35



fmincon

x = fmincon(fun,x0,A,b,Aeq,beq) minimizes fun subject to the
linear equalities Aeq*x = beq and A*x ≤ b. If no inequalities exist, set
A = [] and b = [].

x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub) defines a set of lower and
upper bounds on the design variables in x, so that the solution is always
in the range lb ≤ x ≤ ub. If no equalities exist, set Aeq = [] and beq
= []. If x(i) is unbounded below, set lb(i) = -Inf, and if x(i) is
unbounded above, set ub(i) = Inf.

x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon) subjects the
minimization to the nonlinear inequalities c(x) or equalities ceq(x)
defined in nonlcon. fmincon optimizes such that c(x) ≤ 0 and
ceq(x) = 0. If no bounds exist, set lb = [] and/or ub = [].

x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)
minimizes with the optimization options specified in the structure
options. Use optimset to set these options. If there are no nonlinear
inequality or equality constraints, set nonlcon = [].

x = fmincon(problem) finds the minimum for problem, where
problem is a structure described in “Input Arguments” on page 11-37.

Create the structure problem by exporting a problem from Optimization
Tool, as described in “Exporting to the MATLAB® Workspace” on page
3-14.

[x,fval] = fmincon(...) returns the value of the objective function
fun at the solution x.

[x,fval,exitflag] = fmincon(...) returns a value exitflag that
describes the exit condition of fmincon.

[x,fval,exitflag,output] = fmincon(...) returns a structure
output with information about the optimization.

[x,fval,exitflag,output,lambda] = fmincon(...) returns a
structure lambda whose fields contain the Lagrange multipliers at the
solution x.

[x,fval,exitflag,output,lambda,grad] = fmincon(...) returns
the value of the gradient of fun at the solution x.

11-36



fmincon

[x,fval,exitflag,output,lambda,grad,hessian] = fmincon(...)
returns the value of the Hessian at the solution x. See “Hessian” on
page 11-42.

“Passing Extra Parameters” on page 2-10 explains how to parameterize
the objective function fun, if necessary.

Note If the specified input bounds for a problem are inconsistent, the
output x is x0 and the output fval is [].

Components of x0 that violate the bounds lb ≤ x ≤ ub are reset to the
interior of the box defined by the bounds. Components that respect the
bounds are not changed.

Input
Arguments

“Function Arguments” on page 9-2 describes the arguments passed
to fmincon. “Options” on page 11-138 provides the function-specific
details for the options values. This section provides function-specific
details for fun, nonlcon, and problem.

fun The function to be minimized. fun is a function that accepts a vector x and
returns a scalar f, the objective function evaluated at x. fun can be specified
as a function handle for an M-file function

x = fmincon(@myfun,x0,A,b)

where myfun is a MATLAB® function such as

function f = myfun(x)
f = ... % Compute function value at x

fun can also be a function handle for an anonymous function:

x = fmincon(@(x)norm(x)^2,x0,A,b);

If the gradient of fun can also be computed and the GradObj option is 'on',
as set by

11-37



fmincon

options = optimset('GradObj','on')

then fun must return the gradient vector g(x) in the second output
argument.

If the Hessian matrix can also be computed and the Hessian option is
'on' via options = optimset('Hessian','user-supplied') and the
Algorithm option is trust-region-reflective, fun must return the
Hessian value H(x), a symmetric matrix, in a third output argument. See
“Writing Objective Functions” on page 2-4 for details.

If the Hessian matrix can be computed and the Algorithm option is
interior-point, there are several ways to pass the Hessian to fmincon. For
more information, see “Hessian” on page 11-42.

nonlcon The function that computes the nonlinear inequality constraints c(x)≤ 0
and the nonlinear equality constraints ceq(x) = 0. nonlcon accepts a
vector x and returns the two vectors c and ceq. c is a vector that contains
the nonlinear inequalities evaluated at x, and ceq is a vector that contains
the nonlinear equalities evaluated at x. nonlcon can be specified as a
function handle:

x = fmincon(@myfun,x0,A,b,Aeq,beq,lb,ub,@mycon)

where mycon is a MATLAB function such as

function [c,ceq] = mycon(x)
c = ... % Compute nonlinear inequalities at x.
ceq = ... % Compute nonlinear equalities at x.

If the gradients of the constraints can also be computed and the GradConstr
option is 'on', as set by

options = optimset('GradConstr','on')

then nonlcon must also return, in the third and fourth output arguments,
GC, the gradient of c(x), and GCeq, the gradient of ceq(x). For more
information, see “Nonlinear Constraints” on page 2-17.

11-38



fmincon

Note Because Optimization Toolbox™ functions only accept inputs of type
double, user-supplied objective and nonlinear constraint functions must
return outputs of type double.

“Passing Extra Parameters” on page 2-10 explains how to parameterize the
nonlinear constraint function nonlcon, if necessary.

objective Objective function

x0 Initial point for x

Aineq Matrix for linear inequality constraints

bineq Vector for linear inequality constraints

Aeq Matrix for linear equality constraints

beq Vector for linear equality constraints

lb Vector of lower bounds

ub Vector of upper bounds

nonlcon Nonlinear constraint function

solver 'fmincon'

problem

options Options structure created with optimset

Output
Arguments

“Function Arguments” on page 9-2 describes arguments returned by
fmincon. This section provides function-specific details for exitflag,
lambda, and output:

11-39



fmincon

exitflag Integer identifying the reason the algorithm
terminated. The following lists the values of
exitflag and the corresponding reasons the
algorithm terminated.

1 First-order optimality measure
was less than options.TolFun,
and maximum constraint
violation was less than
options.TolCon.

2 Change in x was less than
options.TolX.

3 Change in the objective
function value was less than
options.TolFun.

4 Magnitude of the search direction
was less than 2*options.TolX
and constraint violation was less
than options.TolCon.

5 Magnitude of directional
derivative in search direction was
less than 2*options.TolFun and
maximum constraint violation
was less than options.TolCon.

0 Number of iterations exceeded
options.MaxIter or number of
function evaluations exceeded
options.FunEvals.

-1 The output function terminated
the algorithm.

-2 No feasible point was found.

grad Gradient at x

hessian Hessian at x

11-40



fmincon

lambda Structure containing the Lagrange multipliers at the
solution x (separated by constraint type). The fields
of the structure are:

lower Lower bounds lb

upper Upper bounds ub

ineqlin Linear inequalities

eqlin Linear equalities

ineqnonlin Nonlinear inequalities

eqnonlin Nonlinear equalities

output Structure containing information about the
optimization. The fields of the structure are:

iterations Number of iterations taken

funcCount Number of function evaluations

lssteplength Size of line search step relative
to search direction (active-set
algorithm only)

constrviolation Maximum of constraint
violations (active-set and
interior-point algorithms)

stepsize Length of last displacement in
x (active-set and interior-point
algorithms)

algorithm Optimization algorithm used

cgiterations Total number of PCG iterations
(trust-region-reflective and
interior-point algorithms)

firstorderopt Measure of first-order optimality

message Exit message

11-41



fmincon

Hessian

fmincon uses a Hessian, the second derivatives of the Lagrangian (see
Equation 2-2), namely,

∇ ∇ ∇ ∇xx i i i iL x f x c x ceq x2 2 2 2( , ) ( ) ( ) ( ).λ λ λ= + +∑ ∑ (11-1)

There are three algorithms used by fmincon, and each one handles
Hessians differently:

• The active-set algorithm does not accept a user-supplied Hessian.
It computes a quasi-Newton approximation to the Hessian of the
Lagrangian.

• The trust-region-reflective can accept a user-supplied Hessian
as the final output of the objective function. Since this algorithm has
only bounds or linear constraints, the Hessian of the Lagrangian is
same as the Hessian of the objective function. See “Writing Objective
Functions” on page 2-4 for details on how to pass the Hessian to
fmincon. Indicate that you are supplying a Hessian by

options = optimset('Hessian','user-supplied');

If you do not pass a Hessian, the algorithm computes a
finite-difference approximation.

• The interior-point algorithm can accept a user-supplied Hessian
as a separately defined function—it is not computed in the objective
function. The syntax is

hessian = hessianfcn(x, lambda)

hessian is an n-by-n matrix, sparse or dense, where n is the number
of variables. lambda is a structure with the Lagrange multiplier
vectors associated with the nonlinear constraints:

lambda.ineqnonlin
lambda.eqnonlin

11-42



fmincon

fmincon computes the structure lambda. hessianfcn must calculate
the sums in Equation 11-1. Indicate that you are supplying a Hessian
by

options = optimset('Hessian','user-supplied',...
'HessFcn',@hessianfcn);

The interior-point algorithm has several more options for Hessians:

• options = optimset('Hessian','bfgs');

fmincon calculates the Hessian by a dense quasi-Newton
approximation.

• options = optimset('Hessian',{'lbfgs',positive integer});

fmincon calculates the Hessian by a limited-memory, large-scale
quasi-Newton approximation. The positive integer specifies how
many past iterations should be remembered.

• options = optimset('Hessian','lbfgs');

fmincon calculates the Hessian by a limited-memory, large-scale
quasi-Newton approximation. The default memory, 10 iterations,
is used.

• options = optimset('Hessian','fin-diff-grads',...
'SubproblemAlgorithm','cg','GradObj','on',...
'GradConstr','on');

fmincon calculates a Hessian-times-vector product by finite
differences of the gradient(s). You must supply the gradient of the
objective function, and also gradients of nonlinear constraints if
they exist.

• options = optimset('Hessian','on',...
'SubproblemAlgorithm','cg', 'HessMult',@HessMultFcn]);

fmincon uses a Hessian-times-vector product. You must supply the
function HessMultFcn, which returns an n-by-1 vector. The HessMult
option enables you to pass the result of multiplying the Hessian by a
vector without calculating the Hessian.

11-43



fmincon

The 'HessMult' option for the interior-point algorithm has a different
syntax than that of the trust-region-reflective algorithm. The syntax
for the interior-point algorithm is

W = HessMultFcn(x,lambda,v);

The result W should be the product H*v, where H is the Hessian at x,
lambda is the Lagrange multiplier (computed by fmincon), and v is a
vector. In contrast, the syntax for the trust-region-reflective algorithm
does not involve lambda:

W = HessMultFcn(H,v);

Again, the result W = H*v. H is the function returned in the third output
of the objective function (see “Writing Objective Functions” on page 2-4),
and v is a vector. H does not have to be the Hessian; rather, it can be any
function that enables you to calculate W = H*v.

Options Optimization options used by fmincon. Some options apply to all
algorithms, and others are relevant for particular algorithms. You
can use optimset to set or change the values of these fields in the
structure options. See “Optimization Options” on page 9-8 for detailed
information.

fmincon uses one of three algorithms: active-set, interior-point, or
trust-region-reflective. You choose the algorithm at the command line
with optimset. For example:

options=optimset('Algorithm','active-set');

The default trust-region-reflective (formerly called large-scale) requires:

• A gradient to be supplied in the objective function

• 'GradObj' to be set to 'on'

• Either bound constraints or linear equality constraints, but not both

11-44



fmincon

If these conditions are not all satisfied, the 'active-set' algorithm
(formerly called medium-scale) is the default.

All Algorithms

These options are used by all three algorithms:

Algorithm Choose the optimization algorithm.

DerivativeCheck Compare user-supplied derivatives (gradients of
the objective and constraints) to finite-difference
approximates.

Diagnostics Display diagnostic information about the
function to be minimized.

DiffMaxChange Maximum change in variables for finite
differencing.

DiffMinChange Minimum change in variables for finite
differencing.

Display Level of display.

• 'off' displays no output

• 'iter' displays output at each iteration

• 'notify' displays output only if the function
does not converge

• 'final' (default) displays just the final
output

FunValCheck Check whether objective function values are
valid. 'on' displays an error when the objective
function returns a value that is complex, Inf, or
NaN. 'off' displays no error.

11-45



fmincon

GradObj Gradient for the objective function defined by
the user. You must provide the gradient to use
the trust-region-reflective method. This option is
not required for the active-set and interior-point
methods. See the preceding description of fun to
see how to define the gradient in fun.

MaxFunEvals Maximum number of function evaluations
allowed.

MaxIter Maximum number of iterations allowed.

OutputFcn Specify one or more user-defined functions that
an optimization function calls at each iteration.
See “Output Function” on page 9-18.

PlotFcns Plots various measures of progress while the
algorithm executes, select from predefined plots
or write your own.

• @optimplotx plots the current point

• @optimplotfunccount plots the function
count

• @optimplotfval plots the function value

• @optimplotconstrviolation plots the
maximum constraint violation

• @optimplotstepsize plots the step size

• @optimplotfirstorderopt plots the
first-order of optimality

TolFun Termination tolerance on the function value.

TolCon Termination tolerance on the constraint
violation.

TolX Termination tolerance on x.

TypicalX Typical x values.

11-46



fmincon

Trust-Region-Reflective Algorithm

These options are used by the trust-region-reflective algorithm:

Hessian If 'on', fmincon uses a user-defined Hessian
(defined in fun), or Hessian information (when
using HessMult), for the objective function.
If 'off', fmincon approximates the Hessian
using finite differences.

HessMult Function handle for Hessian multiply function.
For large-scale structured problems, this
function computes the Hessian matrix product
H*Y without actually forming H. The function
is of the form

W = hmfun(Hinfo,Y,p1,p2,...)

where Hinfo and possibly the additional
parameters p1,p2,... contain the matrices
used to compute H*Y.

The first argument must be the same as the
third argument returned by the objective
function fun, for example:

[f,g,Hinfo] = fun(x)

Y is a matrix that has the same number
of rows as there are dimensions in the
problem. W = H*Y, although H is not formed
explicitly. fminunc uses Hinfo to compute
the preconditioner. The optional parameters
p1, p2, ... can be any additional parameters
needed by hmfun. See “Passing Extra
Parameters” on page 2-10 for information on
how to supply values for the parameters.

11-47



fmincon

Note 'Hessian' must be set to 'on' for Hinfo
to be passed from fun to hmfun.

See “Nonlinear Minimization with a Dense but
Structured Hessian and Equality Constraints”
on page 4-62 for an example.

HessPattern Sparsity pattern of the Hessian for finite
differencing. If it is not convenient to compute
the sparse Hessian matrix H in fun, the
trust-region-reflective method in fmincon can
approximate H via sparse finite differences (of
the gradient) provided that you supply the
sparsity structure of H—i.e., locations of the
nonzeros—as the value for HessPattern. In
the worst case, if the structure is unknown,
you can set HessPattern to be a dense matrix
and a full finite-difference approximation is
computed at each iteration (this is the default).
This can be very expensive for large problems,
so it is usually worth the effort to determine
the sparsity structure.

MaxPCGIter Maximum number of PCG (preconditioned
conjugate gradient) iterations. For more
information, see “Preconditioned Conjugate
Gradients” on page 6-12.

11-48



fmincon

PrecondBandWidth Upper bandwidth of preconditioner for PCG.
By default, diagonal preconditioning is used
(upper bandwidth of 0). For some problems,
increasing the bandwidth reduces the number
of PCG iterations. Setting PrecondBandWidth
to 'Inf' uses a direct factorization (Cholesky)
rather than the conjugate gradients (CG). The
direct factorization is computationally more
expensive than CG, but produces a better
quality step towards the solution.

TolPCG Termination tolerance on the PCG iteration.

11-49



fmincon

Active-Set Algorithm

These options are used only by the active-set algorithm:

MaxSQPIter Maximum number of SQP iterations
allowed.

RelLineSrchBnd Relative bound (a real nonnegative
scalar value) on the line search step
length such that the total displacement
in x satisfies |Δx(i)| ≤ relLineSrchBnd·
max(|x(i)|,|typicalx(i)|). This option
provides control over the magnitude
of the displacements in x for cases in
which the solver takes steps that are
considered too large.

RelLineSrchBndDuration Number of iterations for which the
bound specified in RelLineSrchBnd
should be active (default is 1).

TolConSQP Termination tolerance on inner
iteration SQP constraint violation.

UseParallel When 'always', estimate gradients in
parallel. Disable by setting to 'never'.

Interior-Point Algorithm

These options are used by the interior-point algorithm:

11-50



fmincon

AlwaysHonorConstraints The default 'bounds' ensures that
bound constraints are satisfied at every
iteration. Disable by setting to 'none'.

FinDiffType Finite differences, used to estimate
gradients, are either 'forward'
(the default), or else are 'central'
(centered). 'central' take twice
as many function evaluations but
should be more accurate. 'central'
differences might violate bounds
during their evaluation.

HessFcn Function handle to a user-supplied
Hessian (see “Hessian” on page 11-42).

Hessian Chooses how fmincon calculates the
Hessian (see “Hessian” on page 11-42).

HessMult Handle to a user-supplied function that
gives a Hessian-times-vector product
(see “Hessian” on page 11-42).

InitBarrierParameter Initial barrier value. Sometimes it
might help to try a value above the
default 0.1, especially if the objective
or constraint functions are large.

InitTrustRegionRadius Initial radius of the trust region. On
badly scaled problems it might help
to choose a value smaller than the

default n , where n is the number of
variables.

MaxProjCGIter A tolerance (stopping criterion) for the
number of projected conjugate gradient
iterations; this is an inner iteration,
not the number of iterations of the
algorithm.

11-51



fmincon

ObjectiveLimit A tolerance (stopping criterion). If the
objective function value goes below
ObjectiveLimit and the iterate is
feasible, the iterations halt, since the
problem is presumably unbounded.

ScaleProblem The default obj-and-constr causes
the algorithm to normalize all
constraints and the objective function.
Disable by setting to none.

SubproblemAlgorithm Determines how the iteration
step is calculated. The default
ldl-factorization is usually faster
than cg (conjugate gradient), though
cg may be faster for large problems
with dense Hessians.

TolProjCG A relative tolerance (stopping criterion)
for projected conjugate gradient
algorithm; this is for an inner iteration,
not the algorithm iteration.

TolProjCGAbs Absolute tolerance (stopping criterion)
for projected conjugate gradient
algorithm; this is for an inner iteration,
not the algorithm iteration.

Examples Find values of x that minimize f(x) = –x1x2x3, starting at the point
x = [10;10;10], subject to the constraints:

0 ≤ x1 + 2x2 + 2x3 ≤ 72.

1 Write an M-file that returns a scalar value f of the objective function
evaluated at x:

function f = myfun(x)
f = -x(1) * x(2) * x(3);

11-52



fmincon

2 Rewrite the constraints as both less than or equal to a constant,

–x1–2x2–2x3 ≤ 0
x1 + 2x2 + 2x3≤ 72

3 Since both constraints are linear, formulate them as the matrix
inequality A·x ≤ b, where

A b=
− − −⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥

1 2 2
1 2 2

0
72

, .  

4 Supply a starting point and invoke an optimization routine:

x0 = [10; 10; 10]; % Starting guess at the solution
[x,fval] = fmincon(@myfun,x0,A,b)

5 After 66 function evaluations, the solution is

x =
24.0000
12.0000
12.0000

where the function value is

fval =
-3.4560e+03

and linear inequality constraints evaluate to be less than or equal
to 0:

A*x-b=
-72

0

11-53



fmincon

Notes Trust-Region-Reflective Optimization

To use the trust-region-reflective algorithm, you must

• Supply the gradient of the objective function in fun.

• Set GradObj to 'on' in options.

• Specify the feasible region using one, but not both, of the following
types of constraints:

- Upper and lower bounds constraints

- Linear equality constraints, in which the equality constraint
matrix Aeq cannot have more rows than columns

You cannot use inequality constraints with the trust-region-reflective
algorithm. If the preceding conditions are not met, fmincon reverts to
the active-set algorithm.

fmincon returns a warning if you do not provide a gradient and the
Algorithm option is trust-region-reflective. fmincon permits
an approximate gradient to be supplied, but this option is not
recommended; the numerical behavior of most optimization methods
is considerably more robust when the true gradient is used. For more
information on what problem formulations are covered and what
information you must provide, see Large-Scale Problem Coverage and
Requirements on page 4-44.

The trust-region-reflective method in fmincon is in general most
effective when the matrix of second derivatives, i.e., the Hessian
matrix H(x), is also computed. However, evaluation of the true Hessian
matrix is not required. For example, if you can supply the Hessian
sparsity structure (using the HessPattern option in options), fmincon
computes a sparse finite-difference approximation to H(x).

If x0 is not strictly feasible, fmincon chooses a new strictly feasible
(centered) starting point.

If components of x have no upper (or lower) bounds, fmincon prefers
that the corresponding components of ub (or lb) be set to Inf (or -Inf

11-54



fmincon

for lb) as opposed to an arbitrary but very large positive (or negative in
the case of lower bounds) number.

Take note of these characteristics of linearly constrained minimization:

• A dense (or fairly dense) column of matrix Aeq can result in
considerable fill and computational cost.

• fmincon removes (numerically) linearly dependent rows in Aeq;
however, this process involves repeated matrix factorizations and
therefore can be costly if there are many dependencies.

• Each iteration involves a sparse least-squares solution with matrix

Aeq Aeq RT T= ,

where RT is the Cholesky factor of the preconditioner. Therefore, there
is a potential conflict between choosing an effective preconditioner

and minimizing fill in Aeq .

Active-Set Optimization

If equality constraints are present and dependent equalities are
detected and removed in the quadratic subproblem, 'dependent'
appears under the Procedures heading (when you ask for output
by setting the Display option to'iter'). The dependent equalities
are only removed when the equalities are consistent. If the system
of equalities is not consistent, the subproblem is infeasible and
'infeasible' appears under the Procedures heading.

Algorithm Trust-Region-Reflective Optimization

The trust-region-reflective algorithm is a subspace trust-region method
and is based on the interior-reflective Newton method described in [3]
and [4]. Each iteration involves the approximate solution of a large
linear system using the method of preconditioned conjugate gradients
(PCG). See the trust-region and preconditioned conjugate gradient
method descriptions in Chapter 6, “Large-Scale Algorithms”.

11-55



fmincon

Active-Set Optimization

fmincon uses a sequential quadratic programming (SQP) method.
In this method, the function solves a quadratic programming (QP)
subproblem at each iteration. fmincon updates an estimate of the
Hessian of the Lagrangian at each iteration using the BFGS formula
(see fminunc and references [7] and [8]).

fmincon performs a line search using a merit function similar to that
proposed by [6], [7], and [8]. The QP subproblem is solved using an
active set strategy similar to that described in [5]. “Constrained
Optimization” on page 5-29 describes this algorithm in detail.

See also “SQP Implementation” on page 5-32 for more details on the
algorithm used.

Interior-Point Optimization

This algorithm is described in [1], [3], and [9].

Limitations fmincon is a gradient-based method that is designed to work on
problems where the objective and constraint functions are both
continuous and have continuous first derivatives.

When the problem is infeasible, fmincon attempts to minimize the
maximum constraint value.

The trust-region-reflective algorithm does not allow equal upper and
lower bounds. For example, if lb(2)==ub(2), fmincon gives this error:

Equal upper and lower bounds not permitted in this
large-scale method.
Use equality constraints and the medium-scale
method instead.

There are two different syntaxes for passing a Hessian, and there
are two different syntaxes for passing a HessMult function; one for
trust-region-reflective, and another for interior-point.

11-56



fmincon

For trust-region-reflective, the Hessian of the Lagrangian is the same
as the Hessian of the objective function. You pass that Hessian as the
third output of the objective function.

For interior-point, the Hessian of the Lagrangian involves the Lagrange
multipliers and the Hessians of the nonlinear constraint functions. You
pass the Hessian as a separate function that takes into account both the
position x and the Lagrange multiplier structure lambda.

References [1] Byrd, R.H., J. C. Gilbert, and J. Nocedal, “A Trust Region Method
Based on Interior Point Techniques for Nonlinear Programming,”
Mathematical Programming, Vol 89, No. 1, pp. 149–185, 2000.

[2] Byrd, R.H., Mary E. Hribar, and Jorge Nocedal, “An Interior Point
Algorithm for Large-Scale Nonlinear Programming, SIAM Journal
on Optimization,” SIAM Journal on Optimization, Vol 9, No. 4, pp.
877–900, 1999.

[3] Coleman, T.F. and Y. Li, “An Interior, Trust Region Approach
for Nonlinear Minimization Subject to Bounds,” SIAM Journal on
Optimization, Vol. 6, pp. 418–445, 1996.

[4] Coleman, T.F. and Y. Li, “On the Convergence of Reflective Newton
Methods for Large-Scale Nonlinear Minimization Subject to Bounds,”
Mathematical Programming, Vol. 67, Number 2, pp. 189–224, 1994.

[5] Gill, P.E., W. Murray, and M.H. Wright, Practical Optimization,
London, Academic Press, 1981.

[6] Han, S.P., “A Globally Convergent Method for Nonlinear
Programming,” Vol. 22, Journal of Optimization Theory and
Applications, p. 297, 1977.

[7] Powell, M.J.D., “A Fast Algorithm for Nonlinearly Constrained
Optimization Calculations,” Numerical Analysis, ed. G.A. Watson,
Lecture Notes in Mathematics, Springer Verlag, Vol. 630, 1978.

11-57



fmincon

[8] Powell, M.J.D., “The Convergence of Variable Metric Methods
For Nonlinearly Constrained Optimization Calculations,” Nonlinear
Programming 3 (O.L. Mangasarian, R.R. Meyer, and S.M. Robinson,
eds.), Academic Press, 1978.

[9] Waltz, R. A., J. L. Morales, J. Nocedal, and D. Orban, “An interior
algorithm for nonlinear optimization that combines line search and
trust region steps,” Mathematical Programming, Vol 107, No. 3, pp.
391–408, 2006.

See Also @ (function_handle), fminbnd, fminsearch, fminunc, optimset,
optimtool

11-58



fminimax

Purpose Solve minimax constraint problem

Equation Finds the minimum of a problem specified by

min max ( )

( )
( )

x i
iF x

c x
ceq x
A x b

Aeq x beq
lb x

  such that  

≤
=

⋅ ≤
⋅ =
≤

0
0

≤≤

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪ ub

where x, b, beq, lb, and ub are vectors, A and Aeq are matrices, and
c(x), ceq(x), and F(x) are functions that return vectors. F(x), c(x), and
ceq(x) can be nonlinear functions.

Syntax x = fminimax(fun,x0)
x = fminimax(fun,x0,A,b)
x = fminimax(fun,x,A,b,Aeq,beq)
x = fminimax(fun,x,A,b,Aeq,beq,lb,ub)
x = fminimax(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon)
x = fminimax(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)
x = fminimax(problem)
[x,fval] = fminimax(...)
[x,fval,maxfval] = fminimax(...)
[x,fval,maxfval,exitflag] = fminimax(...)
[x,fval,maxfval,exitflag,output] = fminimax(...)
[x,fval,maxfval,exitflag,output,lambda] = fminimax(...)

Description fminimax minimizes the worst-case (largest) value of a set of
multivariable functions, starting at an initial estimate. This is generally
referred to as the minimax problem.

x = fminimax(fun,x0) starts at x0 and finds a minimax solution x
to the functions described in fun.

x = fminimax(fun,x0,A,b) solves the minimax problem subject to
the linear inequalities A*x ≤ b.

11-59



fminimax

x = fminimax(fun,x,A,b,Aeq,beq) solves the minimax problem
subject to the linear equalities Aeq*x = beq as well. Set A = [] and b
= [] if no inequalities exist.

x = fminimax(fun,x,A,b,Aeq,beq,lb,ub) defines a set of lower and
upper bounds on the design variables in x, so that the solution is always
in the range lb ≤ x ≤ ub.

x = fminimax(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon) subjects the
minimax problem to the nonlinear inequalities c(x) or equality
constraints ceq(x) defined in nonlcon. fminimax optimizes such that
c(x) ≤ 0 and ceq(x) = 0. Set lb = [] and/or ub = [] if no bounds
exist.

x = fminimax(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)
minimizes with the optimization options specified in the structure
options. Use optimset to set these options.

x = fminimax(problem) finds the minimum for problem, where
problem is a structure described in “Input Arguments” on page 11-61.

Create the structure problem by exporting a problem from Optimization
Tool, as described in “Exporting to the MATLAB® Workspace” on page
3-14.

[x,fval] = fminimax(...) returns the value of the objective function
fun at the solution x.

[x,fval,maxfval] = fminimax(...) returns the maximum of the
objective functions in the input fun evaluated at the solution x.

[x,fval,maxfval,exitflag] = fminimax(...) returns a value
exitflag that describes the exit condition of fminimax.

[x,fval,maxfval,exitflag,output] = fminimax(...) returns a
structure output with information about the optimization.

[x,fval,maxfval,exitflag,output,lambda] = fminimax(...)
returns a structure lambda whose fields contain the Lagrange
multipliers at the solution x.

11-60



fminimax

“Passing Extra Parameters” on page 2-10 explains how to parameterize
the objective function fun, if necessary.

Note If the specified input bounds for a problem are inconsistent, the
output x is x0 and the output fval is [].

Input
Arguments

“Function Arguments” on page 9-2 contains general descriptions of
arguments passed into fminimax. This section provides function-specific
details for fun, nonlcon, and problem:

fun The function to be minimized. fun is a function that accepts a vector x and
returns a vector F, the objective functions evaluated at x. The function fun can
be specified as a function handle for an M-file function

x = fminimax(@myfun,x0)

where myfun is a MATLAB® function such as

function F = myfun(x)

F = ... % Compute function values at x

fun can also be a function handle for an anonymous function.

x = fminimax(@(x)sin(x.*x),x0);

If the user-defined values for x and F are matrices, they are converted to a
vector using linear indexing.

To minimize the worst case absolute values of any of the elements of the
vector F(x) (i.e., min{max abs{F(x)} } ), partition those objectives into the first
elements of F and use optimset to set the MinAbsMax option to be the number
of such objectives.

If the gradient of the objective function can also be computed and the GradObj
option is 'on', as set by

options = optimset('GradObj','on')

11-61



fminimax

then the function fun must return, in the second output argument, the gradient
value G, a matrix, at x. Note that by checking the value of nargout, the function
can avoid computing G when myfun is called with only one output argument (in
the case where the optimization algorithm only needs the value of F but not G).

function [F,G] = myfun(x)

F = ... % Compute the function values at x

if nargout > 1 % Two output arguments

G = ... % Gradients evaluated at x

end

nonlcon The gradient consists of the partial derivative dF/dx of each F at the point x. If
F is a vector of length m and x has length n, where n is the length of x0, then the
gradient G of F(x) is an n-by-m matrix where G(i,j) is the partial derivative
of F(j) with respect to x(i) (i.e., the jth column of G is the gradient of the
jth objective function F(j)).

The function that computes the nonlinear inequality constraints c(x) ≤ 0 and
nonlinear equality constraints ceq(x) = 0. The function nonlcon accepts a
vector x and returns two vectors c and ceq. The vector c contains the nonlinear
inequalities evaluated at x, and ceq contains the nonlinear equalities evaluated
at x. The function nonlcon can be specified as a function handle.

x = fminimax(@myfun,x0,A,b,Aeq,beq,lb,ub,@mycon)

where mycon is a MATLAB function such as

function [c,ceq] = mycon(x)
c = ... % Compute nonlinear inequalities at x
ceq = ... % Compute nonlinear equalities at x

If the gradients of the constraints can also be computed and the GradConstr
option is 'on', as set by

options = optimset('GradConstr','on')

11-62



fminimax

then the function nonlcon must also return, in the third and fourth output
arguments, GC, the gradient of c(x), and GCeq, the gradient of ceq(x).
“Nonlinear Constraints” on page 2-17 explains how to “conditionalize” the
gradients for use in solvers that do not accept supplied gradients, and explains
the syntax of gradients.

Note Because Optimization Toolbox™ functions only accept inputs of type
double, user-supplied objective and nonlinear constraint functions must return
outputs of type double.

“Passing Extra Parameters” on page 2-10 explains how to parameterize the
nonlinear constraint function nonlcon, if necessary.

objective Objective function

x0 Initial point for x

Aineq Matrix for linear inequality constraints

bineq Vector for linear inequality constraints

Aeq Matrix for linear equality constraints

beq Vector for linear equality constraints

lb Vector of lower bounds

ub Vector of upper bounds

nonlcon Nonlinear constraint function

solver 'fminimax'

problem

options Options structure created with optimset

Output
Arguments

“Function Arguments” on page 9-2 contains general descriptions
of arguments returned by fminimax. This section provides
function-specific details for exitflag, lambda, maxfval, and output:

11-63



fminimax

Integer identifying the reason the algorithm terminated. The following
lists the values of exitflag and the corresponding reasons the
algorithm terminated:

1 Function converged to a solution x.

4 Magnitude of the search direction less than
the specified tolerance and constraint violation
less than options.TolCon.

5 Magnitude of directional derivative less than
the specified tolerance and constraint violation
less than options.TolCon.

0 Number of iterations exceeded
options.MaxIter or number of function
evaluations exceeded options.FunEvals.

-1 Algorithm was terminated by the output
function.

exitflag

-2 No feasible point was found.

Structure containing the Lagrange multipliers at the solution x
(separated by constraint type). The fields of the structure are

lower Lower bounds lb

upper Upper bounds ub

ineqlin Linear inequalities

eqlin Linear equalities

ineqnonlin Nonlinear inequalities

lambda

eqnonlin Nonlinear equalities

maxfval Maximum of the function values evaluated at the solution x, that is,
maxfval = max{fun(x)}.

11-64



fminimax

Structure containing information about the optimization. The fields
of the structure are

iterations Number of iterations taken.

funcCount Number of function evaluations.

lssteplength Size of line search step relative to search
direction

stepsize Final displacement in x

algorithm Optimization algorithm used.

firstorderopt Measure of first-order optimality

constrviolation Maximum of nonlinear constraint functions

output

message Exit message

Options Optimization options used by fminimax. You can use optimset to set or
change the values of these fields in the options structure options. See
“Optimization Options” on page 9-8 for detailed information.

DerivativeCheck Compare user-supplied derivatives
(gradients of the objective or constraints)
to finite-differencing derivatives.

Diagnostics Display diagnostic information about
the function to be minimized or solved.

DiffMaxChange Maximum change in variables for
finite-difference gradients.

DiffMinChange Minimum change in variables for
finite-difference gradients.

11-65



fminimax

Display Level of display. 'off' displays no
output; 'iter' displays output at
each iteration; 'notify' displays
output only if the function does not
converge;'final' (default) displays just
the final output.

FunValCheck Check whether objective function and
constraints values are valid. 'on'
displays an error when the objective
function or constraints return a value
that is complex, Inf, or NaN. 'off'
displays no error.

GradConstr Gradient for the user-defined
constraints. See the preceding
description of nonlcon to see how to
define the gradient in nonlcon.

GradObj Gradient for the user-defined objective
function. See the preceding description
of fun to see how to define the gradient
in fun.

MaxFunEvals Maximum number of function
evaluations allowed.

MaxIter Maximum number of iterations allowed.

MaxSQPIter Maximum number of SQP iterations
allowed.

MeritFunction Use the goal attainment/minimax merit
function if set to 'multiobj'. Use
the fmincon merit function if set to
'singleobj'.

MinAbsMax Number of F(x) to minimize the worst
case absolute values.

11-66



fminimax

OutputFcn Specify one or more user-defined
functions that are called after each
iteration of an optimization (medium
scale algorithm only). See “Output
Function” on page 9-18.

PlotFcns Plots various measures of progress
while the algorithm executes, select
from predefined plots or write your
own. Specifying @optimplotx plots the
current point; @optimplotfunccount
plots the function count;
@optimplotfval plots the function
value; @optimplotconstrviolation
plots the maximum constraint violation;
@optimplotstepsize plots the step size;
@optimplotfirstorderopt plots the
first-order of optimality.

RelLineSrchBnd Relative bound (a real nonnegative
scalar value) on the line search step
length such that the total displacement
in x satisfies |Δx(i)| ≤ relLineSrchBnd·
max(|x(i)|,|typicalx(i)|). This option
provides control over the magnitude
of the displacements in x for cases in
which the solver takes steps that are
considered too large.

RelLineSrchBndDuration Number of iterations for which the
bound specified in RelLineSrchBnd
should be active (default is 1).

TolCon Termination tolerance on the constraint
violation.

TolConSQP Termination tolerance on inner iteration
SQP constraint violation.

11-67



fminimax

TolFun Termination tolerance on the function
value.

TolX Termination tolerance on x.

UseParallel When 'always', estimate gradients in
parallel. Disable by setting to 'never'.

Examples Find values of x that minimize the maximum value of

[f1(x), f2(x), f3(x), f4(x), f5(x)]

where

f x x x x x

f x x x
f x x x

1 1
2

2
2

1 2

2 1
2

2
2

3 1 2

2 48 40 304

3
3

( ) ,

( ) ,
( )

= + − − +

= − −
= + −118

8
4 1 2

5 1 2

,
( ) ,
( ) .

f x x x
f x x x

= − −
= + −

First, write an M-file that computes the five functions at x.

function f = myfun(x)
f(1)= 2*x(1)^2+x(2)^2-48*x(1)-40*x(2)+304; % Objectives
f(2)= -x(1)^2 - 3*x(2)^2;
f(3)= x(1) + 3*x(2) -18;
f(4)= -x(1)- x(2);
f(5)= x(1) + x(2) - 8;

Next, invoke an optimization routine.

x0 = [0.1; 0.1]; % Make a starting guess at solution
[x,fval] = fminimax(@myfun,x0)

After seven iterations, the solution is

11-68



fminimax

x =
4.0000
4.0000

fval =
0.0000 -64.0000 -2.0000 -8.0000 -0.0000

Notes You can set the number of objectives for which the worst case absolute
values of F are minimized in the MinAbsMax option using optimset. You
should partition these objectives into the first elements of F.

For example, consider the preceding problem, which requires finding
values of x that minimize the maximum absolute value of

[f1(x), f2(x), f3(x), f4(x), f5(x)]

Solve this problem by invoking fminimax with the commands

x0 = [0.1; 0.1]; % Make a starting guess at the solution
options = optimset('MinAbsMax',5); % Minimize abs. values
[x,fval] = fminimax(@myfun,x0,...

[],[],[],[],[],[],[],options);

After seven iterations, the solution is

x =
4.9256
2.0796

fval =
37.2356 -37.2356 -6.8357 -7.0052 -0.9948

If equality constraints are present, and dependent equalities are
detected and removed in the quadratic subproblem, 'dependent' is
displayed under the Procedures heading (when the Display option is
set to 'iter'). The dependent equalities are only removed when the
equalities are consistent. If the system of equalities is not consistent,
the subproblem is infeasible and 'infeasible' is displayed under the
Procedures heading.

11-69



fminimax

Algorithm fminimax internally reformulates the minimax problem into an
equivalent Nonlinear Linear Programming problem by appending
additional (reformulation) constraints of the form Fi(x) ≤ γ to the
constraints given in “Equation” on page 11-59, and then minimizing
γ over x. fminimax uses a sequential quadratic programming (SQP)
method [1] to solve this problem.

Modifications are made to the line search and Hessian. In the line
search an exact merit function (see [2] and [4]) is used together with the
merit function proposed by [3] and [5]. The line search is terminated
when either merit function shows improvement. The function uses
a modified Hessian that takes advantage of the special structure
of this problem. Using optimset to set the MeritFunction option
to'singleobj' uses the merit function and Hessian used in fmincon.

See also “SQP Implementation” on page 5-32 for more details on
the algorithm used and the types of procedures printed under the
Procedures heading when you set the Display option to'iter'.

Limitations The function to be minimized must be continuous. fminimax might
only give local solutions.

References [1] Brayton, R.K., S.W. Director, G.D. Hachtel, and L.Vidigal, “A New
Algorithm for Statistical Circuit Design Based on Quasi-Newton
Methods and Function Splitting,” IEEE Trans. Circuits and Systems,
Vol. CAS-26, pp. 784-794, Sept. 1979.

[2] Grace, A.C.W., “Computer-Aided Control System Design Using
Optimization Techniques,” Ph.D. Thesis, University of Wales, Bangor,
Gwynedd, UK, 1989.

[3] Han, S.P., “A Globally Convergent Method For Nonlinear
Programming,” Journal of Optimization Theory and Applications, Vol.
22, p. 297, 1977.

[4] Madsen, K. and H. Schjaer-Jacobsen, “Algorithms for Worst Case
Tolerance Optimization,” IEEE Trans. of Circuits and Systems, Vol.
CAS-26, Sept. 1979.

11-70



fminimax

[5] Powell, M.J.D., “A Fast Algorithm for Nonlinearly Constrained
Optimization Calculations,” Numerical Analysis, ed. G.A. Watson,
Lecture Notes in Mathematics, Vol. 630, Springer Verlag, 1978.

See Also @ (function_handle), fgoalattain, lsqnonlin, optimset, optimtool

11-71



fminsearch

Purpose Find minimum of unconstrained multivariable function using
derivative-free method

Equation Finds the minimum of a problem specified by

min ( )
x

f x

where x is a vector and f(x) is a function that returns a scalar.

Syntax x = fminsearch(fun,x0)
x = fminsearch(fun,x0,options)
x = fminsearch(problem)
[x,fval] = fminsearch(...)
[x,fval,exitflag] = fminsearch(...)
[x,fval,exitflag,output] = fminsearch(...)

Description fminsearch attempts to find a minimum of a scalar function of several
variables, starting at an initial estimate. This is generally referred to as
unconstrained nonlinear optimization.

x = fminsearch(fun,x0) starts at the point x0 and attempts to find
a local minimum x of the function described in fun. fun is a function
handle for either an M-file function or an anonymous function. x0 can
be a scalar, vector, or matrix.

x = fminsearch(fun,x0,options) minimizes with the optimization
options specified in the structure options. Use optimset to set these
options.

x = fminsearch(problem) finds the minimum for problem, where
problem is a structure described in “Input Arguments” on page 11-73.

Create the structure problem by exporting a problem from Optimization
Tool, as described in “Exporting to the MATLAB® Workspace” on page
3-14.

[x,fval] = fminsearch(...) returns in fval the value of the
objective function fun at the solution x.

11-72



fminsearch

[x,fval,exitflag] = fminsearch(...) returns a value exitflag
that describes the exit condition of fminsearch.

[x,fval,exitflag,output] = fminsearch(...) returns a structure
output that contains information about the optimization.

“Passing Extra Parameters” on page 2-10 explains how to parameterize
the objective function fun, if necessary.

Input
Arguments

“Function Arguments” on page 9-2 contains general descriptions
of arguments passed into fminsearch. This section provides
function-specific details for fun, options, and problem:

fun The function to be minimized. fun is a function handle for
a function that accepts a vector x and returns a scalar f,
the objective function evaluated at x. The function fun can
be specified as a function handle for an M-file function

x = fminsearch(@myfun,x0)

where myfun is a MATLAB® function such as

function f = myfun(x)
f = ... % Compute function value at x

fun can also be a function handle for an anonymous
function, such as

x = fminsearch(@(x)norm(x)^2,x0,A,b);

options “Options” on page 11-75 provides the function-specific
details for the options values.

11-73



fminsearch

objective Objective function

x0 Initial point for x

solver 'fminsearch'

problem

options Options structure created with
optimset

Output
Arguments

“Function Arguments” on page 9-2 contains general descriptions
of arguments returned by fminsearch. This section provides
function-specific details for exitflag and output:

exitflag Integer identifying the reason the algorithm
terminated. The following lists the values of
exitflag and the corresponding reasons the
algorithm terminated.

1 The function converged to a solution x.

0 Number of iterations exceeded
options.MaxIter or number of
function evaluations exceeded
options.FunEvals.

-1 The algorithm was terminated by the
output function.

output Structure containing information about the
optimization. The fields of the structure are

iterations Number of iterations

funcCount Number of function evaluations

algorithm Optimization algorithm used

message Exit message

11-74



fminsearch

Options Optimization options used by fminsearch. You can use optimset to set
or change the values of these fields in the options structure options.
See “Optimization Options” on page 9-8 for detailed information.

Display Level of display. 'off' displays no output;
'iter' displays output at each iteration;
'final' displays just the final output;
'notify' (default) displays output only if the
function does not converge.

FunValCheck Check whether objective function and
constraints values are valid. 'on' displays an
error when the objective function or constraints
return a value that is complex or NaN. 'off'
(the default) displays no error.

MaxFunEvals Maximum number of function evaluations
allowed.

MaxIter Maximum number of iterations allowed.

OutputFcn Specify one or more user-defined functions that
an optimization function calls at each iteration.
See “Output Function” on page 9-18.

PlotFcns Plots various measures of progress while the
algorithm executes, select from predefined plots
or write your own. Specifying @optimplotx
plots the current point; @optimplotfunccount
plots the function count; @optimplotfval plots
the function value.

TolFun Termination tolerance on the function value.

TolX Termination tolerance on x.

Examples Example 1

A classic test example for multidimensional minimization is the
Rosenbrock banana function

11-75



fminsearch

f x x x x( ) ( ) .= −( ) + −100 12 1
2 2

1
2

The minimum is at (1,1) and has the value 0. The traditional starting
point is (-1.2,1). The anonymous function shown here defines the
function and returns a function handle called banana:

banana = @(x)100*(x(2)-x(1)^2)^2+(1-x(1))^2;

Pass the function handle to fminsearch:

[x,fval,exitflag] = fminsearch(banana,[-1.2, 1])

This produces

x =
1.0000 1.0000

fval =
8.1777e-010

exitflag =
1

This indicates that the minimizer was found at [1 1] with a value near
zero.

Example 2

You can modify the first example by adding a parameter a to the second
term of the banana function:

f x x x a x( ) ( ) .= −( ) + −100 2 1
2 2

1
2

This changes the location of the minimum to the point [a,a^2]. To
minimize this function for a specific value of a, for example a = sqrt(2),
create a one-argument anonymous function that captures the value of a.

11-76



fminsearch

a = sqrt(2);
banana = @(x)100*(x(2)-x(1)^2)^2+(a-x(1))^2;

Then the statement

[x,fval,exitflag] = fminsearch(banana, [-1.2, 1], ...
optimset('TolX',1e-8));

seeks the minimum [sqrt(2), 2] to an accuracy higher than the
default on x. The result is

x =
1.4142 2.0000

fval =
4.2065e-018

exitflag =
1

Algorithms fminsearch uses the simplex search method of [1]. This is a direct
search method that does not use numerical or analytic gradients as
in fminunc.

If n is the length of x, a simplex in n-dimensional space is characterized
by the n+1 distinct vectors that are its vertices. In two-space, a simplex
is a triangle; in three-space, it is a pyramid. At each step of the search,
a new point in or near the current simplex is generated. The function
value at the new point is compared with the function’s values at the
vertices of the simplex and, usually, one of the vertices is replaced by
the new point, giving a new simplex. This step is repeated until the
diameter of the simplex is less than the specified tolerance.

fminsearch is generally less efficient than fminunc for problems
of order greater than two. However, when the problem is highly
discontinuous, fminsearch might be more robust.

11-77



fminsearch

Limitations fminsearch solves nondifferentiable problems and can often handle
discontinuity, particularly if it does not occur near the solution.
fminsearch might only give local solutions.

fminsearch only minimizes over the real numbers, that is, x must only
consist of real numbers and f(x) must only return real numbers. When x
has complex variables, they must be split into real and imaginary parts.

Notes fminsearch is not the preferred choice for solving problems that are
sums of squares, that is, of the form

min ( ) min ( ) ( ) ... ( )
x x

nf x f x f x f x2
2

1
2

2
2 2= + + +( )

Instead use the lsqnonlin function, which has been optimized for
problems of this form.

References [1] Lagarias, J. C., J. A. Reeds, M. H. Wright, and P. E. Wright,
“Convergence Properties of the Nelder-Mead Simplex Method in Low
Dimensions,” SIAM Journal of Optimization, Vol. 9, Number 1, pp.
112–147, 1998.

See Also @ (function_handle), fminbnd, fminunc, optimset, optimtool,
anonymous functions

11-78



fminunc

Purpose Find minimum of unconstrained multivariable function

Equation Finds the minimum of a problem specified by

min ( )
x

f x

where x is a vector and f(x) is a function that returns a scalar.

Syntax x = fminunc(fun,x0)
x = fminunc(fun,x0,options)
x = fminunc(problem)
[x,fval] = fminunc(...)
[x,fval,exitflag] = fminunc(...)
[x,fval,exitflag,output] = fminunc(...)
[x,fval,exitflag,output,grad] = fminunc(...)
[x,fval,exitflag,output,grad,hessian] = fminunc(...)

Description fminunc attempts to find a minimum of a scalar function of several
variables, starting at an initial estimate. This is generally referred to as
unconstrained nonlinear optimization.

x = fminunc(fun,x0) starts at the point x0 and attempts to find a
local minimum x of the function described in fun. x0 can be a scalar,
vector, or matrix.

x = fminunc(fun,x0,options) minimizes with the optimization
options specified in the structure options. Use optimset to set these
options.

x = fminunc(problem) finds the minimum for problem, where
problem is a structure described in “Input Arguments” on page 11-80.

Create the structure problem by exporting a problem from Optimization
Tool, as described in “Exporting to the MATLAB® Workspace” on page
3-14.

[x,fval] = fminunc(...) returns in fval the value of the objective
function fun at the solution x.

11-79



fminunc

[x,fval,exitflag] = fminunc(...) returns a value exitflag that
describes the exit condition.

[x,fval,exitflag,output] = fminunc(...) returns a structure
output that contains information about the optimization.

[x,fval,exitflag,output,grad] = fminunc(...) returns in grad
the value of the gradient of fun at the solution x.

[x,fval,exitflag,output,grad,hessian] = fminunc(...) returns
in hessian the value of the Hessian of the objective function fun at the
solution x. See “Hessian” on page 11-83.

“Passing Extra Parameters” on page 2-10 explains how to parameterize
the objective function fun, if necessary.

Input
Arguments

“Function Arguments” on page 9-2 contains general descriptions of
arguments passed into fminunc. This section provides function-specific
details for fun, options, and problem:

fun The function to be minimized. fun is a function that accepts a vector x
and returns a scalar f, the objective function evaluated at x. The function
fun can be specified as a function handle for an M-file function

x = fminunc(@myfun,x0)

where myfun is a MATLAB® function such as

function f = myfun(x)
f = ... % Compute function value at x

fun can also be a function handle for an anonymous function.

x = fminunc(@(x)norm(x)^2,x0);

If the gradient of fun can also be computed and the GradObj option is
'on', as set by

options = optimset('GradObj','on')

11-80



fminunc

then the function fun must return, in the second output argument, the
gradient value g, a vector, at x. The gradient is the partial derivatives
∂ f/∂xi of f at the point x. That is, the ith component of g is the partial
derivative of f with respect to the ith component of x.

If the Hessian matrix can also be computed and the Hessian option is
'on', i.e., options = optimset('Hessian','on'), then the function
fun must return the Hessian value H, a symmetric matrix, at x in a third
output argument. The Hessian matrix is the second partial derivatives
matrix of f at the point x. That is, the (i,j)th component of H is the
second partial derivative of f with respect to xi and xj, ∂

2f/∂xi∂xj. The
Hessian is by definition a symmetric matrix.

“Writing Objective Functions” on page 2-4 explains how to “conditionalize”
the gradients and Hessians for use in solvers that do not accept them.
“Passing Extra Parameters” on page 2-10 explains how to parameterize
fun, if necessary.

options “Options” on page 11-83 provides the function-specific details for the
options values.

objective Objective function

x0 Initial point for x

solver 'fminunc'

problem

options Options structure created with optimset

Output
Arguments

“Function Arguments” on page 9-2 contains general descriptions of
arguments returned by fminunc. This section provides function-specific
details for exitflag and output:

11-81



fminunc

exitflag Integer identifying the reason the algorithm
terminated. The following lists the values of
exitflag and the corresponding reasons the
algorithm terminated.

1 Magnitude of gradient smaller
than the specified tolerance.

2 Change in x was smaller than the
specified tolerance.

3 Change in the objective function
value was less than the specified
tolerance.

0 Number of iterations exceeded
options.MaxIter or number of
function evaluations exceeded
options.FunEvals.

-1 Algorithm was terminated by the
output function.

-2 Line search cannot find an
acceptable point along the
current search direction.

grad Gradient at x

hessian Hessian at x

output Structure containing information about the
optimization. The fields of the structure are

iterations Number of iterations taken

funcCount Number of function evaluations

firstorderopt Measure of first-order optimality

algorithm Optimization algorithm used

11-82



fminunc

cgiterations Total number of PCG iterations
(large-scale algorithm only)

stepsize Final displacement in x
(medium-scale algorithm only)

message Exit message

Hessian

fminunc computes the output argument hessian as follows:

• When using the medium-scale algorithm, the function computes a
finite-difference approximation to the Hessian at x using

- The gradient grad if you supply it

- The objective function fun if you do not supply the gradient

• When using the large-scale algorithm, the function uses

- options.Hessian, if you supply it, to compute the Hessian at x

- A finite-difference approximation to the Hessian at x, if you supply
only the gradient

Options fminunc uses these optimization options. Some options apply to all
algorithms, some are only relevant when you are using the large-scale
algorithm, and others are only relevant when you are using the
medium-scale algorithm. You can use optimset to set or change
the values of these fields in the options structure options. See
“Optimization Options” on page 9-8 for detailed information.

The LargeScale option specifies a preference for which algorithm to use.
It is only a preference, because certain conditions must be met to use
the large-scale algorithm. For fminunc, you must provide the gradient
(see the preceding description of fun) or else use the medium-scale
algorithm:

11-83



fminunc

LargeScale Use large-scale algorithm if possible when set to
'on'. Use medium-scale algorithm when set to
'off'.

Large-Scale and Medium-Scale Algorithms

These options are used by both the large-scale and medium-scale
algorithms:

DerivativeCheck Compare user-supplied derivatives (gradient) to
finite-differencing derivatives.

Diagnostics Display diagnostic information about the function
to be minimized.

DiffMaxChange Maximum change in variables for finite
differencing.

DiffMinChange Minimum change in variables for finite
differencing.

Display Level of display. 'off' displays no output; 'iter'
displays output at each iteration; 'notify'
displays output only if the function does not
converge;'final' (default) displays just the final
output.

FunValCheck Check whether objective function values are
valid. 'on' displays an error when the objective
function return a value that is complex or NaN.
'off' (the default) displays no error.

GradObj Gradient for the objective function that you
define. See the preceding description of fun to see
how to define the gradient in fun.

MaxFunEvals Maximum number of function evaluations
allowed.

MaxIter Maximum number of iterations allowed.

11-84



fminunc

OutputFcn Specify one or more user-defined functions that
an optimization function calls at each iteration.
See “Output Function” on page 9-18.

PlotFcns Plots various measures of progress while the
algorithm executes, select from predefined plots
or write your own. Specifying @optimplotx plots
the current point; @optimplotfunccount plots
the function count; @optimplotfval plots the
function value; @optimplotstepsize plots the
step size; @optimplotfirstorderopt plots the
first-order of optimality.

TolFun Termination tolerance on the function value.

TolX Termination tolerance on x.

TypicalX Typical x values.

Large-Scale Algorithm Only

These options are used only by the large-scale algorithm:

Hessian If 'on', fminunc uses a user-defined Hessian
(defined in fun), or Hessian information (when
using HessMult), for the objective function.
If 'off', fminunc approximates the Hessian
using finite differences.

HessMult Function handle for Hessian multiply function.
For large-scale structured problems, this
function computes the Hessian matrix product
H*Y without actually forming H. The function
is of the form

W = hmfun(Hinfo,Y,p1,p2,...)

where Hinfo and possibly the additional
parameters p1,p2,... contain the matrices
used to compute H*Y.

11-85



fminunc

The first argument must be the same as the
third argument returned by the objective
function fun, for example by

[f,g,Hinfo] = fun(x)

Y is a matrix that has the same number of rows
as there are dimensions in the problem. W =
H*Y although H is not formed explicitly. fminunc
uses Hinfo to compute the preconditioner. The
optional parameters p1, p2, ... can be any
additional parameters needed by hmfun. See
“Passing Extra Parameters” on page 2-10 for
information on how to supply values for the
parameters.

Note 'Hessian' must be set to 'on' for Hinfo
to be passed from fun to hmfun.

See “Nonlinear Minimization with a Dense but
Structured Hessian and Equality Constraints”
on page 4-62 for an example.

HessPattern Sparsity pattern of the Hessian for finite
differencing. If it is not convenient to compute
the sparse Hessian matrix H in fun, the
large-scale method in fminunc can approximate
H via sparse finite differences (of the gradient)
provided the sparsity structure of H —i.e.,
locations of the nonzeros—is supplied as the
value for HessPattern. In the worst case, if the
structure is unknown, you can set HessPattern
to be a dense matrix and a full finite-difference
approximation is computed at each iteration
(this is the default). This can be very expensive

11-86



fminunc

for large problems, so it is usually worth the
effort to determine the sparsity structure.

MaxPCGIter Maximum number of PCG (preconditioned
conjugate gradient) iterations (see “Algorithms”
on page 11-90).

PrecondBandWidth Upper bandwidth of preconditioner for PCG. By
default, diagonal preconditioning is used (upper
bandwidth of 0). For some problems, increasing
the bandwidth reduces the number of PCG
iterations. Setting PrecondBandWidth to 'Inf'
uses a direct factorization (Cholesky) rather
than the conjugate gradients (CG). The direct
factorization is computationally more expensive
than CG, but produces a better quality step
towards the solution.

TolPCG Termination tolerance on the PCG iteration.

Medium-Scale Algorithm Only

These options are used only by the medium-scale algorithm:

HessUpdate Method for choosing the search direction in the
Quasi-Newton algorithm. The choices are

• 'bfgs'

• 'dfp'

• 'steepdesc'

See “Hessian Update” on page 5-11 for a
description of these methods.

InitialHessMatrix Initial quasi-Newton matrix. This option is
only available if you set InitialHessType to
'user-supplied'. In that case, you can set
InitialHessMatrix to one of the following:

11-87



fminunc

• scalar — the initial matrix is the scalar
times the identity

• vector — the initial matrix is a diagonal
matrix with the entries of the vector on the
diagonal.

InitialHessType Initial quasi-Newton matrix type. The options
are

• 'identity'

• 'scaled-identity'

• 'user-supplied'

Examples Minimize the function f x x x x x( ) = + +3 21
2

1 2 2
2 .

To use an M-file, create a file myfun.m.

function f = myfun(x)
f = 3*x(1)^2 + 2*x(1)*x(2) + x(2)^2; % Cost function

Then call fminunc to find a minimum of myfun near [1,1].

x0 = [1,1];
[x,fval] = fminunc(@myfun,x0)

After a couple of iterations, the solution, x, and the value of the function
at x, fval, are returned.

x =
1.0e-006 *

0.2541 -0.2029

fval =
1.3173e-013

11-88



fminunc

To minimize this function with the gradient provided, modify the M-file
myfun.m so the gradient is the second output argument

function [f,g] = myfun(x)

f = 3*x(1)^2 + 2*x(1)*x(2) + x(2)^2; % Cost function

if nargout > 1

g(1) = 6*x(1)+2*x(2);

g(2) = 2*x(1)+2*x(2);

end

and indicate that the gradient value is available by creating an
optimization options structure with the GradObj option set to 'on'
using optimset.

options = optimset('GradObj','on');
x0 = [1,1];
[x,fval] = fminunc(@myfun,x0,options)

After several iterations the solution, x, and fval, the value of the
function at x, are returned.

x =
1.0e-015 *
0.1110 -0.8882

fval =
6.2862e-031

To minimize the function f(x) = sin(x) + 3 using an anonymous
function

f = @(x)sin(x)+3;
x = fminunc(f,4)

which returns a solution

x =
4.7124

11-89



fminunc

Notes fminunc is not the preferred choice for solving problems that are sums
of squares, that is, of the form

min ( ) min ( ) ( ) ... ( )
x x

nf x f x f x f x2
2

1
2

2
2 2= + + +( )

Instead use the lsqnonlin function, which has been optimized for
problems of this form.

To use the large-scale method, you must provide the gradient in fun
(and set the GradObj option to 'on' using optimset). A warning is
given if no gradient is provided and the LargeScale option is not 'off'.

Algorithms Large-Scale Optimization

By default fminunc chooses the large-scale algorithm if you supplies the
gradient in fun (and the GradObj option is set to 'on' using optimset).
This algorithm is a subspace trust-region method and is based on
the interior-reflective Newton method described in [2] and [3]. Each
iteration involves the approximate solution of a large linear system
using the method of preconditioned conjugate gradients (PCG). See
“Trust-Region Methods for Nonlinear Minimization” on page 6-3 and
“Preconditioned Conjugate Gradients” on page 6-12.

Medium-Scale Optimization

fminunc, with the LargeScale option set to 'off' with optimset, uses
the BFGS Quasi-Newton method with a cubic line search procedure.
This quasi-Newton method uses the BFGS ([1],[5],[8], and [9]) formula
for updating the approximation of the Hessian matrix. You can select
the DFP ([4],[6], and [7]) formula, which approximates the inverse
Hessian matrix, by setting the HessUpdate option to 'dfp' (and the
LargeScale option to 'off'). You can select a steepest descent method
by setting HessUpdate to 'steepdesc' (and LargeScale to 'off'),
although this is not recommended.

Limitations The function to be minimized must be continuous. fminunc might only
give local solutions.

11-90



fminunc

fminunc only minimizes over the real numbers, that is, x must only
consist of real numbers and f(x) must only return real numbers. When x
has complex variables, they must be split into real and imaginary parts.

Large-Scale Optimization

To use the large-scale algorithm, you must supply the gradient in fun
(and GradObj must be set 'on' in options). See Large-Scale Problem
Coverage and Requirements on page 4-44 for more information on
what problem formulations are covered and what information must
be provided.

References [1] Broyden, C.G., “The Convergence of a Class of Double-Rank
Minimization Algorithms,” Journal Inst. Math. Applic., Vol. 6, pp.
76-90, 1970.

[2] Coleman, T.F. and Y. Li, “An Interior, Trust Region Approach
for Nonlinear Minimization Subject to Bounds,” SIAM Journal on
Optimization, Vol. 6, pp. 418-445, 1996.

[3] Coleman, T.F. and Y. Li, “On the Convergence of Reflective Newton
Methods for Large-Scale Nonlinear Minimization Subject to Bounds,”
Mathematical Programming, Vol. 67, Number 2, pp. 189-224, 1994.

[4] Davidon, W.C., “Variable Metric Method for Minimization,” A.E.C.
Research and Development Report, ANL-5990, 1959.

[5] Fletcher, R., “A New Approach to Variable Metric Algorithms,”
Computer Journal, Vol. 13, pp. 317-322, 1970.

[6] Fletcher, R., “Practical Methods of Optimization,” Vol. 1,
Unconstrained Optimization, John Wiley and Sons, 1980.

[7] Fletcher, R. and M.J.D. Powell, “A Rapidly Convergent Descent
Method for Minimization,” Computer Journal, Vol. 6, pp. 163-168, 1963.

11-91



fminunc

[8] Goldfarb, D., “A Family of Variable Metric Updates Derived by
Variational Means,” Mathematics of Computing, Vol. 24, pp. 23-26,
1970.

[9] Shanno, D.F., “Conditioning of Quasi-Newton Methods for Function
Minimization,” Mathematics of Computing, Vol. 24, pp. 647-656, 1970.

See Also @ (function_handle), fminsearch, optimset, optimtool, anonymous
functions

11-92



fseminf

Purpose Find minimum of semi-infinitely constrained multivariable nonlinear
function

Equation Finds the minimum of a problem specified by

min ( )

,
,

,
( ) ,
( )

x
f x

A x b
Aeq x beq
lb x ub

c x
ceq x

 such that 

⋅ ≤
⋅ =
≤ ≤

≤
=
0
0,,

( , ) , .K x w i ni i ≤ ≤ ≤

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪ 0 1 

x, b, beq, lb, and ub are vectors, A and Aeq are matrices, c(x), ceq(x), and
Ki(x,wi) are functions that return vectors, and f(x) is a function that
returns a scalar. f(x), c(x), and ceq(x) can be nonlinear functions. The
vectors (or matrices) Ki(x,wi) ≤ 0 are continuous functions of both x and
an additional set of variables w1,w2,...,wn. The variables w1,w2,...,wn
are vectors of, at most, length two.

Syntax x = fseminf(fun,x0,ntheta,seminfcon)
x = fseminf(fun,x0,ntheta,seminfcon,A,b)
x = fseminf(fun,x0,ntheta,seminfcon,A,b,Aeq,beq)
x = fseminf(fun,x0,ntheta,seminfcon,A,b,Aeq,beq,lb,ub)
x = fseminf(fun,x0,ntheta,seminfcon,A,b,Aeq,beq,lb,ub,

options)
x = fseminf(problem)
[x,fval] = fseminf(...)
[x,fval,exitflag] = fseminf(...)
[x,fval,exitflag,output] = fseminf(...)
[x,fval,exitflag,output,lambda] = fseminf(...)

Description fseminf finds a minimum of a semi-infinitely constrained scalar
function of several variables, starting at an initial estimate. The aim is
to minimize f(x) so the constraints hold for all possible values of wi∈ℜ

1

(or wi∈ℜ
2). Because it is impossible to calculate all possible values

11-93



fseminf

of Ki(x,wi), a region must be chosen for wi over which to calculate an
appropriately sampled set of values.

x = fseminf(fun,x0,ntheta,seminfcon) starts at x0 and finds a
minimum of the function fun constrained by ntheta semi-infinite
constraints defined in seminfcon.

x = fseminf(fun,x0,ntheta,seminfcon,A,b) also tries to satisfy
the linear inequalities A*x ≤ b.

x = fseminf(fun,x0,ntheta,seminfcon,A,b,Aeq,beq) minimizes
subject to the linear equalities Aeq*x = beq as well. Set A = [] and
b = [] if no inequalities exist.

x = fseminf(fun,x0,ntheta,seminfcon,A,b,Aeq,beq,lb,ub)
defines a set of lower and upper bounds on the design variables in x, so
that the solution is always in the range lb ≤ x ≤ ub.

x =
fseminf(fun,x0,ntheta,seminfcon,A,b,Aeq,beq,lb,ub,options)
minimizes with the optimization options specified in the structure
options. Use optimset to set these options.

x = fseminf(problem) finds the minimum for problem, where
problem is a structure described in “Input Arguments” on page 11-95.

Create the structure problem by exporting a problem from Optimization
Tool, as described in “Exporting to the MATLAB® Workspace” on page
3-14.

[x,fval] = fseminf(...) returns the value of the objective function
fun at the solution x.

[x,fval,exitflag] = fseminf(...) returns a value exitflag that
describes the exit condition.

[x,fval,exitflag,output] = fseminf(...) returns a structure
output that contains information about the optimization.

[x,fval,exitflag,output,lambda] = fseminf(...) returns a
structure lambda whose fields contain the Lagrange multipliers at the
solution x.

11-94



fseminf

“Passing Extra Parameters” on page 2-10 explains how to parameterize
the objective function fun, if necessary.

Note If the specified input bounds for a problem are inconsistent, the
output x is x0 and the output fval is [].

Input
Arguments

“Function Arguments” on page 9-2 contains general descriptions of
arguments passed into fseminf. This section provides function-specific
details for fun, ntheta, options, seminfcon, and problem:

fun The function to be minimized. fun is a function that accepts a vector x and
returns a scalar f, the objective function evaluated at x. The function fun
can be specified as a function handle for an M-file function

x = fseminf(@myfun,x0,ntheta,seminfcon)

where myfun is a MATLAB® function such as

function f = myfun(x)
f = ... % Compute function value at x

fun can also be a function handle for an anonymous function.

fun = @(x)sin(x''*x);

If the gradient of fun can also be computed and the GradObj option is
'on', as set by

options = optimset('GradObj','on')

then the function fun must return, in the second output argument, the
gradient value g, a vector, at x.

ntheta The number of semi-infinite constraints.

11-95



fseminf

options “Options” on page 11-99 provides the function-specific details for the
options values.

seminfcon The function that computes the vector of nonlinear inequality constraints,
c, a vector of nonlinear equality constraints, ceq, and ntheta semi-infinite
constraints (vectors or matrices) K1, K2,..., Kntheta evaluated over
an interval S at the point x. The function seminfcon can be specified
as a function handle.

x = fseminf(@myfun,x0,ntheta,@myinfcon)

where myinfcon is a MATLAB function such as

function [c,ceq,K1,K2,...,Kntheta,S] = myinfcon(x,S)

% Initial sampling interval

if isnan(S(1,1)),

S = ...% S has ntheta rows and 2 columns

end

w1 = ...% Compute sample set

w2 = ...% Compute sample set

...

wntheta = ... % Compute sample set

K1 = ... % 1st semi-infinite constraint at x and w

K2 = ... % 2nd semi-infinite constraint at x and w

...

Kntheta = ...% Last semi-infinite constraint at x and w

c = ... % Compute nonlinear inequalities at x

ceq = ... % Compute the nonlinear equalities at x

S is a recommended sampling interval, which might or might not be used.
Return [] for c and ceq if no such constraints exist.

11-96



fseminf

The vectors or matrices K1, K2, ..., Kntheta contain the semi-infinite
constraints evaluated for a sampled set of values for the independent
variables w1, w2, ... wntheta, respectively. The two-column matrix, S,
contains a recommended sampling interval for values of w1, w2, ...,
wntheta, which are used to evaluate K1, K2, ..., Kntheta. The ith row of
S contains the recommended sampling interval for evaluating Ki. When
Ki is a vector, use only S(i,1) (the second column can be all zeros). When
Ki is a matrix, S(i,2) is used for the sampling of the rows in Ki, S(i,1) is
used for the sampling interval of the columns of Ki (see “Two-Dimensional
Example” on page 11-104). On the first iteration S is NaN, so that some
initial sampling interval must be determined by seminfcon.

Note Because Optimization Toolbox™ functions only accept inputs of
type double, user-supplied objective and nonlinear constraint functions
must return outputs of type double.

“Passing Extra Parameters” on page 2-10 explains how to parameterize
seminfcon, if necessary.

objective Objective function

x0 Initial point for x

ntheta Number of semi-infinite constraints

seminfcon Semi-infinite constraint function

Aineq Matrix for linear inequality constraints

bineq Vector for linear inequality constraints

Aeq Matrix for linear equality constraints

beq Vector for linear equality constraints

lb Vector of lower bounds

ub Vector of upper bounds

solver 'fseminf'

problem

11-97



fseminf

options Options structure created with optimset

Output
Arguments

“Function Arguments” on page 9-2 contains general descriptions of
arguments returned by fseminf. This section provides function-specific
details for exitflag, lambda, and output:

exitflag Integer identifying the reason the algorithm terminated.
The following lists the values of exitflag and the
corresponding reasons the algorithm terminated.

1 Function converged to a solution x.

4 Magnitude of the search direction
was less than the specified tolerance
and constraint violation was less than
options.TolCon.

5 Magnitude of directional derivative
was less than the specified tolerance
and constraint violation was less than
options.TolCon.

0 Number of iterations exceeded
options.MaxIter or number of
function evaluations exceeded
options.FunEvals.

-1 Algorithm was terminated by the
output function.

-2 No feasible point was found.

lambda Structure containing the Lagrange multipliers at the
solution x (separated by constraint type). The fields of the
structure are

lower Lower bounds lb

upper Upper bounds ub

ineqlin Linear inequalities

11-98



fseminf

eqlin Linear equalities

ineqnonlin Nonlinear inequalities

eqnonlin Nonlinear equalities

output Structure containing information about the optimization.
The fields of the structure are

iterations Number of iterations taken

funcCount Number of function evaluations

lssteplength Size of line search step relative to
search direction

stepsize Final displacement in x

algorithm Optimization algorithm used

constrviolation Maximum of nonlinear constraint
functions

firstorderopt Measure of first-order optimality

message Exit message

Options Optimization options used by fseminf. You can use optimset to set or
change the values of these fields in the options structure options. See
“Optimization Options” on page 9-8 for detailed information.

DerivativeCheck Compare user-supplied derivatives
(gradients) to finite-differencing
derivatives.

Diagnostics Display diagnostic information about the
function to be minimized or solved.

DiffMaxChange Maximum change in variables for
finite-difference gradients.

DiffMinChange Minimum change in variables for
finite-difference gradients.

11-99



fseminf

Display Level of display. 'off' displays no
output; 'iter' displays output at each
iteration; 'notify' displays output only
if the function does not converge;'final'
(default) displays just the final output.

FunValCheck Check whether objective function and
constraints values are valid. 'on'
displays an error when the objective
function or constraints return a value
that is complex, Inf, or NaN. 'off' (the
default) displays no error.

GradObj Gradient for the objective function
defined by the user. See the preceding
description of fun to see how to define the
gradient in fun.

MaxFunEvals Maximum number of function evaluations
allowed.

MaxIter Maximum number of iterations allowed.

OutputFcn Specify one or more user-defined functions
that an optimization function calls at
each iteration. See “Output Function” on
page 9-18.

PlotFcns Plots various measures of progress
while the algorithm executes,
select from predefined plots
or write your own. Specifying
@optimplotx plots the current point;
@optimplotfunccount plots the function
count; @optimplotfval plots the function
value; @optimplotconstrviolation
plots the maximum constraint violation;
@optimplotstepsize plots the step size.

11-100



fseminf

RelLineSrchBnd Relative bound (a real nonnegative scalar
value) on the line search step length
such that the total displacement in
x satisfies |Δx(i)| ≤ relLineSrchBnd·
max(|x(i)|,|typicalx(i)|). This option
provides control over the magnitude of
the displacements in x for cases in which
the solver takes steps that are considered
too large.

RelLineSrchBndDuration Number of iterations for which the bound
specified in RelLineSrchBnd should be
active (default is 1).

TolCon Termination tolerance on the constraint
violation.

TolConSQP Termination tolerance on inner iteration
SQP constraint violation.

TolFun Termination tolerance on the function
value.

TolX Termination tolerance on x.

Notes The optimization routine fseminf might vary the recommended
sampling interval, S, set in seminfcon, during the computation because
values other than the recommended interval might be more appropriate
for efficiency or robustness. Also, the finite region wi, over which Ki(x,wi)
is calculated, is allowed to vary during the optimization, provided that
it does not result in significant changes in the number of local minima
in Ki(x,wi).

Examples One-Dimensional Example

Find values of x that minimize

f(x) = (x1 – 0.5)2 + (x2– 0.5)2 + (x3– 0.5)2

11-101



fseminf

where

K x w w x w x w w x x

K

1 1 1 1 1 2 1
2

1 3 3
1

1000
50 1, sin cos sin ,( ) = ( ) ( ) − −( ) − ( ) − ≤

22 2 2 2 2 1 2
2

2 3 3
1

1000
50 1x w w x w x w w x x, sin cos sin ,( ) = ( ) ( ) − −( ) − ( ) − ≤

for all values of w1 and w2 over the ranges

1 ≤ w1≤ 100,
1 ≤ w2≤ 100.

Note that the semi-infinite constraints are one-dimensional, that is,
vectors. Because the constraints must be in the form Ki(x,wi) ≤ 0, you
need to compute the constraints as

K x w w x w x w w x x1 1 1 1 1 2 1
2

1 3 3
1

1000
50 1 0, sin cos sin( ) = ( ) ( ) − −( ) − ( ) − − ≤ ,,

, sin cos sinK x w w x w x w w x x2 2 2 2 2 1 2
2

2 3 3
1

1000
50 1( ) = ( ) ( ) − −( ) − ( ) − − ≤≤ 0.

First, write an M-file that computes the objective function.

function f = myfun(x,s)
% Objective function
f = sum((x-0.5).^2);

Second, write an M-file, mycon.m, that computes the nonlinear equality
and inequality constraints and the semi-infinite constraints.

function [c,ceq,K1,K2,s] = mycon(X,s)
% Initial sampling interval
if isnan(s(1,1)),

s = [0.2 0; 0.2 0];
end
% Sample set
w1 = 1:s(1,1):100;

11-102



fseminf

w2 = 1:s(2,1):100;

% Semi-infinite constraints
K1 = sin(w1*X(1)).*cos(w1*X(2)) - 1/1000*(w1-50).^2 -...

sin(w1*X(3))-X(3)-1;
K2 = sin(w2*X(2)).*cos(w2*X(1)) - 1/1000*(w2-50).^2 -...

sin(w2*X(3))-X(3)-1;

% No finite nonlinear constraints
c = []; ceq=[];

% Plot a graph of semi-infinite constraints
plot(w1,K1,'-',w2,K2,':')
title('Semi-infinite constraints')
drawnow

Then, invoke an optimization routine.

x0 = [0.5; 0.2; 0.3]; % Starting guess
[x,fval] = fseminf(@myfun,x0,2,@mycon)

After eight iterations, the solution is

x =
0.6673
0.3013
0.4023

The function value and the maximum values of the semi-infinite
constraints at the solution x are

fval =
0.0770

[c,ceq,K1,K2] = mycon(x,NaN); % Initial sampling interval
max(K1)
ans =

11-103



fseminf

-0.0017
max(K2)
ans =

-0.0845

A plot of the semi-infinite constraints is produced.

0 20 40 60 80 100
−6

−5

−4

−3

−2

−1

0
Semi−infinite constraints

This plot shows how peaks in both constraints are on the constraint
boundary.

The plot command inside 'mycon.m' slows down the computation.
Remove this line to improve the speed.

Two-Dimensional Example

Find values of x that minimize

f(x) = (x1 – 0.2)2 + (x2– 0.2)2 + (x3– 0.2)2,

where

11-104



fseminf

K x w w x w x w w x x1 1 1 2 2 1
2

1 3 3
1

1000
50, sin cos sin ...( ) = ( ) ( ) − −( ) − ( ) − +

                  sin cos sinw x w x w w x2 2 1 1 2
2

2 3
1

1000
50( ) ( ) − −( ) − ( )) − ≤x3 1 5. ,

for all values of w1 and w2 over the ranges

1 ≤ w1≤ 100,
1 ≤ w2≤ 100,

starting at the point x = [0.25,0.25,0.25].

Note that the semi-infinite constraint is two-dimensional, that is, a
matrix.

First, write an M-file that computes the objective function.

function f = myfun(x,s)
% Objective function
f = sum((x-0.2).^2);

Second, write an M-file for the constraints, called mycon.m. Include
code to draw the surface plot of the semi-infinite constraint each time
mycon is called. This enables you to see how the constraint changes as X
is being minimized.

function [c,ceq,K1,s] = mycon(X,s)
% Initial sampling interval
if isnan(s(1,1)),

s = [2 2];
end

% Sampling set
w1x = 1:s(1,1):100;
w1y = 1:s(1,2):100;
[wx,wy] = meshgrid(w1x,w1y);

% Semi-infinite constraint

11-105



fseminf

K1 = sin(wx*X(1)).*cos(wx*X(2))-1/1000*(wx-50).^2 -...
sin(wx*X(3))-X(3)+sin(wy*X(2)).*cos(wx*X(1))-...
1/1000*(wy-50).^2-sin(wy*X(3))-X(3)-1.5;

% No finite nonlinear constraints
c = []; ceq=[];

% Mesh plot
m = surf(wx,wy,K1,'edgecolor','none','facecolor','interp');
camlight headlight
title('Semi-infinite constraint')
drawnow

Next, invoke an optimization routine.

x0 = [0.25, 0.25, 0.25]; % Starting guess
[x,fval] = fseminf(@myfun,x0,1,@mycon)

After nine iterations, the solution is

x =
0.2926 0.1874 0.2202

and the function value at the solution is

fval =
0.0091

The goal was to minimize the objective f(x) such that the semi-infinite
constraint satisfied K1(x,w) ≤ 1.5. Evaluating mycon at the solution
x and looking at the maximum element of the matrix K1 shows the
constraint is easily satisfied.

[c,ceq,K1] = mycon(x,[0.5,0.5]); % Sampling interval 0.5
max(max(K1))

ans =
-0.0027

11-106



fseminf

This call to mycon produces the following surf plot, which shows the
semi-infinite constraint at x.

Algorithm fseminf uses cubic and quadratic interpolation techniques to estimate
peak values in the semi-infinite constraints. The peak values are used
to form a set of constraints that are supplied to an SQP method as in the
function fmincon. When the number of constraints changes, Lagrange
multipliers are reallocated to the new set of constraints.

The recommended sampling interval calculation uses the difference
between the interpolated peak values and peak values appearing in the
data set to estimate whether the function needs to take more or fewer

11-107



fseminf

points. The function also evaluates the effectiveness of the interpolation
by extrapolating the curve and comparing it to other points in the curve.
The recommended sampling interval is decreased when the peak values
are close to constraint boundaries, i.e., zero.

See also “SQP Implementation” on page 5-32 for more details on
the algorithm used and the types of procedures displayed under the
Procedures heading when the Display option is set to 'iter' with
optimset.

Limitations The function to be minimized, the constraints, and semi-infinite
constraints, must be continuous functions of x and w. fseminf might
only give local solutions.

When the problem is not feasible, fseminf attempts to minimize the
maximum constraint value.

See Also @ (function_handle), fmincon, optimset, optimtool

11-108



fsolve

Purpose Solve system of nonlinear equations

Equation Solves a problem specified by

F(x) = 0

for x, where x is a vector and F(x) is a function that returns a vector
value.

Syntax x = fsolve(fun,x0)
x = fsolve(fun,x0,options)
x = fsolve(problem)
[x,fval] = fsolve(fun,x0)
[x,fval,exitflag] = fsolve(...)
[x,fval,exitflag,output] = fsolve(...)
[x,fval,exitflag,output,jacobian] = fsolve(...)

Description fsolve finds a root (zero) of a system of nonlinear equations.

x = fsolve(fun,x0) starts at x0 and tries to solve the equations
described in fun.

x = fsolve(fun,x0,options) solves the equations with the
optimization options specified in the structure options. Use optimset
to set these options.

x = fsolve(problem) solves problem, where problem is a structure
described in “Input Arguments” on page 11-110.

Create the structure problem by exporting a problem from Optimization
Tool, as described in “Exporting to the MATLAB® Workspace” on page
3-14.

[x,fval] = fsolve(fun,x0) returns the value of the objective function
fun at the solution x.

[x,fval,exitflag] = fsolve(...) returns a value exitflag that
describes the exit condition.

11-109



fsolve

[x,fval,exitflag,output] = fsolve(...) returns a structure
output that contains information about the optimization.

[x,fval,exitflag,output,jacobian] = fsolve(...) returns the
Jacobian of fun at the solution x.

“Passing Extra Parameters” on page 2-10 explains how to parameterize
the objective function fun, if necessary.

Input
Arguments

“Function Arguments” on page 9-2 contains general descriptions of
arguments passed into fsolve. This section provides function-specific
details for fun and problem:

fun The nonlinear system of equations to solve. fun is a function that accepts a
vector x and returns a vector F, the nonlinear equations evaluated at x. The
function fun can be specified as a function handle for an M-file function

x = fsolve(@myfun,x0)

where myfun is a MATLAB® function such as

function F = myfun(x)

F = ... % Compute function values at x

fun can also be a function handle for an anonymous function.

x = fsolve(@(x)sin(x.*x),x0);

If the user-defined values for x and F are matrices, they are converted to a
vector using linear indexing.

If the Jacobian can also be computed and the Jacobian option is 'on', set by

options = optimset('Jacobian','on')

then the function fun must return, in a second output argument, the
Jacobian value J, a matrix, at x.

11-110



fsolve

If fun returns a vector (matrix) of m components and x has length n, where n
is the length of x0, then the Jacobian J is an m-by-n matrix where J(i,j) is
the partial derivative of F(i) with respect to x(j). (Note that the Jacobian
J is the transpose of the gradient of F.)

objective Objective function

x0 Initial point for x

solver 'fsolve'

problem

options Options structure created with optimset

Output
Arguments

“Function Arguments” on page 9-2 contains general descriptions of
arguments returned by fsolve. For more information on the output
headings for fsolve, see “Function-Specific Output Headings” on page
4-85.

This section provides function-specific details for exitflag and output:

exitflag Integer identifying the reason the algorithm terminated.
The following lists the values of exitflag and the
corresponding reasons the algorithm terminated.

1 Function converged to a solution x.

2 Change in x was smaller than the
specified tolerance.

3 Change in the residual was smaller
than the specified tolerance.

4 Magnitude of search direction was
smaller than the specified tolerance.

0 Number of iterations exceeded
options.MaxIter or number of
function evaluations exceeded
options.FunEvals.

11-111



fsolve

-1 Algorithm was terminated by the
output function.

-2 Algorithm appears to be converging to
a point that is not a root.

-3 Trust radius became too small.

-4 Line search cannot sufficiently
decrease the residual along the
current search direction.

output Structure containing information about the
optimization. The fields of the structure are

iterations Number of iterations taken

funcCount Number of function evaluations

algorithm Optimization algorithm used.

cgiterations Total number of PCG iterations
(large-scale algorithm only)

stepsize Final displacement in
x (Gauss-Newton and
Levenberg-Marquardt algorithms)

firstorderopt Measure of first-order optimality
(dogleg or large-scale algorithm, [ ] for
others)

message Exit message

Options Optimization options used by fsolve. Some options apply to all
algorithms, some are only relevant when using the large-scale
algorithm, and others are only relevant when using the medium-scale
algorithm. You can use optimset to set or change the values of these
fields in the options structure, options. See “Optimization Options” on
page 9-8 for detailed information.

The LargeScale option specifies a preference for which algorithm to
use. It is only a preference because certain conditions must be met

11-112



fsolve

to use the large-scale algorithm. For fsolve, the nonlinear system of
equations cannot be underdetermined; that is, the number of equations
(the number of elements of F returned by fun) must be at least as many
as the length of x or else the medium-scale algorithm is used:

LargeScale Use large-scale algorithm if possible when set to
'on'. Use medium-scale algorithm when set to
'off'. The default for fsolve is 'off'.

Medium-Scale and Large-Scale Algorithms

These options are used by both the medium-scale and large-scale
algorithms:

DerivativeCheck Compare user-supplied derivatives (Jacobian) to
finite-differencing derivatives.

Diagnostics Display diagnostic information about the function
to be solved.

DiffMaxChange Maximum change in variables for finite
differencing.

DiffMinChange Minimum change in variables for finite
differencing.

Display Level of display. 'off' displays no output;
'iter' displays output at each iteration; 'final'
(default) displays just the final output.

FunValCheck Check whether objective function values are
valid. 'on' displays an error when the objective
function returns a value that is complex, Inf, or
NaN. 'off' (the default) displays no error.

Jacobian If 'on', fsolve uses a user-defined Jacobian
(defined in fun), or Jacobian information (when
using JacobMult), for the objective function. If
'off', fsolve approximates the Jacobian using
finite differences.

11-113



fsolve

MaxFunEvals Maximum number of function evaluations
allowed.

MaxIter Maximum number of iterations allowed.

OutputFcn Specify one or more user-defined functions that
an optimization function calls at each iteration.
See “Output Function” on page 9-18.

PlotFcns Plots various measures of progress while the
algorithm executes, select from predefined plots
or write your own. Specifying @optimplotx plots
the current point; @optimplotfunccount plots
the function count; @optimplotfval plots the
function value; @optimplotresnorm plots the
norm of the residuals; @optimplotstepsize plots
the step size; @optimplotfirstorderopt plots
the first-order of optimality.

TolFun Termination tolerance on the function value.

TolX Termination tolerance on x.

TypicalX Typical x values.

Large-Scale Algorithm Only

These options are used only by the large-scale algorithm:

JacobMult Function handle for Jacobian multiply function.
For large-scale structured problems, this
function computes the Jacobian matrix product
J*Y, J'*Y, or J'*(J*Y) without actually forming
J. The function is of the form

W = jmfun(Jinfo,Y,flag,p1,p2,...)

where Jinfo and the additional parameters
p1,p2,... contain the matrices used to
compute J*Y (or J'*Y, or J'*(J*Y)). The first
argument Jinfo must be the same as the second

11-114



fsolve

argument returned by the objective function
fun, for example by

[F,Jinfo] = fun(x)

Y is a matrix that has the same number of rows
as there are dimensions in the problem. flag
determines which product to compute:

• If flag == 0 then W = J'*(J*Y).

• If flag > 0 then W = J*Y.

• If flag < 0 then W = J'*Y.

In each case, J is not formed explicitly. fsolve
uses Jinfo to compute the preconditioner.
The optional parameters p1, p2, ... can be
any additional parameters needed by jmfun.
See “Passing Extra Parameters” on page 2-10
for information on how to supply values for
these parameters.

Note 'Jacobian' must be set to 'on' for Jinfo
to be passed from fun to jmfun.

See “Nonlinear Minimization with a Dense but
Structured Hessian and Equality Constraints”
on page 4-62 for a similar example.

11-115



fsolve

JacobPattern Sparsity pattern of the Jacobian for finite
differencing. If it is not convenient to compute
the Jacobian matrix J in fun, lsqnonlin can
approximate J via sparse finite differences
provided the structure of J—i.e., locations
of the nonzeros—is supplied as the value
for JacobPattern. In the worst case, if the
structure is unknown, you can set JacobPattern
to be a dense matrix and a full finite-difference
approximation is computed in each iteration
(this is the default if JacobPattern is not set).
This can be very expensive for large problems,
so it is usually worth the effort to determine the
sparsity structure.

MaxPCGIter Maximum number of PCG (preconditioned
conjugate gradient) iterations (see “Algorithm”
on page 11-120).

PrecondBandWidth The default PrecondBandWidth is 'Inf', which
means a direct factorization (Cholesky) is used
rather than the conjugate gradients (CG).
The direct factorization is computationally
more expensive than CG, but produces a
better quality step towards the solution.
Set PrecondBandWidth to 0 for diagonal
preconditioning (upper bandwidth of 0). For
some problems, an intermediate bandwidth
reduces the number of PCG iterations.

TolPCG Termination tolerance on the PCG iteration.

Medium-Scale Algorithm Only

These options are used only by the medium-scale algorithm:

11-116



fsolve

NonlEqnAlgorithm Specify one of the following algorithms for
solving nonlinear equations:

• 'dogleg' — Trust-region dogleg algorithm
(default)

• 'lm' — Levenberg-Marquardt

• 'gn' — Gauss-Newton

LineSearchType Line search algorithm choice. This option
applies to the 'lm' (Levenberg-Marquardt)
and 'gn' (Gauss-Netwton) algorithms.

Examples Example 1

This example finds a zero of the system of two equations and two
unknowns:

2

2

1 2

1 2

1

2

x x e

x x e

x

x

− =

− + =

−

− .

You want to solve the following system for x

2 0

2 0

1 2

1 2

1

2

x x e

x x e

x

x

− − =

− + − =

−

− ,

starting at x0 = [-5 -5].

First, write an M-file that computes F, the values of the equations at x.

function F = myfun(x)
F = [2*x(1) - x(2) - exp(-x(1));

-x(1) + 2*x(2) - exp(-x(2))];

Next, call an optimization routine.

x0 = [-5; -5]; % Make a starting guess at the solution

11-117



fsolve

options=optimset('Display','iter'); % Option to display output

[x,fval] = fsolve(@myfun,x0,options) % Call optimizer

After 33 function evaluations, a zero is found.

Norm of First-order Trust-region

Iteration Func-count f(x) step optimality radius

0 3 23535.6 2.29e+004 1

1 6 6001.72 1 5.75e+003 1

2 9 1573.51 1 1.47e+003 1

3 12 427.226 1 388 1

4 15 119.763 1 107 1

5 18 33.5206 1 30.8 1

6 21 8.35208 1 9.05 1

7 24 1.21394 1 2.26 1

8 27 0.016329 0.759511 0.206 2.5

9 30 3.51575e-006 0.111927 0.00294 2.5

10 33 1.64763e-013 0.00169132 6.36e-007 2.5

Optimization terminated successfully:

First-order optimality is less than options.TolFun

x =

0.5671

0.5671

fval =

1.0e-006 *

-0.4059

-0.4059

Example 2

Find a matrix x that satisfies the equation

X X X* * ,=
⎡

⎣
⎢

⎤

⎦
⎥

1 2
3 4

11-118



fsolve

starting at the point x= [1,1; 1,1].

First, write an M-file that computes the equations to be solved.

function F = myfun(x)
F = x*x*x-[1,2;3,4];

Next, invoke an optimization routine.

x0 = ones(2,2); % Make a starting guess at the solution
options = optimset('Display','off'); % Turn off Display
[x,Fval,exitflag] = fsolve(@myfun,x0,options)

The solution is

x =
-0.1291 0.8602
1.2903 1.1612

Fval =
1.0e-009 *

-0.1619 0.0776
0.1161 -0.0469

exitflag =
1

and the residual is close to zero.

sum(sum(Fval.*Fval))
ans =

4.7915e-020

Notes If the system of equations is linear, use\ (matrix left division) for better
speed and accuracy. For example, to find the solution to the following
linear system of equations:

11-119



fsolve

3x1 + 11x2 – 2x3 = 7
x1 + x2 – 2x3 = 4
x1 – x2 + x3 = 19.

You can formulate and solve the problem as

A = [ 3 11 -2; 1 1 -2; 1 -1 1];
b = [ 7; 4; 19];
x = A\b
x =

13.2188
-2.3438
3.4375

Algorithm The Gauss-Newton, Levenberg-Marquardt, and large-scale methods are
based on the nonlinear least-squares algorithms also used in lsqnonlin.
Use one of these methods if the system may not have a zero. The
algorithm still returns a point where the residual is small. However, if
the Jacobian of the system is singular, the algorithm might converge to a
point that is not a solution of the system of equations (see “Limitations”
on page 11-121 and “Diagnostics” on page 11-121 following).

Large-Scale Optimization

fsolve, with the LargeScale option set to 'on' with optimset, uses
the large-scale algorithm if possible. This algorithm is a subspace
trust-region method and is based on the interior-reflective Newton
method described in [1] and [2]. Each iteration involves the approximate
solution of a large linear system using the method of preconditioned
conjugate gradients (PCG). See “Trust-Region Methods for Nonlinear
Minimization” on page 6-3 and “Preconditioned Conjugate Gradients”
on page 6-12.

Medium-Scale Optimization

By default fsolve chooses the medium-scale algorithm and uses the
trust-region dogleg method. The algorithm is a variant of the Powell
dogleg method described in [8]. It is similar in nature to the algorithm
implemented in [7].

11-120



fsolve

Alternatively, you can select a Gauss-Newton method [3] with
line-search, or a Levenberg-Marquardt method [4], [5], and [6] with
line-search. Use optimset to set NonlEqnAlgorithm option to 'dogleg'
(default), 'lm', or 'gn'.

The default line search algorithm for the Levenberg-Marquardt
and Gauss-Newton methods, i.e., the LineSearchType option, is
'quadcubic'. This is a safeguarded mixed quadratic and cubic
polynomial interpolation and extrapolation method. A safeguarded
cubic polynomial method can be selected by setting LineSearchType
to 'cubicpoly'. This method generally requires fewer function
evaluations but more gradient evaluations. Thus, if gradients are being
supplied and can be calculated inexpensively, the cubic polynomial line
search method is preferable. The algorithms used are described fully in
Chapter 5, “Standard Algorithms”.

Diagnostics Medium and Large-Scale Optimization

fsolve may converge to a nonzero point and give this message:

Optimizer is stuck at a minimum that is not a root
Try again with a new starting guess

In this case, run fsolve again with other starting values.

Medium-Scale Optimization

For the trust-region dogleg method, fsolve stops if the step size
becomes too small and it can make no more progress. fsolve gives
this message:

The optimization algorithm can make no further progress:
Trust region radius less than 10*eps

In this case, run fsolve again with other starting values.

Limitations The function to be solved must be continuous. When successful, fsolve
only gives one root. fsolve may converge to a nonzero point, in which
case, try other starting values.

11-121



fsolve

fsolve only handles real variables. When x has complex variables, the
variables must be split into real and imaginary parts.

Large-Scale Optimization

The preconditioner computation used in the preconditioned conjugate
gradient part of the large-scale method forms JTJ (where J is the
Jacobian matrix) before computing the preconditioner; therefore, a row
of J with many nonzeros, which results in a nearly dense product JTJ,
might lead to a costly solution process for large problems.

Medium-Scale Optimization

The default trust-region dogleg method can only be used when the
system of equations is square, i.e., the number of equations equals the
number of unknowns. For the Levenberg-Marquardt and Gauss-Newton
methods, the system of equations need not be square.

References [1] Coleman, T.F. and Y. Li, “An Interior, Trust Region Approach
for Nonlinear Minimization Subject to Bounds,” SIAM Journal on
Optimization, Vol. 6, pp. 418-445, 1996.

[2] Coleman, T.F. and Y. Li, “On the Convergence of Reflective Newton
Methods for Large-Scale Nonlinear Minimization Subject to Bounds,”
Mathematical Programming, Vol. 67, Number 2, pp. 189-224, 1994.

[3] Dennis, J. E. Jr., “Nonlinear Least-Squares,” State of the Art in
Numerical Analysis, ed. D. Jacobs, Academic Press, pp. 269-312.

[4] Levenberg, K., “A Method for the Solution of Certain Problems in
Least-Squares,” Quarterly Applied Mathematics 2, pp. 164-168, 1944.

[5] Marquardt, D., “An Algorithm for Least-squares Estimation of
Nonlinear Parameters,” SIAM Journal Applied Mathematics, Vol. 11,
pp. 431-441, 1963.

[6] Moré, J. J., “The Levenberg-Marquardt Algorithm: Implementation
and Theory,” Numerical Analysis, ed. G. A. Watson, Lecture Notes in
Mathematics 630, Springer Verlag, pp. 105-116, 1977.

11-122



fsolve

[7] Moré, J. J., B. S. Garbow, and K. E. Hillstrom, User Guide for
MINPACK 1, Argonne National Laboratory, Rept. ANL-80-74, 1980.

[8] Powell, M. J. D., “A Fortran Subroutine for Solving Systems of
Nonlinear Algebraic Equations,” Numerical Methods for Nonlinear
Algebraic Equations, P. Rabinowitz, ed., Ch.7, 1970.

See Also @ (function_handle), \ (matrix left division), lsqcurvefit, lsqnonlin,
optimset, optimtool, anonymous functions

11-123



fzero

Purpose Find root of continuous function of one variable

Syntax x = fzero(fun,x0)
x = fzero(fun,x0,options)
x = fzero(problem)
[x,fval] = fzero(...)
[x,fval,exitflag] = fzero(...)
[x,fval,exitflag,output] = fzero(...)

Description x = fzero(fun,x0) tries to find a zero of fun near x0, if x0 is a
scalar. fun is a function handle for either an M-file function or an
anonymous function. The value x returned by fzero is near a point
where fun changes sign, or NaN if the search fails. In this case, the
search terminates when the search interval is expanded until an Inf,
NaN, or complex value is found.

If x0 is a vector of length two, fzero assumes x0 is an interval where the
sign of fun(x0(1)) differs from the sign of fun(x0(2)). An error occurs
if this is not true. Calling fzero with such an interval guarantees that
fzero returns a value near a point where fun changes sign.

Note Calling fzero with an interval (x0 with two elements) is often
faster than calling it with a scalar x0.

x = fzero(fun,x0,options) solves the equation with the optimization
options specified in the structure options. Use optimset to set these
options.

x = fzero(problem) solves problem, where problem is a structure
described in “Input Arguments” on page 11-125.

Create the structure problem by exporting a problem from Optimization
Tool, as described in “Exporting to the MATLAB® Workspace” on page
3-14.

[x,fval] = fzero(...) returns the value of the objective function
fun at the solution x.

11-124



fzero

[x,fval,exitflag] = fzero(...) returns a value exitflag that
describes the exit condition.

[x,fval,exitflag,output] = fzero(...) returns a structure
output that contains information about the optimization.

Note For the purposes of this command, zeros are considered to be
points where the function actually crosses—not just touches—the x-axis.

“Passing Extra Parameters” on page 2-10 explains how to parameterize
the objective function fun, if necessary.

Input
Arguments

“Function Arguments” on page 9-2 contains general descriptions of
arguments passed into fzero. This section provides function-specific
details for fun, options, and problem:

fun The function whose zero is to be computed. fun is a
function handle for a function that accepts a scalar x and
returns a scalar, the objective function evaluated at x.
The function fun can be specified as a function handle
for an M-file function

x = fzero(@myfun,x0)

where myfun is a MATLAB® function such as

function f = myfun(x)
f = ... % Compute function value at x

fun can also be a function handle for an anonymous
function.

x = fzero(@(x)sin(x*x),x0);

11-125



fzero

options Optimization options. You can set or change the values
of these options using the optimset function. fzero uses
these options structure fields:

Display Level of display. 'off' displays no
output; 'iter' displays output at each
iteration; 'final' displays just the final
output; 'notify' (default) displays
output only if the function does not
converge.

FunValCheck Check whether objective function values
are valid. 'on' displays an error when
the objective function returns a value
that is complex or NaN. 'off' (the
default) displays no error.

OutputFcn Specify one or more user-defined
functions that an optimization function
calls at each iteration. See “Output
Function” on page 9-18.

TolX Termination tolerance on x.

objective Objective function

x0 Initial point for x, scalar or
2–dimensional vector

solver 'fzero'

problem

options Options structure created with optimset

Output
Arguments

“Function Arguments” on page 9-2 contains general descriptions of
arguments returned by fzero. This section provides function-specific
details for exitflag and output:

11-126



fzero

exitflag Integer identifying the reason the algorithm
terminated. The following lists the values of exitflag
and the corresponding reasons the algorithm
terminated.

1 Function converged to a
solution x.

-1 Algorithm was terminated by
the output function.

-3 NaN or Inf function value was
encountered during search for
an interval containing a sign
change.

-4 Complex function value was
encountered during search for
an interval containing a sign
change.

-5 Algorithm might have
converged to a singular
point.

output Structure containing information about the
optimization. The fields of the structure are

intervaliterations Number of iterations taken to
find an interval containing a
root

iterations Number of zero-finding
iterations

funcCount Number of function
evaluations

algorithm Optimization algorithm used

message Exit message

11-127



fzero

Examples Calculate π by finding the zero of the sine function near 3.

x = fzero(@sin,3)
x =

3.1416

To find the zero of cosine between 1 and 2, enter

x = fzero(@cos,[1 2])
x =

1.5708

Note that cos(1) and cos(2) differ in sign.

To find a zero of the function

f(x) = x3 – 2x – 5,

write an M-file called f.m.

function y = f(x)
y = x.^3-2*x-5;

To find the zero near 2, enter

z = fzero(@f,2)
z =

2.0946

Since this function is a polynomial, the statement roots([1 0 -2 -5])
finds the same real zero, and a complex conjugate pair of zeros.

2.0946
-1.0473 + 1.1359i
-1.0473 - 1.1359i

“Passing Extra Parameters” on page 2-10 explains how to parameterize
fun, if necessary.

11-128



fzero

Algorithm The fzero command is an M-file. The algorithm, which was originated
by T. Dekker, uses a combination of bisection, secant, and inverse
quadratic interpolation methods. An Algol 60 version, with some
improvements, is given in [1]. A Fortran version, upon which the fzero
M-file is based, is in [2].

Limitations The fzero command finds a point where the function changes sign. If
the function is continuous, this is also a point where the function has
a value near zero. If the function is not continuous, fzero may return
values that are discontinuous points instead of zeros. For example,
fzero(@tan,1) returns 1.5708, a discontinuous point in tan.

Furthermore, the fzero command defines a zero as a point where the
function crosses the x-axis. Points where the function touches, but does
not cross, the x-axis are not valid zeros. For example, y = x.^2 is a
parabola that touches the x-axis at 0. Since the function never crosses
the x-axis, however, no zero is found. For functions with no valid zeros,
fzero executes until Inf, NaN, or a complex value is detected.

References [1] Brent, R., Algorithms for Minimization Without Derivatives,
Prentice-Hall, 1973.

[2] Forsythe, G. E., M. A. Malcolm, and C. B. Moler, Computer Methods
for Mathematical Computations, Prentice-Hall, 1976.

See Also @ (function_handle), \ (matrix left division), fminbnd, fsolve,
optimset, optimtool, roots, anonymous functions

11-129



fzmult

Purpose Multiplication with fundamental nullspace basis

Syntax W = fzmult(A,V)
W = fzmult(A,V,'transpose')
[W,L,U,pcol,P] = fzmult(A,V)
W = fzmult(A,V,transpose,L,U,pcol,P)

Description W = fzmult(A,V) computes the product W of matrix Z with matrix V,
that is, W = Z*V, where Z is a fundamental basis for the nullspace of
matrix A. A must be a sparse m-by-n matrix where m < n, rank(A) = m,
and rank(A(1:m,1:m)) = m. V must be p-by-q, where p = n-m. If V is
sparse W is sparse, else W is full.

W = fzmult(A,V,'transpose') computes the product of the transpose
of the fundamental basis times V, that is, W = Z'*V. V must be p-by-q,
where q = n-m. fzmult(A,V) is the same as fzmult(A,V,[]).

[W,L,U,pcol,P] = fzmult(A,V) returns the sparse LU-factorization
of matrix A(1:m,1:m), that is, A1 = A(1:m,1:m) and
P*A1(:,pcol) = L*U.

W = fzmult(A,V,transpose,L,U,pcol,P) uses the precomputed
sparse LU factorization of matrix A(1:m,1:m), that is, A1 = A(1:m,1:m)
and P*A1(:,pcol) = L*U. transpose is either 'transpose' or [].

The nullspace basis matrix Z is not formed explicitly. An implicit
representation is used based on the sparse LU factorization of
A(1:m,1:m).

11-130



gangstr

Purpose Zero out “small” entries subject to structural rank

Syntax A = gangstr(M,tol)

Description A = gangstr(M,tol) creates matrix A of full structural rank such
that A is M except that elements of M that are relatively “small,” based
on tol, are zeros in A. The algorithm decreases tol, if needed, until
sprank(A) = sprank(M). M must have at least as many columns as
rows. Default tol is 1e-2.

gangstr identifies elements of M that are relatively less than tol by
first normalizing all the rows of M to have norm 1. It then examines
nonzeros in M in a columnwise fashion, replacing with zeros those
elements with values of magnitude less than tol times the maximum
absolute value in that column.

See Also sprank, spy

11-131



ktrlink

Purpose Find minimum of constrained or unconstrained nonlinear multivariable
function using KNITRO® third-party libraries

Equation Finds the minimum of a problem specified by

min ( )

( )
( )

,

x
f x

c x
ceq x

A x b
Aeq x beq

lb x ub

 such that 

≤
=

⋅ ≤
⋅ =
≤ ≤

⎧

⎨

⎪
0
0⎪⎪⎪

⎩

⎪
⎪
⎪

where x, b, beq, lb, and ub are vectors, A and Aeq are matrices, c(x)
and ceq(x) are functions that return vectors, and f(x) is a function
that returns a scalar. f(x), c(x), and ceq(x) can be nonlinear functions.
All constraints are optional; ktrlink can minimize unconstrained
problems.

Syntax x = ktrlink(fun,x0)
x = ktrlink(fun,x0,A,b)
x = ktrlink(fun,x0,A,b,Aeq,beq)
x = ktrlink(fun,x0,A,b,Aeq,beq,lb,ub)
x = ktrlink(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon)
x = ktrlink(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)
x = ktrlink(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options,
knitroOptions)
[x,fval] = ktrlink(...)
[x,fval,exitflag] = ktrlink(...)
[x,fval,exitflag,output] = ktrlink(...)
[x,fval,exitflag,output,lambda] = ktrlink(...)

Description ktrlink attempts to find a minimum of a scalar function of several
variables starting at an initial estimate. This is generally referred to
as constrained or unconstrained nonlinear optimization, or nonlinear
programming.

11-132



ktrlink

x = ktrlink(fun,x0) starts at x0 and attempts to find a minimizer
x of the function described in fun, subject to no constraints. x0 can be
a scalar, vector, or matrix.

x = ktrlink(fun,x0,A,b) minimizes fun subject to the linear
inequalities A*x ≤ b.

x = ktrlink(fun,x0,A,b,Aeq,beq) minimizes fun subject to the
linear equalities Aeq*x = beq as well as A*x ≤ b. If no inequalities
exist, set A = [] and b = [].

x = ktrlink(fun,x0,A,b,Aeq,beq,lb,ub) defines a set of lower and
upper bounds on the design variables in x, so that the solution is always
in the range lb ≤ x ≤ ub. If no equalities exist, set Aeq = [] and
beq = []. If x(i) is unbounded below, set lb(i) = -Inf, and if x(i) is
unbounded above, set ub(i) = Inf.

x = ktrlink(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon) subjects the
minimization to the nonlinear inequalities c(x) and the equalities
ceq(x) defined in nonlcon. fmincon optimizes such that c(x) ≤ 0 and
ceq(x) = 0. If no bounds exist, set lb = [] and/or ub = [].

x = ktrlink(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)
minimizes with the optimization options specified in the structure
options. Use optimset to set these options. If there are no nonlinear
inequality or equality constraints, set nonlcon = [].

x = ktrlink(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options,
knitroOptions) minimizes with the KNITRO options specified in the
text file knitroOptions. All options given in options are ignored
except for HessFcn, HessMult, HessPattern, and JacobPattern.

[x,fval] = ktrlink(...) returns the value of the objective function
fun at the solution x.

[x,fval,exitflag] = ktrlink(...) returns exitflag, which
describes the exit condition of the KNITRO solver.

[x,fval,exitflag,output] = ktrlink(...) returns a structure
output with information about the optimization.

11-133



ktrlink

[x,fval,exitflag,output,lambda] = ktrlink(...) returns a
structure lambda whose fields contain the Lagrange multipliers at the
solution x.

“Passing Extra Parameters” on page 2-10 explains how to parameterize
the objective function fun, if necessary.

Note If the specified input bounds for a problem are inconsistent, the
output x is x0 and the output fval is [].

Components of x0 that violate the bounds lb ≤ x ≤ ub are reset to the
interior of the box defined by the bounds. Components that respect the
bounds are not changed.

Input
Arguments

“Function Arguments” on page 9-2 contains descriptions of
arguments passed to ktrlink. “Options” on page 11-44 provides the
function-specific details for the options values. This section provides
function-specific details for fun and nonlcon.

fun The function to be minimized. fun is a function that accepts a vector x and
returns a scalar f, the objective function evaluated at x. fun can be specified
as a function handle for an M-file function

x = ktrlink(@myfun,x0,A,b)

where myfun is a MATLAB® function such as

function f = myfun(x)
f = ... % Compute function value at x

fun can also be a function handle for an anonymous function.

x = ktrlink(@(x)norm(x)^2,x0,A,b);

If you can compute the gradient of fun and the GradObj option is 'on', as
set by

11-134



ktrlink

options = optimset('GradObj','on')

then fun must return the gradient vector g(x) in the second output
argument.

If you can compute the Hessian matrix, there are several ways to pass the
Hessian to ktrlink. See “Hessian” on page 11-137 for details.

nonlcon The function that computes the nonlinear inequality constraints c(x)≤ 0 and
the nonlinear equality constraints ceq(x) = 0. nonlcon accepts a vector x
and returns the two vectors c and ceq. c contains the nonlinear inequalities
evaluated at x, and ceq contains the nonlinear equalities evaluated at x. The
function nonlcon can be specified as a function handle.

x = ktrlink(@myfun,x0,A,b,Aeq,beq,lb,ub,@mycon)

where mycon is a MATLAB function such as

function [c,ceq] = mycon(x)
c = ... % Compute nonlinear inequalities at x.
ceq = ... % Compute nonlinear equalities at x.

If you can compute the gradients of the constraints and the GradConstr
option is 'on', as set by

options = optimset('GradConstr','on')

then nonlcon must also return GC, the gradient of c(x), and GCeq, the
gradient of ceq(x), in the third and fourth output arguments respectively.
See “Nonlinear Constraints” on page 2-17 for details.

Note Because Optimization Toolbox™ functions only accept inputs of type
double, user-supplied objective and nonlinear constraint functions must
return outputs of type double.

11-135



ktrlink

“Passing Extra Parameters” on page 2-10 explains how to parameterize the
nonlinear constraint function nonlcon, if necessary.

Output
Arguments

“Function Arguments” on page 9-2 contains descriptions of arguments
returned by ktrlink. This section provides function-specific details for
exitflag, lambda, and output:

exitflag Integer identifying the reason the algorithm
terminated. For more information, see the KNITRO
documentation at http://www.ziena.com/

lambda Structure containing the Lagrange multipliers at the
solution x (separated by constraint type). The fields
of the structure are

lower Lower bounds lb

upper Upper bounds ub

ineqlin Linear inequalities

eqlin Linear equalities
ineqnonlin Nonlinear inequalities
eqnonlin Nonlinear equalities

output Structure containing information about the
optimization. The fields of the structure are:

iterations Number of iterations taken

funcCount Number of function evaluations

constrviolation Maximum of constraint
violations (interior-point
algorithm only)

firstorderopt Measure of first-order optimality

11-136

http://www.ziena.com/


ktrlink

Hessian

ktrlink can optionally use a user-supplied Hessian, the matrix of
second derivatives of the Lagrangian, namely,

∇ ∇ ∇ ∇xx i i i iL x f x c x ceq x2 2 2 2( , ) ( ) ( ) ( ).λ λ λ= + +∑ ∑ (11-2)

If you don’t supply a Hessian, KNITRO software estimates it.

To provide a Hessian, the syntax is

hessian = hessianfcn(x, lambda)

hessian is an n-by-n matrix, sparse or dense, where n is the number of
variables. lambda is a structure with the Lagrange multiplier vectors
associated with the nonlinear constraints:

lambda.ineqnonlin
lambda.eqnonlin

KNITRO software computes lambda. hessianfcn must calculate the
sums in Equation 11-2. Indicate that you are supplying a Hessian by

options = optimset('Hessian','user-supplied',...
'HessFcn',@hessianfcn);

There are several more options for Hessians:

• options = optimset('Hessian','bfgs');

The KNITRO solver calculates the Hessian by a dense quasi-Newton
approximation.

• options = optimset('Hessian',...
{'lbfgs',positive integer});

The KNITRO solver calculates the Hessian by a limited-memory,
large-scale quasi-Newton approximation. The positive integer
specifies how many past iterations should be remembered.

11-137



ktrlink

• options = optimset('Hessian','fin-diff-grads',...
'SubproblemAlgorithm','cg','GradObj','on',...
'GradConstr','on');

The KNITRO solver calculates a Hessian-times-vector product by
finite differences of the gradient(s). You must supply the gradient of
the objective function, and also gradients of any nonlinear constraint
functions.

• options = optimset('Hessian','user-supplied',...
'SubproblemAlgorithm','cg','HessMult',@HessMultFcn]);

The KNITRO solver uses a Hessian-times-vector product. You must
supply the function HessMultFcn, which returns an n-by-1 vector.
The HessMult option enables you to pass the result of multiplying
the Hessian by a vector without calculating the Hessian.

The syntax for the 'HessMult' option is:

w = HessMultFcn(x,lambda,v);

The result w should be the product H*v, where H is the Hessian at x,
lambda is the Lagrange multiplier (computed by KNITRO software),
and v is a vector.

Options Optimization options used by ktrlink. Use optimset to set or change
the values of fields in the options structure options. See “Optimization
Options” on page 9-8 for detailed information. For example:

options=optimset('Algorithm','active-set');

Option Description

Algorithm Choose a KNITRO optimization algorithm:
'interior-point' or 'active-set'.

AlwaysHonorConstraints The default 'bounds' ensures that bound
constraints are satisfied at every iteration.
Disable by setting to 'none'.

11-138



ktrlink

Option Description

Display Level of display:

• 'off' displays no output.

• 'iter' displays output at each
iteration.

• 'final' (default) displays just the final
output.

FinDiffType Finite differences, used to estimate
gradients, are either the default
'forward', or are 'central' (centered).
'central' take twice as many function
evaluations as 'forward', but should be
more accurate. 'central' differences
might violate bounds during their
evaluation.

GradObj Gradient for the objective function defined
by the user. See the preceding description
of fun to see how to define the gradient in
fun. It is optional for the 'active-set'
and 'interior-point' methods.

HessFcn Function handle to a user-supplied
Hessian (see “Hessian” on page 11-42).

Hessian Chooses how ktrlink calculates the
Hessian (see “Hessian” on page 11-42).

HessMult Handle to a user-supplied function that
gives a Hessian-times-vector product (see
“Hessian” on page 11-42).

InitBarrierParameter Initial barrier value. A value above the
default 0.1 might help, especially if the
objective or constraint functions are large.

11-139



ktrlink

Option Description

InitTrustRegionRadius Initial radius of the trust region. On
badly-scaled problems choose a value

smaller than the default, n , where n is
the number of variables.

MaxIter Maximum number of iterations allowed.

MaxProjCGIter A tolerance (stopping criterion) for the
number of projected conjugate gradient
iterations; this is an inner iteration, not
the number of iterations of the algorithm.

ObjectiveLimit A tolerance (stopping criterion). If the
objective function value goes below
ObjectiveLimit and the iterate is
feasible, the iterations halt, since the
problem is presumably unbounded.

ScaleProblem The default 'obj-and-constr' causes the
algorithm to normalize all constraints and
the objective function. Disable by setting
to 'none'.

SubproblemAlgorithm Determines how the iteration
step is calculated. The default
'ldl-factorization' is usually faster
than 'cg' (conjugate gradient), though
'cg' may be faster for large problems
with dense Hessians.

TolFun Termination tolerance on the function
value.

TolCon Termination tolerance on the constraint
violation.

TolX Termination tolerance on x.

11-140



ktrlink

KNITRO®

Options
You can set options for the KNITRO libraries and pass them in a text
file. The text file should consist of lines of text with the name of an
option followed by blank space and then the desired value of the option.
For example, to select the maximum run time to be less than 100
seconds, and to use an adaptive algorithm for changing the multiplier μ,
create a text file containing the following lines:

ms_maxtime_real 100
bar_murule adaptive

For full details about the structure of the file and all possible options,
see the KNITRO documentation at http://www.ziena.com/.

References [1] http://www.ziena.com/

See Also @ (function_handle), fminbnd, fmincon, fminsearch, fminunc,
optimset

11-141

http://www.ziena.com/
http://www.ziena.com/


linprog

Purpose Solve linear programming problems

Equation Finds the minimum of a problem specified by

min
,

,
.

x

Tf x
A x b

Aeq x beq
lb x ub

 such that 
⋅ ≤
⋅ =
≤ ≤

⎧
⎨
⎪

⎩⎪

f, x, b, beq, lb, and ub are vectors, and A and Aeq are matrices.

Syntax x = linprog(f,A,b)
x = linprog(f,A,b,Aeq,beq)
x = linprog(f,A,b,Aeq,beq,lb,ub)
x = linprog(f,A,b,Aeq,beq,lb,ub,x0)
x = linprog(f,A,b,Aeq,beq,lb,ub,x0,options)
x = linprog(problem)
[x,fval] = linprog(...)
[x,fval,exitflag] = linprog(...)
[x,fval,exitflag,output] = linprog(...)
[x,fval,exitflag,output,lambda] = linprog(...)

Description linprog solves linear programming problems.

x = linprog(f,A,b) solves min f'*x such that A*x ≤ b.

x = linprog(f,A,b,Aeq,beq) solves the problem above while
additionally satisfying the equality constraints Aeq*x = beq. Set
A = [] and b = [] if no inequalities exist.

x = linprog(f,A,b,Aeq,beq,lb,ub) defines a set of lower and upper
bounds on the design variables, x, so that the solution is always in the
range lb ≤ x ≤ ub. Set Aeq = [] and beq = [] if no equalities exist.

x = linprog(f,A,b,Aeq,beq,lb,ub,x0) sets the starting point to
x0. This option is only available with the medium-scale algorithm
(the LargeScale option is set to 'off' using optimset). The default
large-scale algorithm and the simplex algorithm ignore any starting
point.

11-142



linprog

x = linprog(f,A,b,Aeq,beq,lb,ub,x0,options) minimizes with the
optimization options specified in the structure options. Use optimset
to set these options.

x = linprog(problem) finds the minimum for problem, where
problem is a structure described in “Input Arguments” on page 11-143.

Create the structure problem by exporting a problem from Optimization
Tool, as described in “Exporting to the MATLAB® Workspace” on page
3-14.

[x,fval] = linprog(...) returns the value of the objective function
fun at the solution x: fval = f'*x.

[x,fval,exitflag] = linprog(...) returns a value exitflag that
describes the exit condition.

[x,fval,exitflag,output] = linprog(...) returns a structure
output that contains information about the optimization.

[x,fval,exitflag,output,lambda] = linprog(...) returns a
structure lambda whose fields contain the Lagrange multipliers at the
solution x.

Note If the specified input bounds for a problem are inconsistent, the
output x is x0 and the output fval is [].

Input
Arguments

“Function Arguments” on page 9-2 contains general descriptions of
arguments passed into linprog. “Options” on page 11-145 provides the
function-specific details for the options values.

11-143



linprog

f Linear objective function vector f

Aineq Matrix for linear inequality constraints

bineq Vector for linear inequality constraints

Aeq Matrix for linear equality constraints

beq Vector for linear equality constraints

lb Vector of lower bounds

ub Vector of upper bounds

x0 Initial point for x, active set algorithm
only

solver 'linprog'

problem

options Options structure created with optimset

Output
Arguments

“Function Arguments” on page 9-2 contains general descriptions of
arguments returned by linprog. This section provides function-specific
details for exitflag, lambda, and output:

exitflag Integer identifying the reason the algorithm
terminated. The following lists the values of
exitflag and the corresponding reasons the
algorithm terminated.

1 Function converged to a solution x.

0 Number of iterations exceeded
options.MaxIter.

-2 No feasible point was found.

-3 Problem is unbounded.

-4 NaN value was encountered during
execution of the algorithm.

-5 Both primal and dual problems
are infeasible.

11-144



linprog

-7 Search direction became too small.
No further progress could be made.

lambda Structure containing the Lagrange multipliers at
the solution x (separated by constraint type). The
fields of the structure are:

lower Lower bounds lb

upper Upper bounds ub

ineqlin Linear inequalities

eqlin Linear equalities

output Structure containing information about the
optimization. The fields of the structure are:

iterations Number of iterations

algorithm Optimization algorithm used

cgiterations 0 (large-scale algorithm
only, included for backward
compatibility)

message Exit message

Options Optimization options used by linprog. Some options apply to all
algorithms, and others are only relevant when using the large-scale
algorithm. You can use optimset to set or change the values of these
fields in the options structure, options. See “Optimization Options” on
page 9-8 for detailed information.

LargeScale Use large-scale algorithm when set to 'on'. Use
medium-scale algorithm when set to 'off'.

Medium-Scale and Large-Scale Algorithms

These options are used by both the medium-scale and large-scale
algorithms:

11-145



linprog

Diagnostics Print diagnostic information about the function to
be minimized.

Display Level of display. 'off' displays no output; 'iter'
displays output at each iteration; 'final' (default)
displays just the final output. At this time, the
'iter' level only works with the large-scale and
simplex algorithms.

MaxIter Maximum number of iterations allowed.

Medium-Scale Algorithm Only

These options are used by the medium-scale algorithm:

Simplex If 'on', linprog uses the simplex algorithm. The
simplex algorithm uses a built-in starting point,
ignoring the starting point x0 if supplied. The
default is 'off'. See “Simplex Algorithm” on page
5-39 for more information and an example.

Large-Scale Algorithm Only

These options are used only by the large-scale algorithm:

TolFun Termination tolerance on the function value.

Examples Find x that minimizes

f(x) = –5x1 – 4x2 –6x3,

subject to

x1 – x2 + x3 ≤ 20
3x1 + 2x2 + 4x3 ≤ 42
3x1 + 2x2 ≤ 30
0 ≤ x1, 0 ≤ x2, 0 ≤ x3.

11-146



linprog

First, enter the coefficients

f = [-5; -4; -6]
A = [1 -1 1

3 2 4
3 2 0];

b = [20; 42; 30];
lb = zeros(3,1);

Next, call a linear programming routine.

[x,fval,exitflag,output,lambda] = linprog(f,A,b,[],[],lb);

Entering x, lambda.ineqlin, and lambda.lower gets

x =
0.0000

15.0000
3.0000

lambda.ineqlin =
0
1.5000
0.5000

lambda.lower =
1.0000
0
0

Nonzero elements of the vectors in the fields of lambda indicate active
constraints at the solution. In this case, the second and third inequality
constraints (in lambda.ineqlin) and the first lower bound constraint
(in lambda.lower) are active constraints (i.e., the solution is on their
constraint boundaries).

Algorithm Large-Scale Optimization

The large-scale method is based on LIPSOL (Linear Interior Point
Solver, [3]), which is a variant of Mehrotra’s predictor-corrector

11-147



linprog

algorithm ([2]), a primal-dual interior-point method. A number of
preprocessing steps occur before the algorithm begins to iterate. See
“Large-Scale Linear Programming” on page 6-20.

Medium-Scale Optimization

linprog uses a projection method as used in the quadprog algorithm.
linprog is an active set method and is thus a variation of the
well-known simplex method for linear programming [1]. The algorithm
finds an initial feasible solution by first solving another linear
programming problem.

Alternatively, you can use the simplex algorithm, described in “Simplex
Algorithm” on page 5-39, by entering

options = optimset('LargeScale', 'off', 'Simplex', 'on')

and passing options as an input argument to linprog. The simplex
algorithm returns a vertex optimal solution.

Note You cannot supply an initial point x0 for linprog with either
the large-scale method or the medium-scale method using the simplex
algorithm. In either case, if you pass in x0 as an input argument,
linprog ignores x0 and computes its own initial point for the algorithm.

Diagnostics Large-Scale Optimization

The first stage of the algorithm might involve some preprocessing of
the constraints (see “Large-Scale Linear Programming” on page 6-20).
Several possible conditions might occur that cause linprog to exit with
an infeasibility message. In each case, the exitflag argument returned
by linprog is set to a negative value to indicate failure.

If a row of all zeros is detected in Aeq but the corresponding element of
beq is not zero, the exit message is

Exiting due to infeasibility: An all-zero row in the
constraint matrix does not have a zero in corresponding

11-148



linprog

right-hand-side entry.

If one of the elements of x is found not to be bounded below, the exit
message is

Exiting due to infeasibility: Objective f'*x is
unbounded below.

If one of the rows of Aeq has only one nonzero element, the associated
value in x is called a singleton variable. In this case, the value of
that component of x can be computed from Aeq and beq. If the value
computed violates another constraint, the exit message is

Exiting due to infeasibility: Singleton variables in
equality constraints are not feasible.

If the singleton variable can be solved for but the solution violates the
upper or lower bounds, the exit message is

Exiting due to infeasibility: Singleton variables in
the equality constraints are not within bounds.

Note The preprocessing steps are cumulative. For example, even if
your constraint matrix does not have a row of all zeros to begin with,
other preprocessing steps may cause such a row to occur.

Once the preprocessing has finished, the iterative part of the algorithm
begins until the stopping criteria are met. (See “Large-Scale Linear
Programming” on page 6-20 for more information about residuals, the
primal problem, the dual problem, and the related stopping criteria.) If
the residuals are growing instead of getting smaller, or the residuals
are neither growing nor shrinking, one of the two following termination
messages is displayed, respectively,

One or more of the residuals, duality gap, or total relative error

has grown 100000 times greater than its minimum value so far:

11-149



linprog

or

One or more of the residuals, duality gap, or total relative error

has stalled:

After one of these messages is displayed, it is followed by one of the
following six messages indicating that the dual, the primal, or both
appear to be infeasible. The messages differ according to how the
infeasibility or unboundedness was measured.

The dual appears to be infeasible (and the primal unbounded).(The

primal residual < TolFun.)

The primal appears to be infeasible (and the dual unbounded). (The

dual residual < TolFun.)

The dual appears to be infeasible (and the primal unbounded) since

the dual residual > sqrt(TolFun).(The primal residual <

10*TolFun.)

The primal appears to be infeasible (and the dual unbounded) since

the primal residual > sqrt(TolFun).(The dual residual <

10*TolFun.)

The dual appears to be infeasible and the primal unbounded since

the primal objective < -1e+10 and the dual objective < 1e+6.

The primal appears to be infeasible and the dual unbounded since

the dual objective > 1e+10 and the primal objective > -1e+6.

Both the primal and the dual appear to be infeasible.

Note that, for example, the primal (objective) can be unbounded and the
primal residual, which is a measure of primal constraint satisfaction,
can be small.

Medium-Scale Optimization

linprog gives a warning when the problem is infeasible.

Warning: The constraints are overly stringent;
there is no feasible solution.

11-150



linprog

In this case, linprog produces a result that minimizes the worst case
constraint violation.

When the equality constraints are inconsistent, linprog gives

Warning: The equality constraints are overly
stringent; there is no feasible solution.

Unbounded solutions result in the warning

Warning: The solution is unbounded and at infinity;
the constraints are not restrictive enough.

In this case, linprog returns a value of x that satisfies the constraints.

Limitations Medium-Scale Optimization

At this time, the only levels of display, using the Display option in
options, are 'off' and 'final'; iterative output using 'iter' is not
available.

References [1] Dantzig, G.B., A. Orden, and P. Wolfe, “Generalized Simplex Method
for Minimizing a Linear from Under Linear Inequality Constraints,”
Pacific Journal Math., Vol. 5, pp. 183–195.

[2] Mehrotra, S., “On the Implementation of a Primal-Dual Interior
Point Method,” SIAM Journal on Optimization, Vol. 2, pp. 575–601,
1992.

[3] Zhang, Y., “Solving Large-Scale Linear Programs by Interior-Point
Methods Under the MATLAB Environment,” Technical Report TR96-01,
Department of Mathematics and Statistics, University of Maryland,
Baltimore County, Baltimore, MD, July 1995.

See Also quadprog, optimtool

11-151



lsqcurvefit

Purpose Solve nonlinear curve-fitting (data-fitting) problems in least-squares
sense

Equation Find coefficients x that best fit the equation

min ( , ) min , ,
x x

i i i
i

F x xdata ydata F x xdata ydata− = ( ) −( )∑2
2 2

given input data xdata, and the observed output ydata, where xdata
and ydata are matrices or vectors of length m, and F (x, xdata) is a
matrix-valued or vector-valued function.

The function lsqcurvefit uses the same algorithm as lsqnonlin. Its
purpose is to provide an interface designed specifically for data-fitting
problems.

Syntax x = lsqcurvefit(fun,x0,xdata,ydata)
x = lsqcurvefit(fun,x0,xdata,ydata,lb,ub)
x = lsqcurvefit(fun,x0,xdata,ydata,lb,ub,options)
x = lsqcurvefit(problem)
[x,resnorm] = lsqcurvefit(...)
[x,resnorm,residual] = lsqcurvefit(...)
[x,resnorm,residual,exitflag] = lsqcurvefit(...)
[x,resnorm,residual,exitflag,output] = lsqcurvefit(...)
[x,resnorm,residual,exitflag,output,

lambda] = lsqcurvefit(...)
[x,resnorm,residual,exitflag,output,lambda,

jacobian] = lsqcurvefit(...)

Description lsqcurvefit solves nonlinear data-fitting problems. lsqcurvefit
requires a user-defined function to compute the vector-valued function
F (x, xdata). The size of the vector returned by the user-defined function
must be the same as the size of the vectors ydata and xdata.

x = lsqcurvefit(fun,x0,xdata,ydata) starts at x0 and finds
coefficients x to best fit the nonlinear function fun(x,xdata) to the

11-152



lsqcurvefit

data ydata (in the least-squares sense). ydata must be the same size as
the vector (or matrix) F returned by fun.

x = lsqcurvefit(fun,x0,xdata,ydata,lb,ub) defines a set of lower
and upper bounds on the design variables in x so that the solution is
always in the range lb ≤ x ≤ ub.

x = lsqcurvefit(fun,x0,xdata,ydata,lb,ub,options) minimizes
with the optimization options specified in the structure options. Use
optimset to set these options. Pass empty matrices for lb and ub if
no bounds exist.

x = lsqcurvefit(problem) finds the minimum for problem, where
problem is a structure described in “Input Arguments” on page 11-154.

Create the structure problem by exporting a problem from Optimization
Tool, as described in “Exporting to the MATLAB® Workspace” on page
3-14.

[x,resnorm] = lsqcurvefit(...) returns the value of the squared
2-norm of the residual at x: sum((fun(x,xdata)-ydata).^2).

[x,resnorm,residual] = lsqcurvefit(...) returns the value of the
residual fun(x,xdata)-ydata at the solution x.

[x,resnorm,residual,exitflag] = lsqcurvefit(...) returns a
value exitflag that describes the exit condition.

[x,resnorm,residual,exitflag,output] = lsqcurvefit(...)
returns a structure output that contains information about the
optimization.

[x,resnorm,residual,exitflag,output,lambda] =
lsqcurvefit(...) returns a structure lambda whose fields contain the
Lagrange multipliers at the solution x.

[x,resnorm,residual,exitflag,output,lambda,jacobian] =
lsqcurvefit(...) returns the Jacobian of fun at the solution x.

11-153



lsqcurvefit

Note If the specified input bounds for a problem are inconsistent, the
output x is x0 and the outputs resnorm and residual are [].

Components of x0 that violate the bounds lb ≤ x ≤ ub are reset to the
interior of the box defined by the bounds. Components that respect the
bounds are not changed.

Input
Arguments

“Function Arguments” on page 9-2 contains general descriptions
of arguments passed into lsqcurvefit. This section provides
function-specific details for fun, options, and problem:

fun The function you want to fit. fun is a function that takes
a vector x and returns a vector F, the objective functions
evaluated at x. The function fun can be specified as a
function handle for an M-file function

x = lsqcurvefit(@myfun,x0,xdata,ydata)

where myfun is a MATLAB® function such as

function F = myfun(x,xdata)
F = ... % Compute function values at x

fun can also be a function handle for an anonymous
function.

f = @(x,xdata)x(1)*xdata.^2+x(2)*sin(xdata),...
'x','xdata';

x = lsqcurvefit(f,x0,xdata,ydata);

If the user-defined values for x and F are matrices, they
are converted to a vector using linear indexing.

11-154



lsqcurvefit

Note fun should return fun(x,xdata), and not the
sum-of-squares sum((fun(x,xdata)-ydata).^2).
The algorithm implicitly squares and sums
fun(x,xdata)-ydata.

If the Jacobian can also be computed and the Jacobian
option is 'on', set by

options = optimset('Jacobian','on')

then the function fun must return, in a second output
argument, the Jacobian value J, a matrix, at x. Note that
by checking the value of nargout the function can avoid
computing J when fun is called with only one output
argument (in the case where the optimization algorithm
only needs the value of F but not J).

function [F,J] = myfun(x,xdata)

F = ... % objective function values at x

if nargout > 1 % two output arguments

J = ... % Jacobian of the function evaluated at x

end

If fun returns a vector (matrix) of m components and
x has length n, where n is the length of x0, then the
Jacobian J is an m-by-n matrix where J(i,j) is the
partial derivative of F(i) with respect to x(j). (Note
that the Jacobian J is the transpose of the gradient of
F.) For more information, see “Jacobians of Vector and
Matrix Objective Functions” on page 2-6.

options “Options” on page 11-158 provides the function-specific
details for the options values.

11-155



lsqcurvefit

objective Objective function of x and xdata

x0 Initial point for x, active set algorithm only

xdata Input data for objective function

ydata Output data to be matched by objective
function

lb Vector of lower bounds

ub Vector of upper bounds

solver 'lsqcurvefit'

problem

options Options structure created with optimset

Output
Arguments

“Function Arguments” on page 9-2 contains general descriptions
of arguments returned by lsqcurvefit. This section provides
function-specific details for exitflag, lambda, and output:

exitflag Integer identifying the reason the algorithm
terminated. The following lists the values of exitflag
and the corresponding reasons the algorithm
terminated:

1 Function converged to a solution x.

2 Change in x was less than the
specified tolerance.

3 Change in the residual was less
than the specified tolerance.

4 Magnitude of search direction
smaller than the specified
tolerance.

0 Number of iterations exceeded
options.MaxIter or number of
function evaluations exceeded
options.FunEvals.

11-156



lsqcurvefit

-1 Algorithm was terminated by the
output function.

-2 Problem is infeasible: the bounds
lb and ub are inconsistent.

-4 Optimization could not make
further progress.

lambda Structure containing the Lagrange multipliers at the
solution x (separated by constraint type). The fields
of the structure are

lower Lower bounds lb

upper Upper bounds ub

output Structure containing information about the
optimization. The fields of the structure are

firstorderopt Measure of first-order optimality
(large-scale algorithm, [ ] for
others).

iterations Number of iterations taken

funcCount Number of function evaluations

cgiterations Total number of PCG iterations
(large-scale algorithm, [ ] for
others)

algorithm Optimization algorithm used

stepsize Final displacement in x
(medium-scale algorithm only).

message Exit message

11-157



lsqcurvefit

Note The sum of squares should not be formed explicitly. Instead, your
function should return a vector of function values. See the examples
below.

Options Optimization options used by lsqcurvefit. Some options apply to
all algorithms, some are only relevant when using the large-scale
algorithm, and others are only relevant when you are using the
medium-scale algorithm. You can use optimset to set or change
the values of these fields in the options structure options. See
“Optimization Options” on page 9-8 for detailed information.

The LargeScale option specifies a preference for which algorithm to use.
It is only a preference, because certain conditions must be met to use the
large-scale or medium-scale algorithm. For the large-scale algorithm,
the nonlinear system of equations cannot be underdetermined; that is,
the number of equations (the number of elements of F returned by fun)
must be at least as many as the length of x. Furthermore, only the
large-scale algorithm handles bound constraints:

LargeScale Use large-scale algorithm if possible when set
to 'on'. Use medium-scale algorithm when set
to 'off'.

The large-scale algorithm is a more modern algorithm than the
medium-scale algorithms. The large-scale algorithm handles both
large-scale and medium-scale problems effectively.

Medium-Scale and Large-Scale Algorithms

These options are used by both the medium-scale and large-scale
algorithms:

11-158



lsqcurvefit

DerivativeCheck Compare user-supplied derivatives (Jacobian) to
finite-differencing derivatives.

Diagnostics Display diagnostic information about the function
to be minimized.

DiffMaxChange Maximum change in variables for finite
differencing.

DiffMinChange Minimum change in variables for finite
differencing.

Display Level of display. 'off' displays no output, and
'final' (default) displays just the final output.

Jacobian If 'on', lsqcurvefit uses a user-defined Jacobian
(defined in fun), or Jacobian information (when
using JacobMult), for the objective function. If
'off', lsqcurvefit approximates the Jacobian
using finite differences.

MaxFunEvals Maximum number of function evaluations
allowed.

MaxIter Maximum number of iterations allowed.

OutputFcn Specify one or more user-defined functions that an
optimization function calls at each iteration. See
“Output Function” on page 9-18.

PlotFcns Plots various measures of progress while the
algorithm executes, select from predefined plots
or write your own. Specifying @optimplotx plots
the current point; @optimplotfunccount plots the
function count; @optimplotfval plots the function
value.

TolFun Termination tolerance on the function value.

TolX Termination tolerance on x.

TypicalX Typical x values.

11-159



lsqcurvefit

Large-Scale Algorithm Only

These options are used only by the large-scale algorithm:

JacobMult Function handle for Jacobian multiply function.
For large-scale structured problems, this function
computes the Jacobian matrix product J*Y, J'*Y,
or J'*(J*Y) without actually forming J. The
function is of the form

W = jmfun(Jinfo,Y,flag,p1,p2,...)

where Jinfo and the additional parameters
p1,p2,... contain the matrices used to compute
J*Y (or J'*Y, or J'*(J*Y)). The first argument
Jinfo must be the same as the second argument
returned by the objective function fun, for
example by

[F,Jinfo] = fun(x)

Y is a matrix that has the same number of rows
as there are dimensions in the problem. flag
determines which product to compute:

• If flag == 0 then W = J'*(J*Y).

• If flag > 0 then W = J*Y.

• If flag < 0 then W = J'*Y.

In each case, J is not formed explicitly. fsolve
uses Jinfo to compute the preconditioner. The
optional parameters p1, p2, ... can be any
additional parameters needed by jmfun. See
“Passing Extra Parameters” on page 2-10 for
information on how to supply values for these
parameters.

11-160



lsqcurvefit

Note 'Jacobian' must be set to 'on' for Jinfo
to be passed from fun to jmfun.

See “Nonlinear Minimization with a Dense but
Structured Hessian and Equality Constraints”
on page 4-62 for a similar example.

JacobPattern Sparsity pattern of the Jacobian for finite
differencing. If it is not convenient to compute
the Jacobian matrix J in fun, lsqcurvefit
can approximate J via sparse finite differences,
provided the structure of J, i.e., locations
of the nonzeros, is supplied as the value for
JacobPattern. In the worst case, if the structure
is unknown, you can set JacobPattern to
be a dense matrix and a full finite-difference
approximation is computed in each iteration (this
is the default if JacobPattern is not set). This
can be very expensive for large problems, so it is
usually worth the effort to determine the sparsity
structure.

MaxPCGIter Maximum number of PCG (preconditioned
conjugate gradient) iterations (see “Algorithm”
on page 11-163).

11-161



lsqcurvefit

PrecondBandWidth The default PrecondBandWidth is 'Inf', which
means a direct factorization (Cholesky) is used
rather than the conjugate gradients (CG).
The direct factorization is computationally
more expensive than CG, but produces a
better quality step towards the solution.
Set PrecondBandWidth to 0 for diagonal
preconditioning (upper bandwidth of 0). For some
problems, an intermediate bandwidth reduces
the number of PCG iterations.

TolPCG Termination tolerance on the PCG iteration.

Medium-Scale Algorithm Only

These options are used only by the medium-scale algorithm:

LevenbergMarquardtChoose Levenberg-Marquardt over
Gauss-Newton algorithm.

LineSearchType Line search algorithm choice.

Examples Given vectors of data xdata and ydata, suppose you want to find
coefficients x to find the best fit to the exponential decay equation

ydata i x ex xdata i( ) ( ) ( ) ( ) = 1 2

That is, you want to minimize

min , ,
x

i i
i

F x xdata ydata( ) −( )∑ 2

where m is the length of xdata and ydata, the function F is defined by

F(x,xdata) = x(1)*exp(x(2)*xdata);

and the starting point is x0 = [100; -1];.

11-162



lsqcurvefit

First, write an M-file to return the value of F (F has n components).

function F = myfun(x,xdata)
F = x(1)*exp(x(2)*xdata);

Next, invoke an optimization routine:

% Assume you determined xdata and ydata experimentally
xdata = ...
[0.9 1.5 13.8 19.8 24.1 28.2 35.2 60.3 74.6 81.3];

ydata = ...
[455.2 428.6 124.1 67.3 43.2 28.1 13.1 -0.4 -1.3 -1.5];

x0 = [100; -1] % Starting guess
[x,resnorm] = lsqcurvefit(@myfun,x0,xdata,ydata)

Note that at the time that lsqcurvefit is called, xdata and ydata
are assumed to exist and are vectors of the same size. They must be
the same size because the value F returned by fun must be the same
size as ydata.

After 27 function evaluations, this example gives the solution

x =
498.8309 -0.1013
resnorm =
9.5049

There may be slight variation in the number of iterations and the value
of the returned x that is dependent upon the platform and release.

Algorithm Large-Scale Optimization

By default lsqcurvefit chooses the large-scale algorithm. This
algorithm is a subspace trust-region method and is based on the
interior-reflective Newton method described in [1] and [2]. Each
iteration involves the approximate solution of a large linear system
using the method of preconditioned conjugate gradients (PCG). See
“Trust-Region Methods for Nonlinear Minimization” on page 6-3 and
“Preconditioned Conjugate Gradients” on page 6-12.

11-163



lsqcurvefit

Medium-Scale Optimization

If you set the LargeScale option to 'off' with optimset, lsqcurvefit
uses the Levenberg-Marquardt method with line search [4], [5], and
[6]. Alternatively, you can select a Gauss-Newton method [3] with
line search by setting the LevenbergMarquardt option to 'off' (and
LargeScale to 'off') with optimset. The Gauss-Newton method is
generally faster when the residual sum((fun(x,xdata)-ydata).^2)
is small.

The default line search algorithm, i.e., the LineSearchType option,
is 'quadcubic'. This is a safeguarded mixed quadratic and cubic
polynomial interpolation and extrapolation method. You can select a
safeguarded cubic polynomial method by setting the LineSearchType
option to 'cubicpoly'. This method generally requires fewer function
evaluations but more gradient evaluations. Thus, if gradients are being
supplied and can be calculated inexpensively, the cubic polynomial line
search method is preferable. The algorithms used are described fully in
Chapter 5, “Standard Algorithms”.

Diagnostics Large-Scale Optimization

The large-scale method does not allow equal upper and lower bounds.
For example, if lb(2)==ub(2), lsqlin gives the error

Equal upper and lower bounds not permitted.

(lsqcurvefit does not handle equality constraints, which is another
way to formulate equal bounds. If equality constraints are present, use
fmincon, fminimax, or fgoalattain for alternative formulations where
equality constraints can be included.)

Limitations The function to be minimized must be continuous. lsqcurvefit might
only give local solutions.

lsqcurvefit only handles real variables (the user-defined function
must only return real values). When x has complex variables, the
variables must be split into real and imaginary parts.

11-164



lsqcurvefit

Large-Scale Optimization

The large-scale algorithm for lsqcurvefit does not solve
underdetermined systems; it requires that the number of equations, i.e.,
the row dimension of F, be at least as great as the number of variables.
In the underdetermined case, the medium-scale algorithm is used
instead. See Large-Scale Problem Coverage and Requirements on page
4-44 for more information on what problem formulations are covered
and what information must be provided.

The preconditioner computation used in the preconditioned conjugate
gradient part of the large-scale method forms JTJ (where J is the
Jacobian matrix) before computing the preconditioner; therefore, a row
of J with many nonzeros, which results in a nearly dense product JTJ,
can lead to a costly solution process for large problems.

If components of x have no upper (or lower) bounds, then lsqcurvefit
prefers that the corresponding components of ub (or lb) be set to inf
(or -inf for lower bounds) as opposed to an arbitrary but very large
positive (or negative for lower bounds) number.

Medium-Scale Optimization

The medium-scale algorithm does not handle bound constraints.

Since the large-scale algorithm does not handle underdetermined
systems and the medium-scale does not handle bound constraints,
problems with both these characteristics cannot be solved by
lsqcurvefit.

References [1] Coleman, T.F. and Y. Li, “An Interior, Trust Region Approach
for Nonlinear Minimization Subject to Bounds,” SIAM Journal on
Optimization, Vol. 6, pp. 418-445, 1996.

[2] Coleman, T.F. and Y. Li, “On the Convergence of Reflective Newton
Methods for Large-Scale Nonlinear Minimization Subject to Bounds,”
Mathematical Programming, Vol. 67, Number 2, pp. 189-224, 1994.

[3] Dennis, J. E. Jr., “Nonlinear Least-Squares,” State of the Art in
Numerical Analysis, ed. D. Jacobs, Academic Press, pp. 269-312, 1977.

11-165



lsqcurvefit

[4] Levenberg, K., “A Method for the Solution of Certain Problems in
Least-Squares,” Quarterly Applied Math. 2, pp. 164-168, 1944.

[5] Marquardt, D., “An Algorithm for Least-Squares Estimation of
Nonlinear Parameters,” SIAM Journal Applied Math., Vol. 11, pp.
431-441, 1963.

[6] More, J. J., “The Levenberg-Marquardt Algorithm: Implementation
and Theory,” Numerical Analysis, ed. G. A. Watson, Lecture Notes in
Mathematics 630, Springer Verlag, pp. 105-116, 1977.

See Also @ (function_handle), \ (matrix left division), lsqlin, lsqnonlin,
lsqnonneg, optimset, optimtool, nlinfit

Note The Statistics Toolbox™ function nlinfit has more
statistics-oriented outputs that are useful, for example, in finding
confidence intervals for the coefficients. It also comes with the nlintool
GUI for visualizing the fitted function. The lsqnonlin function has
more outputs related to how well the optimization performed. It can
put bounds on the parameters, and it accepts many options to control
the optimization algorithm.

11-166



lsqlin

Purpose Solve constrained linear least-squares problems

Equation Solves least-squares curve fitting problems of the form

min
,

,
.

x
C x d

A x b
Aeq x beq
lb x ub

⋅ −
⋅ ≤
⋅ =
≤ ≤

⎧
⎨
⎪

⎩⎪
2
2  such that 

Syntax x = lsqlin(C,d,A,b)
x = lsqlin(C,d,A,b,Aeq,beq)
x = lsqlin(C,d,A,b,Aeq,beq,lb,ub)
x = lsqlin(C,d,A,b,Aeq,beq,lb,ub,x0)
x = lsqlin(C,d,A,b,Aeq,beq,lb,ub,x0,options)
x = lsqlin(problem)
[x,resnorm] = lsqlin(...)
[x,resnorm,residual] = lsqlin(...)
[x,resnorm,residual,exitflag] = lsqlin(...)
[x,resnorm,residual,exitflag,output] = lsqlin(...)
[x,resnorm,residual,exitflag,output,lambda] = lsqlin(...)

Description x = lsqlin(C,d,A,b) solves the linear system C*x = d in the
least-squares sense subject to A*x ≤ b, where C is m-by-n.

x = lsqlin(C,d,A,b,Aeq,beq) solves the preceding problem while
additionally satisfying the equality constraints Aeq*x = beq. Set
A = [] and b = [] if no inequalities exist.

x = lsqlin(C,d,A,b,Aeq,beq,lb,ub) defines a set of lower and upper
bounds on the design variables in x so that the solution is always in the
range lb ≤ x ≤ ub. Set Aeq = [] and beq = [] if no equalities exist.

x = lsqlin(C,d,A,b,Aeq,beq,lb,ub,x0) sets the starting point to x0.
Set lb = [] and b = [] if no bounds exist.

x = lsqlin(C,d,A,b,Aeq,beq,lb,ub,x0,options) minimizes with
the optimization options specified in the structure options. Use
optimset to set these options.

11-167



lsqlin

x = lsqlin(problem) finds the minimum for problem, where problem
is a structure described in “Input Arguments” on page 11-168.

Create the structure problem by exporting a problem from Optimization
Tool, as described in “Exporting to the MATLAB® Workspace” on page
3-14.

[x,resnorm] = lsqlin(...) returns the value of the squared 2-norm
of the residual, norm(C*x-d)^2.

[x,resnorm,residual] = lsqlin(...) returns the residual C*x-d.

[x,resnorm,residual,exitflag] = lsqlin(...) returns a value
exitflag that describes the exit condition.

[x,resnorm,residual,exitflag,output] = lsqlin(...) returns a
structure output that contains information about the optimization.

[x,resnorm,residual,exitflag,output,lambda] = lsqlin(...)
returns a structure lambda whose fields contain the Lagrange
multipliers at the solution x.

Note If the specified input bounds for a problem are inconsistent, the
output x is x0 and the outputs resnorm and residual are [].

Components of x0 that violate the bounds lb ≤ x ≤ ub are reset to the
interior of the box defined by the bounds. Components that respect the
bounds are not changed.

If no x0 is provided, x0 is set to the zero vector. If any component of this
zero vector x0 violates the bounds, x0 is set to a point in the interior
of the box defined by the bounds.

Input
Arguments

“Function Arguments” on page 9-2 contains general descriptions of
arguments passed into lsqlin. “Options” on page 11-170 provides the
options values specific to lsqlin.

11-168



lsqlin

C Matrix

d Vector

Aineq Matrix for linear inequality constraints

bineq Vector for linear inequality constraints

Aeq Matrix for linear equality constraints

beq Vector for linear equality constraints

lb Vector of lower bounds

ub Vector of upper bounds

x0 Initial point for x

solver 'lsqlin'

problem

options Options structure created with optimset

Output
Arguments

“Function Arguments” on page 9-2 contains general descriptions of
arguments returned by lsqlin. This section provides function-specific
details for exitflag, lambda, and output:

exitflag Integer identifying the reason the algorithm
terminated. The following lists the values of
exitflag and the corresponding reasons the
algorithm terminated:

1 Function converged to a solution
x.

3 Change in the residual was
smaller than the specified
tolerance.

0 Number of iterations exceeded
options.MaxIter.

-2 The problem is infeasible.

11-169



lsqlin

-4 Ill-conditioning prevents further
optimization.

-7 Magnitude of search direction
became too small. No further
progress could be made.

lambda Structure containing the Lagrange multipliers at
the solution x (separated by constraint type). The
fields are

lower Lower bounds lb

upper Upper bounds ub

ineqlin Linear inequalities

eqlin Linear equalities

output Structure containing information about the
optimization. The fields are

iterations Number of iterations taken

algorithm Optimization algorithm used

cgiterations Total number of PCG iterations
(large-scale algorithm, [ ] for
medium-scale)

firstorderopt Measure of first-order optimality
(large-scale algorithm, [ ] for
medium-scale)

message Exit message

Options Optimization options used by lsqlin. You can set or change the
values of these options using the optimset function. Some options
apply to all algorithms, some are only relevant when you are using
the large-scale algorithm, and others are only relevant when using the
medium-scale algorithm. See “Optimization Options” on page 9-8 for
detailed information.

11-170



lsqlin

The LargeScale option specifies a preference for which algorithm to
use. It is only a preference, because certain conditions must be met to
use the large-scale algorithm. For lsqlin, when the problem has only
upper and lower bounds, i.e., no linear inequalities or equalities are
specified, the default algorithm is the large-scale method. Otherwise
the medium-scale algorithm is used:

LargeScale Use large-scale algorithm if possible when set to
'on'. Use medium-scale algorithm when set to
'off'.

Medium-Scale and Large-Scale Algorithms

These options are used by both the medium-scale and large-scale
algorithms:

Diagnostics Display diagnostic information about the function
to be minimized.

Display Level of display. 'off' displays no output; 'final'
(default) displays just the final output.

MaxIter Maximum number of iterations allowed.

TypicalX Typical x values.

Large-Scale Algorithm Only

These options are used only by the large-scale algorithm:

11-171



lsqlin

JacobMult Function handle for Jacobian multiply function.
For large-scale structured problems, this function
computes the Jacobian matrix product J*Y, J'*Y,
or J'*(J*Y) without actually forming J. The
function is of the form

W = jmfun(Jinfo,Y,flag,p1,p2,...)

where Jinfo and the additional parameters
p1,p2,... contain the matrices used to compute
J*Y (or J'*Y, or J'*(J*Y)). The first argument
Jinfo must be the same as the second argument
returned by the objective function fun, for
example by

[F,Jinfo] = fun(x)

Y is a matrix that has the same number of rows
as there are dimensions in the problem. flag
determines which product to compute:

• If flag == 0 then W = J'*(J*Y).

• If flag > 0 then W = J*Y.

• If flag < 0 then W = J'*Y.

In each case, J is not formed explicitly. fsolve
uses Jinfo to compute the preconditioner. The
optional parameters p1, p2, ... can be any
additional parameters needed by jmfun. See
“Passing Extra Parameters” on page 2-10 for

11-172



lsqlin

information on how to supply values for these
parameters.

Note 'Jacobian' must be set to 'on' for Jinfo
to be passed from fun to jmfun.

See “Nonlinear Minimization with a Dense but
Structured Hessian and Equality Constraints”
on page 4-62 for a similar example.

MaxPCGIter Maximum number of PCG (preconditioned
conjugate gradient) iterations (see “Algorithm”
on page 11-175).

PrecondBandWidth Upper bandwidth of preconditioner for PCG.
By default, diagonal preconditioning is used
(upper bandwidth of 0). For some problems,
increasing the bandwidth reduces the number
of PCG iterations. Setting PrecondBandWidth
to 'Inf' uses a direct factorization (Cholesky)
rather than the conjugate gradients (CG). The
direct factorization is computationally more
expensive than CG, but produces a better quality
step towards the solution.

TolFun Termination tolerance on the function value.

TolPCG Termination tolerance on the PCG iteration.

Examples Find the least-squares solution to the overdetermined system C·x = d,
subject to A·x ≤ b and lb ≤ x ≤ ub.

First, enter the coefficient matrices and the lower and upper bounds.

C = [
0.9501 0.7620 0.6153 0.4057
0.2311 0.4564 0.7919 0.9354

11-173



lsqlin

0.6068 0.0185 0.9218 0.9169
0.4859 0.8214 0.7382 0.4102
0.8912 0.4447 0.1762 0.8936];

d = [
0.0578
0.3528
0.8131
0.0098
0.1388];

A =[
0.2027 0.2721 0.7467 0.4659
0.1987 0.1988 0.4450 0.4186
0.6037 0.0152 0.9318 0.8462];

b =[
0.5251
0.2026
0.6721];

lb = -0.1*ones(4,1);
ub = 2*ones(4,1);

Next, call the constrained linear least-squares routine.

[x,resnorm,residual,exitflag,output,lambda] = ...
lsqlin(C,d,A,b,[ ],[ ],lb,ub);

Entering x, lambda.ineqlin, lambda.lower, lambda.upper produces

x =
-0.1000
-0.1000
0.2152
0.3502

lambda.ineqlin =
0

0.2392
0

lambda.lower =

11-174



lsqlin

0.0409
0.2784

0
0

lambda.upper =
0
0
0
0

Nonzero elements of the vectors in the fields of lambda indicate
active constraints at the solution. In this case, the second inequality
constraint (in lambda.ineqlin) and the first lower and second lower
bound constraints (in lambda.lower) are active constraints (i.e., the
solution is on their constraint boundaries).

Notes For problems with no constraints, use \ (matrix left division). For
example, x= A\b.

Because the problem being solved is always convex, lsqlin will find a
global, although not necessarily unique, solution.

Better numerical results are likely if you specify equalities explicitly,
using Aeq and beq, instead of implicitly, using lb and ub.

Large-Scale Optimization

If x0 is not strictly feasible, lsqlin chooses a new strictly feasible
(centered) starting point.

If components of x have no upper (or lower) bounds, set the
corresponding components of ub (or lb) to Inf (or -Inf for lb) as
opposed to an arbitrary but very large positive (or negative in the case
of lower bounds) number.

Algorithm Large-Scale Optimization

When the problem given to lsqlin has only upper and lower bounds;
i.e., no linear inequalities or equalities are specified, and the matrix

11-175



lsqlin

C has at least as many rows as columns, the default algorithm is the
large-scale method. This method is a subspace trust-region method
based on the interior-reflective Newton method described in [1]. Each
iteration involves the approximate solution of a large linear system
using the method of preconditioned conjugate gradients (PCG). See
“Trust-Region Methods for Nonlinear Minimization” on page 6-3 and
“Preconditioned Conjugate Gradients” on page 6-12.

Medium-Scale Optimization

lsqlin, with the LargeScale option set to 'off' with optimset, or
when linear inequalities or equalities are given, is based on quadprog,
which uses an active set method similar to that described in [2]. It
finds an initial feasible solution by first solving a linear programming
problem. See “Quadratic Programming” on page 6-18.

Diagnostics Large-Scale Optimization

The large-scale method does not allow equal upper and lower bounds.
For example, if lb(2) == ub(2), then lsqlin gives the following error:

Equal upper and lower bounds not permitted
in this large-scale method.
Use equality constraints and the medium-scale
method instead.

At this time, you must use the medium-scale algorithm to solve equality
constrained problems.

Medium-Scale Optimization

If the matrices C, A, or Aeq are sparse, and the problem formulation
is not solvable using the large-scale method, lsqlin warns that the
matrices are converted to full.

Warning: This problem formulation not yet available
for sparse matrices.
Converting to full to solve.

When a problem is infeasible, lsqlin gives a warning:

11-176



lsqlin

Warning: The constraints are overly stringent;
there is no feasible solution.

In this case, lsqlin produces a result that minimizes the worst case
constraint violation.

When the equality constraints are inconsistent, lsqlin gives

Warning: The equality constraints are overly stringent;
there is no feasible solution.

Limitations At this time, the only levels of display, using the Display option in
options, are 'off' and 'final'; iterative output using 'iter' is not
available.

References [1] Coleman, T.F. and Y. Li, “A Reflective Newton Method for Minimizing
a Quadratic Function Subject to Bounds on Some of the Variables,”
SIAM Journal on Optimization, Vol. 6, Number 4, pp. 1040-1058, 1996.

[2] Gill, P.E., W. Murray, and M.H. Wright, Practical Optimization,
Academic Press, London, UK, 1981.

See Also \ (matrix left division), lsqnonneg, quadprog, optimtool

11-177



lsqnonlin

Purpose Solve nonlinear least-squares (nonlinear data-fitting) problems

Equation Solves nonlinear least-squares curve fitting problems of the form

min ( ) min ( ) ( ) ... ( )
x x

nf x f x f x f x2
2

1
2

2
2 2= + + +( )

Syntax x = lsqnonlin(fun,x0)
x = lsqnonlin(fun,x0,lb,ub)
x = lsqnonlin(fun,x0,lb,ub,options)
x = lsqnonlin(problem)
[x,resnorm] = lsqnonlin(...)
[x,resnorm,residual] = lsqnonlin(...)
[x,resnorm,residual,exitflag] = lsqnonlin(...)
[x,resnorm,residual,exitflag,output] = lsqnonlin(...)
[x,resnorm,residual,exitflag,output,lambda] = lsqnonlin(...)
[x,resnorm,residual,exitflag,output,lambda,

jacobian] = lsqnonlin(...)

Description lsqnonlin solves nonlinear least-squares problems, including nonlinear
data-fitting problems.

Rather than compute the value f x( ) 2
2 (the sum of squares), lsqnonlin

requires the user-defined function to compute the vector-valued function

f x

f x
f x

f xn

( )

( )
( )

( )

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

1

2

�

Then, in vector terms, you can restate this optimization problem as

min ( ) min ( ) ( ) ... ( )
x x

nf x f x f x f x2
2

1
2

2
2 2= + + +( )

where x is a vector and f(x) is a function that returns a vector value.

11-178



lsqnonlin

x = lsqnonlin(fun,x0) starts at the point x0 and finds a minimum
of the sum of squares of the functions described in fun. fun should
return a vector of values and not the sum of squares of the values. (The
algorithm implicitly sums and squares fun(x).)

x = lsqnonlin(fun,x0,lb,ub) defines a set of lower and upper
bounds on the design variables in x, so that the solution is always in the
range lb ≤ x ≤ ub.

x = lsqnonlin(fun,x0,lb,ub,options) minimizes with the
optimization options specified in the structure options. Use optimset
to set these options. Pass empty matrices for lb and ub if no bounds
exist.

x = lsqnonlin(problem) finds the minimum for problem, where
problem is a structure described in “Input Arguments” on page 11-180.

Create the structure problem by exporting a problem from Optimization
Tool, as described in “Exporting to the MATLAB® Workspace” on page
3-14.

[x,resnorm] = lsqnonlin(...) returns the value of the squared
2-norm of the residual at x: sum(fun(x).^2).

[x,resnorm,residual] = lsqnonlin(...) returns the value of the
residual fun(x) at the solution x.

[x,resnorm,residual,exitflag] = lsqnonlin(...) returns a value
exitflag that describes the exit condition.

[x,resnorm,residual,exitflag,output] = lsqnonlin(...) returns
a structure output that contains information about the optimization.

[x,resnorm,residual,exitflag,output,lambda] =
lsqnonlin(...) returns a structure lambda whose fields contain the
Lagrange multipliers at the solution x.

[x,resnorm,residual,exitflag,output,lambda,jacobian] =
lsqnonlin(...) returns the Jacobian of fun at the solution x.

11-179



lsqnonlin

Note If the specified input bounds for a problem are inconsistent, the
output x is x0 and the outputs resnorm and residual are [].

Components of x0 that violate the bounds lb ≤ x ≤ ub are reset to the
interior of the box defined by the bounds. Components that respect the
bounds are not changed.

Input
Arguments

“Function Arguments” on page 9-2 contains general descriptions
of arguments passed into lsqnonlin. This section provides
function-specific details for fun, options, and problem:

fun The function whose sum of squares is minimized. fun is
a function that accepts a vector x and returns a vector
F, the objective functions evaluated at x. The function
fun can be specified as a function handle for an M-file
function

x = lsqnonlin(@myfun,x0)

where myfun is a MATLAB® function such as

function F = myfun(x)
F = ... % Compute function values at x

fun can also be a function handle for an anonymous
function.

x = lsqnonlin(@(x)sin(x.*x),x0);

If the user-defined values for x and F are matrices, they
are converted to a vector using linear indexing.

If the Jacobian can also be computed and the Jacobian
option is 'on', set by

options = optimset('Jacobian','on')

11-180



lsqnonlin

then the function fun must return, in a second output
argument, the Jacobian value J, a matrix, at x. Note
that by checking the value of nargout the function can
avoid computing J when fun is called with only one
output argument (in the case where the optimization
algorithm only needs the value of F but not J).

function [F,J] = myfun(x)

F = ... % Objective function values at x

if nargout > 1 % Two output arguments

J = ... % Jacobian of the function evaluated at x

end

If fun returns a vector (matrix) of m components and
x has length n, where n is the length of x0, then the
Jacobian J is an m-by-n matrix where J(i,j) is the
partial derivative of F(i) with respect to x(j). (Note
that the Jacobian J is the transpose of the gradient of F.)

options “Options” on page 11-183 provides the function-specific
details for the options values.

objective Objective function

x0 Initial point for x

lb Vector of lower bounds

ub Vector of upper bounds

solver 'lsqnonlin'

problem

options Options structure created with
optimset

Output
Arguments

“Function Arguments” on page 9-2 contains general descriptions
of arguments returned by lsqnonlin. This section provides
function-specific details for exitflag, lambda, and output:

11-181



lsqnonlin

exitflag Integer identifying the reason the algorithm
terminated. The following lists the values of
exitflag and the corresponding reasons the
algorithm terminated:

1 Function converged to a solution x.

2 Change in x was less than the
specified tolerance.

3 Change in the residual was less
than the specified tolerance.

4 Magnitude of search direction
was smaller than the specified
tolerance.

0 Number of iterations exceeded
options.MaxIter or number of
function evaluations exceeded
options.FunEvals.

-1 Algorithm was terminated by the
output function.

-2 Problem is infeasible: the bounds
lb and ub are inconsistent.

-4 Line search could not sufficiently
decrease the residual along the
current search direction.

lambda Structure containing the Lagrange multipliers at
the solution x (separated by constraint type). The
fields are

lower Lower bounds lb

upper Upper bounds ub

output Structure containing information about the
optimization. The fields of the structure are

11-182



lsqnonlin

firstorderopt Measure of first-order optimality
(large-scale algorithm, [ ] for
others)

iterations Number of iterations taken

funcCount The number of function
evaluations

cgiterations Total number of PCG iterations
(large-scale algorithm, [ ] for
others))

stepsize Final displacement in x
(medium-scale algorithm only)

algorithm Optimization algorithm used

message Exit message

Note The sum of squares should not be formed explicitly. Instead, your
function should return a vector of function values. See “Examples” on
page 11-188.

Options Optimization options. You can set or change the values of these options
using the optimset function. Some options apply to all algorithms,
some are only relevant when you are using the large-scale algorithm,
and others are only relevant when you are using the medium-scale
algorithm. See “Optimization Options” on page 9-8 for detailed
information.

The LargeScale option specifies a preference for which algorithm to use.
It is only a preference because certain conditions must be met to use the
large-scale or medium-scale algorithm. For the large-scale algorithm,
the nonlinear system of equations cannot be underdetermined; that is,
the number of equations (the number of elements of F returned by fun)
must be at least as many as the length of x. Furthermore, only the
large-scale algorithm handles bound constraints:

11-183



lsqnonlin

LargeScale Use large-scale algorithm if possible when set to 'on'.
Use medium-scale algorithm when set to 'off'.

The large-scale algorithm is a more modern algorithm than the
medium-scale algorithms. The large-scale algorithm handles both
large-scale and medium-scale problems effectively.

Medium-Scale and Large-Scale Algorithms

These options are used by both the medium-scale and large-scale
algorithms:

DerivativeCheck Compare user-supplied derivatives (Jacobian) to
finite-differencing derivatives.

Diagnostics Display diagnostic information about the function
to be minimized.

DiffMaxChange Maximum change in variables for finite
differencing.

DiffMinChange Minimum change in variables for finite
differencing.

Display Level of display. 'off' displays no output;
'iter' displays output at each iteration; 'final'
(default) displays just the final output.

Jacobian If 'on', lsqnonlin uses a user-defined Jacobian
(defined in fun), or Jacobian information (when
using JacobMult), for the objective function. If
'off', lsqnonlin approximates the Jacobian
using finite differences.

MaxFunEvals Maximum number of function evaluations allowed.

MaxIter Maximum number of iterations allowed.

OutputFcn Specify one or more user-defined functions that an
optimization function calls at each iteration. See
“Output Function” on page 9-18.

11-184



lsqnonlin

PlotFcns Plots various measures of progress while the
algorithm executes, select from predefined plots
or write your own. Specifying @optimplotx plots
the current point; @optimplotfunccount plots the
function count; @optimplotfval plots the function
value; @optimplotresnorm plots the norm of the
residuals; @optimplotstepsize plots the step size;
@optimplotfirstorderopt plots the first-order
of optimality.

TolFun Termination tolerance on the function value.

TolX Termination tolerance on x.

TypicalX Typical x values.

Large-Scale Algorithm Only

These options are used only by the large-scale algorithm:

JacobMult Function handle for Jacobian multiply function.
For large-scale structured problems, this function
computes the Jacobian matrix product J*Y, J'*Y,
or J'*(J*Y) without actually forming J. The
function is of the form

W = jmfun(Jinfo,Y,flag,p1,p2,...)

where Jinfo and the additional parameters
p1,p2,... contain the matrices used to compute
J*Y (or J'*Y, or J'*(J*Y)). The first argument
Jinfo must be the same as the second argument
returned by the objective function fun, for
example by

[F,Jinfo] = fun(x)

11-185



lsqnonlin

Y is a matrix that has the same number of rows
as there are dimensions in the problem. flag
determines which product to compute:

• If flag == 0 then W = J'*(J*Y).

• If flag > 0 then W = J*Y.

• If flag < 0 then W = J'*Y.

In each case, J is not formed explicitly.
lsqnonlin uses Jinfo to compute the
preconditioner. The optional parameters p1,
p2, ... can be any additional parameters
needed by jmfun. See “Passing Extra
Parameters” on page 2-10 for information on
how to supply values for these parameters.

Note 'Jacobian' must be set to 'on' for Jinfo
to be passed from fun to jmfun.

See “Nonlinear Minimization with a Dense but
Structured Hessian and Equality Constraints” on
page 4-62 for a similar example.

11-186



lsqnonlin

JacobPattern Sparsity pattern of the Jacobian for finite
differencing. If it is not convenient to compute
the Jacobian matrix J in fun, lsqnonlin can
approximate J via sparse finite differences,
provided the structure of J, i.e., locations of
the nonzeros, is supplied as the value for
JacobPattern. In the worst case, if the structure
is unknown, you can set JacobPattern to be
a dense matrix and a full finite-difference
approximation is computed in each iteration (this
is the default if JacobPattern is not set). This
can be very expensive for large problems, so it is
usually worth the effort to determine the sparsity
structure.

MaxPCGIter Maximum number of PCG (preconditioned
conjugate gradient) iterations (see “Algorithm” on
page 11-189).

PrecondBandWidth The default PrecondBandWidth is 'Inf', which
means a direct factorization (Cholesky) is used
rather than the conjugate gradients (CG). The
direct factorization is computationally more
expensive than CG, but produces a better quality
step towards the solution. Set PrecondBandWidth
to 0 for diagonal preconditioning (upper
bandwidth of 0). For some problems, an
intermediate bandwidth reduces the number of
PCG iterations.

TolPCG Termination tolerance on the PCG iteration.

Medium-Scale Algorithm Only

These options are used only by the medium-scale algorithm:

11-187



lsqnonlin

LevenbergMarquardt Choose Levenberg-Marquardt over
Gauss-Newton algorithm.

LineSearchType Line search algorithm choice.

Examples Find x that minimizes

2 2 1 2
2

1

10
+ − −( )

=
∑ k e ekx kx

k

,

starting at the point x = [0.3, 0.4].

Because lsqnonlin assumes that the sum of squares is not explicitly
formed in the user-defined function, the function passed to lsqnonlin
should instead compute the vector-valued function

F x k e ek
kx kx( ) ,= + − −2 2 1 2

for k = 1 to 10 (that is, F should have k components).

First, write an M-file to compute the k-component vector F.

function F = myfun(x)
k = 1:10;
F = 2 + 2*k-exp(k*x(1))-exp(k*x(2));

Next, invoke an optimization routine.

x0 = [0.3 0.4] % Starting guess
[x,resnorm] = lsqnonlin(@myfun,x0) % Invoke optimizer

After about 24 function evaluations, this example gives the solution

x =
0.2578 0.2578

resnorm % Residual or sum of squares
resnorm =

124.3622

11-188



lsqnonlin

Algorithm Large-Scale Optimization

By default lsqnonlin chooses the large-scale algorithm. This algorithm
is a subspace trust-region method and is based on the interior-reflective
Newton method described in [1] and [2]. Each iteration involves the
approximate solution of a large linear system using the method of
preconditioned conjugate gradients (PCG). See “Trust-Region Methods
for Nonlinear Minimization” on page 6-3 and “Preconditioned Conjugate
Gradients” on page 6-12.

Medium-Scale Optimization

If you set the LargeScale option to 'off' with optimset, lsqnonlin
uses the Levenberg-Marquardt method with line search [4], [5], and
[6]. Alternatively, you can select a Gauss-Newton method [6] with
line search by setting the LevenbergMarquardt option to 'off' (and
LargeScale to 'off') with optimset. The Gauss-Newton method is

generally faster when the residual F x( ) 2
2 is small.

The default line search algorithm, i.e., the LineSearchType option,
is 'quadcubic'. This is a safeguarded mixed quadratic and cubic
polynomial interpolation and extrapolation method. You can select a
safeguarded cubic polynomial method by setting the LineSearchType
option to 'cubicpoly'. This method generally requires fewer function
evaluations but more gradient evaluations. Thus, if gradients are being
supplied and can be calculated inexpensively, the cubic polynomial line
search method is preferable. The algorithms used are described fully in
Chapter 5, “Standard Algorithms”.

Diagnostics Large-Scale Optimization

The large-scale method does not allow equal upper and lower bounds.
For example, if lb(2)==ub(2), lsqlin gives the error

Equal upper and lower bounds not permitted.

11-189



lsqnonlin

(lsqnonlin does not handle equality constraints, which is another way
to formulate equal bounds. If equality constraints are present, use
fmincon, fminimax, or fgoalattain for alternative formulations where
equality constraints can be included.)

Limitations The function to be minimized must be continuous. lsqnonlin might
only give local solutions.

lsqnonlin only handles real variables. When x has complex variables,
the variables must be split into real and imaginary parts.

Large-Scale Optimization

The large-scale method for lsqnonlin does not solve underdetermined
systems; it requires that the number of equations (i.e., the number of
elements of F) be at least as great as the number of variables. In the
underdetermined case, the medium-scale algorithm is used instead.
(If bound constraints exist, a warning is issued and the problem is
solved with the bounds ignored.) See Large-Scale Problem Coverage
and Requirements on page 4-44 for more information on what problem
formulations are covered and what information must be provided.

The preconditioner computation used in the preconditioned conjugate
gradient part of the large-scale method forms JTJ (where J is the
Jacobian matrix) before computing the preconditioner; therefore, a row
of J with many nonzeros, which results in a nearly dense product JTJ,
can lead to a costly solution process for large problems.

If components of x have no upper (or lower) bounds, then lsqnonlin
prefers that the corresponding components of ub (or lb) be set to inf
(or -inf for lower bounds) as opposed to an arbitrary but very large
positive (or negative for lower bounds) number.

Medium-Scale Optimization

The medium-scale algorithm does not handle bound constraints.

Because the large-scale algorithm does not handle underdetermined
systems and the medium-scale algorithm does not handle bound
constraints, problems with both these characteristics cannot be solved
by lsqnonlin.

11-190



lsqnonlin

References [1] Coleman, T.F. and Y. Li, “An Interior, Trust Region Approach
for Nonlinear Minimization Subject to Bounds,” SIAM Journal on
Optimization, Vol. 6, pp. 418–445, 1996.

[2] Coleman, T.F. and Y. Li, “On the Convergence of Reflective Newton
Methods for Large-Scale Nonlinear Minimization Subject to Bounds,”
Mathematical Programming, Vol. 67, Number 2, pp. 189-224, 1994.

[3] Dennis, J.E., Jr., “Nonlinear Least-Squares,” State of the Art in
Numerical Analysis, ed. D. Jacobs, Academic Press, pp. 269–312, 1977.

[4] Levenberg, K., “A Method for the Solution of Certain Problems in
Least-Squares,” Quarterly Applied Math. 2, pp. 164–168, 1944.

[5] Marquardt, D., “An Algorithm for Least-Squares Estimation of
Nonlinear Parameters,” SIAM Journal Applied Math., Vol. 11, pp.
431–441, 1963.

[6] Moré, J.J., “The Levenberg-Marquardt Algorithm: Implementation
and Theory,” Numerical Analysis, ed. G. A. Watson, Lecture Notes in
Mathematics 630, Springer Verlag, pp. 105–116, 1977.

See Also @ (function_handle), lsqcurvefit, lsqlin, optimset, optimtool

11-191



lsqnonneg

Purpose Solve nonnegative least-squares constraint problem

Equation Solves nonnegative least-squares curve fitting problems of the form

min , .
x

C x d x⋅ − ≥2
2 0 where 

Syntax x = lsqnonneg(C,d)
x = lsqnonneg(C,d,x0)
x = lsqnonneg(C,d,x0,options)
x = lsqnonneg(problem)
[x,resnorm] = lsqnonneg(...)
[x,resnorm,residual] = lsqnonneg(...)
[x,resnorm,residual,exitflag] = lsqnonneg(...)
[x,resnorm,residual,exitflag,output] = lsqnonneg(...)
[x,resnorm,residual,exitflag,output,lambda] = lsqnonneg(...)

Description x = lsqnonneg(C,d) returns the vector x that minimizes norm(C*x-d)
subject to x ≥ 0. C and d must be real.

x = lsqnonneg(C,d,x0) uses x0 as the starting point if all x0 ≥ 0;
otherwise, the default is used. The default start point is the origin (the
default is also used when x0 = [] or when only two input arguments
are provided).

x = lsqnonneg(C,d,x0,options) minimizes with the optimization
options specified in the structure options. Use optimset to set these
options.

x = lsqnonneg(problem) finds the minimum for problem, where
problem is a structure described in “Input Arguments” on page 11-193.

Create the structure problem by exporting a problem from Optimization
Tool, as described in “Exporting to the MATLAB® Workspace” on page
3-14.

[x,resnorm] = lsqnonneg(...) returns the value of the squared
2-norm of the residual, norm(C*x-d)^2.

11-192



lsqnonneg

[x,resnorm,residual] = lsqnonneg(...) returns the residual
C*x-d.

[x,resnorm,residual,exitflag] = lsqnonneg(...) returns a value
exitflag that describes the exit condition of lsqnonneg.

[x,resnorm,residual,exitflag,output] = lsqnonneg(...) returns
a structure output that contains information about the optimization.

[x,resnorm,residual,exitflag,output,lambda] =
lsqnonneg(...) returns the Lagrange multipliers in the vector lambda.

Input
Arguments

“Function Arguments” on page 9-2 contains general descriptions
of arguments passed into lsqnonneg. This section provides
function-specific details for options and problem:

options Use optimset to set or change the values of these
fields in the options structure, options. See
“Optimization Options” on page 9-8 for detailed
information.

Display Level of display. 'off' displays no
output; 'final' displays just the final
output; 'notify' (default) displays
output only if the function does not
converge.

TolX Termination tolerance on x.

C Matrix

d Vector

x0 Initial point for x

solver 'lsqnonneg'

problem

options Options structure created with
optimset

11-193



lsqnonneg

Output
Arguments

“Function Arguments” on page 9-2 contains general descriptions
of arguments returned by lsqnonneg. This section provides
function-specific details for exitflag, lambda, and output:

exitflag Integer identifying the reason the algorithm
terminated. The following lists the values of
exitflag and the corresponding reasons the
algorithm terminated.

1 Function converged to a
solution x.

0 Number of iterations exceeded
options.MaxIter.

lambda Vector containing the Lagrange multipliers:
lambda(i)≤0 when x(i) is (approximately)
0, and lambda(i) is (approximately) 0 when
x(i)>0.

output Structure containing information about the
optimization. The fields are

iterations Number of iterations taken

algorithm Optimization algorithm used

message Exit message

Examples Compare the unconstrained least-squares solution to the lsqnonneg
solution for a 4-by-2 problem.

C = [
0.0372 0.2869
0.6861 0.7071
0.6233 0.6245
0.6344 0.6170];

d = [
0.8587
0.1781

11-194



lsqnonneg

0.0747
0.8405];

[C\d, lsqnonneg(C,d)] =
-2.5627 0
3.1108 0.6929

[norm(C*(C\d)-d), norm(C*lsqnonneg(C,d)-d)] =
0.6674 0.9118

The solution from lsqnonneg does not fit as well as the least-squares
solution. However, the nonnegative least-squares solution has no
negative components.

Algorithm lsqnonneg uses the algorithm described in [1]. The algorithm starts
with a set of possible basis vectors and computes the associated
dual vector lambda. It then selects the basis vector corresponding to
the maximum value in lambda in order to swap it out of the basis
in exchange for another possible candidate. This continues until
lambda ≤ 0.

Notes The nonnegative least-squares problem is a subset of the constrained
linear least-squares problem. Thus, when C has more rows than
columns (i.e., the system is overdetermined),

[x,resnorm,residual,exitflag,output,lambda] = ...
lsqnonneg(C,d)

is equivalent to

[m,n] = size(C);
[x,resnorm,residual,exitflag,output,lambda_lsqlin] = ...

lsqlin(C,d,-eye(n,n),zeros(n,1));

except that lambda = -lambda_lsqlin.ineqlin.

11-195



lsqnonneg

For problems greater than order 20, lsqlin might be faster than
lsqnonneg; otherwise lsqnonneg is generally more efficient.

References [1] Lawson, C.L. and R.J. Hanson, Solving Least-Squares Problems,
Prentice-Hall, Chapter 23, p. 161, 1974.

See Also \ (matrix left division), lsqlin, optimset, optimtool

11-196



optimget

Purpose Optimization options values

Syntax val = optimget(options,'param')
val = optimget(options,'param',default)

Description val = optimget(options,'param') returns the value of the specified
option in the optimization options structure options. You need to type
only enough leading characters to define the option name uniquely.
Case is ignored for option names.

val = optimget(options,'param',default) returns default if the
specified option is not defined in the optimization options structure
options. Note that this form of the function is used primarily by other
optimization functions.

Examples This statement returns the value of the Display option in the structure
called my_options.

val = optimget(my_options,'Display')

This statement returns the value of the Display option in the structure
called my_options (as in the previous example) except that if the
Display option is not defined, it returns the value 'final'.

optnew = optimget(my_options,'Display','final');

See Also optimset

11-197



optimset

Purpose Create or edit optimization options structure

Syntax options = optimset('param1',value1,'param2',value2,...)
optimset
options = optimset
options = optimset(optimfun)
options = optimset(oldopts,'param1',value1,...)
options = optimset(oldopts,newopts)

Description options = optimset('param1',value1,'param2',value2,...)
creates an optimization options structure called options, in which the
specified options (param) have specified values. Any unspecified options
are set to [] (options with value [] indicate to use the default value for
that option when you pass options to the optimization function). It is
sufficient to type only enough leading characters to define the option
name uniquely. Case is ignored for option names.

optimset with no input or output arguments displays a complete list
of options with their valid values.

options = optimset (with no input arguments) creates an options
structure options where all fields are set to [].

options = optimset(optimfun) creates an options structure options
with all option names and default values relevant to the optimization
function optimfun.

options = optimset(oldopts,'param1',value1,...) creates a copy
of oldopts, modifying the specified options with the specified values.

options = optimset(oldopts,newopts) combines an existing options
structure, oldopts, with a new options structure, newopts. Any options
in newopts with nonempty values overwrite the corresponding old
options in oldopts.

Options For more information about individual options, see the reference pages
for the optimization functions that use these options. “Optimization
Options” on page 9-8 provides descriptions of these options and which
functions use them.

11-198



optimset

In the following lists, values in { } denote the default value; some options
have different defaults for different optimization functions and so no
values are shown in { }.

You can also view the optimization options and defaults by typing
optimset at the command line.

Optimization options used by both large-scale and medium-scale
algorithms:

Algorithm 'active-set' | 'interior-point' |
{'trust-region-reflective'}

DerivativeCheck 'on' | {'off'}

Diagnostics 'on' | {'off'}

Display 'off' | 'iter' |'final' |'notify'

FunValCheck {'off'} | 'on'

GradObj 'on' | {'off'}

Jacobian 'on' | {'off'}

LargeScale 'on' |'off'. The default for fsolve is
'off'. The default for all other functions
that provide a large-scale algorithm is 'on'.

MaxFunEvals Positive integer

MaxIter Positive integer

OutputFcn function_handle | {[]}. Specify one or
more (using a cell array of function handles)
user-defined functions that an optimization
function calls at each iteration. See “Output
Function” on page 9-18.

11-199



optimset

PlotFcns function_handle | {[]}. Specify one or
more (using a cell array of function handles)
pre- or user-defined plot functions that an
optimization function calls at each iteration.
See “Plot Functions” on page 9-27.

TolCon Positive scalar

TolFun Positive scalar

TolX Positive scalar

TypicalX Vector of all ones

Optimization options used by large-scale algorithms only:

Hessian 'on' | {'off'}

HessMult Function | {[]}

HessPattern Sparse matrix |{sparse matrix of all ones}

InitialHessMatrix {'identity'} | 'scaled-identity' |
'user-supplied'

InitialHessType scalar | vector | {[]}

JacobMult Function | {[]}

JacobPattern Sparse matrix |{sparse matrix of all ones}

MaxPCGIter Positive integer | {the greater of 1 and
floor(n/2))} where n is the number of
elements in x0, the starting point

PrecondBandWidth Positive integer | 0 | Inf

The default value depends on the solver.

TolPCG Positive scalar | {0.1}

Optimization options used by medium-scale algorithms only:

11-200



optimset

BranchStrategy 'mininfeas' | {'maxinfeas'}

DiffMaxChange Positive scalar | {1e-1}

DiffMinChange Positive scalar | {1e-8}

GoalsExactAchieve Positive scalar integer | {0}

GradConstr 'on' | {'off'}

HessUpdate {'bfgs'} | 'dfp' | 'steepdesc'

LevenbergMarquardt 'on' | {'off'}

LineSearchType 'cubicpoly' | {'quadcubic'}

MaxNodes Positive scalar |
{1000*NumberOfVariables}

MaxRLPIter Positive scalar |
{100*NumberOfVariables}

MaxSQPIter Positive integer

MaxTime Positive scalar | {7200}

MeritFunction 'singleobj' | {'multiobj'}

MinAbsMax Positive scalar integer | {0}

NodeDisplayInterval Positive scalar | {20}

NodeSearchStrategy 'df' | {'bn'}

NonlEqnAlgorithm {'dogleg'} | 'lm' | 'gn', where 'lm'
is Levenburg-Marquardt and 'gn' is
Gauss-Newton.

RelLineSrchBnd Real nonnegative scalar | {[]}

RelLineSrchBndDuration Positive integer | {1}

Simplex When you set 'Simplex' to 'on' and
'LargeScale' to 'off', linprog uses the
simplex algorithm to solve a constrained
linear programming problem.

11-201



optimset

TolConSQP Positive scalar | {1e-6}

TolRLPFun Positive scalar | {1e-6}

TolXInteger Positive scalar | {1e-8}

UseParallel 'always' | {'never'}

Optimization options used by interior-point algorithm only:

AlwaysHonorConstraints 'bounds' | {'none'}

FinDiffType 'central' | {'forward'}

HessFcn Function handle to a user-supplied
Hessian

Hessian 'fin-diff-grads' | 'lbfgs' |
{'lbfgs',Positive Integer} |
'user-supplied' | {bfgs}

HessMult Handle to a user-supplied function that
gives a Hessian-times-vector product

InitBarrierParameter Positive real scalar | {0.1}

InitTrustRegionRadius
Positive real scalar | { n }, where n is
the number of variables.

MaxProjCGIter Positive integer | {2*(n - neq}, where
n is the number of variables, and neq is
the number of equalities

ObjectiveLimit Scalar | -1e20

ScaleProblem 'none' | {'obj-and-constr'

SubproblemAlgorithm 'cg' | {'ldl-factorization'}

TolProjCG Positive scalar | {1e-2}

TolProjCGAbs Positive scalar | {1e-10}

11-202



optimset

Examples This statement creates an optimization options structure called
options in which the Display option is set to 'iter' and the TolFun
option is set to 1e-8.

options = optimset('Display','iter','TolFun',1e-8)

This statement makes a copy of the options structure called options,
changing the value of the TolX option and storing new values in optnew.

optnew = optimset(options,'TolX',1e-4);

This statement returns an optimization options structure options
that contains all the option names and default values relevant to the
function fminbnd.

options = optimset('fminbnd')

If you only want to see the default values for fminbnd, you can simply
type

optimset fminbnd

or equivalently

optimset('fminbnd')

See Also optimget, optimtool

11-203



optimtool

Purpose Tool to select solver, optimization options, and run problems

Syntax optimtool
optimtool(optstruct)
optimtool('solver')

Description optimtool opens the Optimization tool, a graphical user interface (GUI)
for selecting a solver, the optimization options, and running problems.
See Chapter 3, “Optimization Tool” for a complete description of the tool.

optimtool can be used to run any Optimization Toolbox™ solver, and
any Genetic Algorithm and Direct Search Toolbox™ solver. Results can
be exported to an M-file or to the MATLAB® workspace as a structure.

optimtool(optstruct) starts the Optimization Tool with optstruct.
optstruct can either be an optimization options structure or
optimization problem structure. An options structure can be created
using the optimset function or by using the export option from
optimtool. A problem structure can be created or modified in
optimtool by exporting the problem information to the MATLAB
workspace.

optimtool('solver') starts the Optimization Tool with the specified
solver, identified as a string, and the corresponding default options
and problem fields. All Optimization Toolbox solvers are valid inputs
to the optimtool function.

11-204



optimtool

11-205



optimtool

See Also optimset

11-206



quadprog

Purpose Solve quadratic programming problems

Equation Finds a minimum for a problem specified by

min
,

,
.

x

T Tx Hx f x
A x b

Aeq x beq
lb x ub

1
2

+
⋅ ≤
⋅ =
≤ ≤

⎧
⎨
⎪

⎩⎪
 such that 

H, A, and Aeq are matrices, and f, b, beq, lb, ub, and x are vectors.

Syntax x = quadprog(H,f,A,b)
x = quadprog(H,f,A,b,Aeq,beq)
x = quadprog(H,f,A,b,Aeq,beq,lb,ub)
x = quadprog(H,f,A,b,Aeq,beq,lb,ub,x0)
x = quadprog(H,f,A,b,Aeq,beq,lb,ub,x0,options)
x = quadprog(problem)
[x,fval] = quadprog(...)
[x,fval,exitflag] = quadprog(...)
[x,fval,exitflag,output] = quadprog(...)
[x,fval,exitflag,output,lambda] = quadprog(...)

Description x = quadprog(H,f,A,b) returns a vector x that minimizes
1/2*x'*H*x + f'*x subject to A*x ≤ b.

x = quadprog(H,f,A,b,Aeq,beq) solves the preceding problem while
additionally satisfying the equality constraints Aeq*x = beq. If no
inequalities exist, set A = [] and b = [].

x = quadprog(H,f,A,b,Aeq,beq,lb,ub) defines a set of lower and
upper bounds on the design variables, x, so that the solution is in the
range lb ≤ x ≤ ub. If no equalities exist, set Aeq = [] and beq = [].

x = quadprog(H,f,A,b,Aeq,beq,lb,ub,x0) sets the starting point to
x0. If no bounds exist, set lb = [] and ub = [].

x = quadprog(H,f,A,b,Aeq,beq,lb,ub,x0,options) minimizes
with the optimization options specified in the structure options. Use

11-207



quadprog

optimset to set these options. If you do not wish to give an initial
point, set x0 = [].

x = quadprog(problem) finds the minimum for problem, where
problem is a structure described in “Input Arguments” on page 11-209.

Create the structure problem by exporting a problem from Optimization
Tool, as described in “Exporting to the MATLAB® Workspace” on page
3-14.

[x,fval] = quadprog(...) returns the value of the objective function
at x:

fval = 0.5*x'*H*x + f'*x.

[x,fval,exitflag] = quadprog(...) returns a value exitflag that
describes the exit condition of quadprog.

[x,fval,exitflag,output] = quadprog(...) returns a structure
output that contains information about the optimization.

[x,fval,exitflag,output,lambda] = quadprog(...) returns a
structure lambda whose fields contain the Lagrange multipliers at the
solution x.

Note If the specified input bounds for a problem are inconsistent, the
output x is x0 and the output fval is [].

Components of x0 that violate the bounds lb ≤ x ≤ ub are reset to the
interior of the box defined by the bounds. Components that respect the
bounds are not changed.

If no x0 is provided, all components of x0 are set to a point in the
interior of the box defined by the bounds.

11-208



quadprog

Input
Arguments

“Function Arguments” on page 9-2 contains general descriptions of
arguments passed into quadprog. “Options” on page 11-211 provides
function-specific details for the options values.

H Symmetric matrix

f Vector

Aineq Matrix for linear inequality constraints

bineq Vector for linear inequality constraints

Aeq Matrix for linear equality constraints

beq Vector for linear equality constraints

lb Vector of lower bounds

ub Vector of upper bounds

x0 Initial point for x

solver 'quadprog'

problem

options Options structure created with optimset

Output
Arguments

“Function Arguments” on page 9-2 contains general descriptions
of arguments returned by quadprog. This section provides
function-specific details for exitflag, lambda, and output:

exitflag Integer identifying the reason the algorithm
terminated. The following lists the values of
exitflag and the corresponding reasons the
algorithm terminated:

1 Function converged to a
solution x.

3 Change in the objective
function value was
smaller than the specified
tolerance.

11-209



quadprog

4 Local minimizer was
found.

0 Number of
iterations exceeded
options.MaxIter.

-2 Problem is infeasible.

-3 Problem is unbounded.

-4 Current search direction
was not a direction of
descent. No further
progress could be made.

-7 Magnitude of search
direction became too
small. No further
progress could be made.

lambda Structure containing the Lagrange multipliers
at the solution x (separated by constraint
type). The fields are

lower Lower bounds lb

upper Upper bounds ub

ineqlin Linear inequalities

eqlin Linear equalities

output Structure containing information about the
optimization. The fields are

iterations Number of iterations
taken

algorithm Optimization algorithm
used

11-210



quadprog

cgiterations Total number of PCG
iterations (large-scale
algorithm only)

firstorderopt Measure of first-order
optimality (large-scale
algorithm only)

message Exit message

Options Optimization options. Use optimset to set or change the values of these
options. Some options apply to all algorithms, some are only relevant
when using the large-scale algorithm, and others are only relevant
when you are using the medium-scale algorithm. See “Optimization
Options” on page 9-8 for detailed information.

The option to set an algorithm preference is as follows.

LargeScale Use large-scale algorithm if possible when set to
'on'. Use medium-scale algorithm when set to
'off'.

'on' is only a preference. If the problem has only
upper and lower bounds; i.e., no linear inequalities
or equalities are specified, the default algorithm is
the large-scale method. Or, if the problem given
to quadprog has only linear equalities; i.e., no
upper and lower bounds or linear inequalities
are specified, and the number of equalities is
no greater than the length of x, the default
algorithm is the large-scale method. Otherwise
the medium-scale algorithm is used.

Medium-Scale and Large-Scale Algorithms

These options are used by both the medium-scale and large-scale
algorithms:

11-211



quadprog

Diagnostics Display diagnostic information about the function
to be minimized.

Display Level of display. 'off' displays no output, and
'final' (default) displays just the final output.

MaxIter Maximum number of iterations allowed.

TypicalX Typical x values.

Large-Scale Algorithm Only

These options are used only by the large-scale algorithm:

HessMult Function handle for Hessian multiply
function. For large-scale structured problems,
this function computes the Hessian matrix
product H*Y without actually forming H. The
function is of the form

W = hmfun(Hinfo,Y)

where Hinfo and possibly some additional
parameters contain the matrices used to
compute H*Y.

See “Quadratic Minimization with a Dense
but Structured Hessian” on page 4-68 for an
example that uses this option.

MaxPCGIter Maximum number of PCG (preconditioned
conjugate gradient) iterations. See
“Algorithm” on page 11-216 for more
information.

11-212



quadprog

PrecondBandWidth Upper bandwidth of preconditioner for PCG.
By default, diagonal preconditioning is used
(upper bandwidth of 0). For some problems,
increasing the bandwidth reduces the number
of PCG iterations. Setting PrecondBandWidth
to 'Inf' uses a direct factorization (Cholesky)
rather than the conjugate gradients (CG). The
direct factorization is computationally more
expensive than CG, but produces a better
quality step towards the solution.

TolFun Termination tolerance on the function value.
TolFun is used as the exit criterion for
problems with simple lower and upper bounds
(lb, ub).

TolPCG Termination tolerance on the PCG iteration.
TolPCG is used as the exit criterion for
problems with only equality constraints (Aeq,
beq).

TolX Termination tolerance on x.

Examples Find values of x that minimize

f x x x x x x x( ) ,= + − − −1
2

2 61
2

2
2

1 2 1 2

subject to

x1 + x2 ≤ 2
–x1 + 2x2 ≤ 2
2x1 + x2 ≤ 3
0 ≤ x1, 0 ≤ x2.

First, note that this function can be written in matrix notation as

11-213



quadprog

f x x Hx f xT T( ) ,= +1
2

where

H f x
x
x

=
−

−
⎡

⎣
⎢

⎤

⎦
⎥ =

−
−
⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥

1 1
1 2

2
6

1

2
, , .    

Enter these coefficient matrices.

H = [1 -1; -1 2]
f = [-2; -6]
A = [1 1; -1 2; 2 1]
b = [2; 2; 3]
lb = zeros(2,1)

Next, invoke a quadratic programming routine.

[x,fval,exitflag,output,lambda] = ...
quadprog(H,f,A,b,[],[],lb)

This generates the solution

x =
0.6667
1.3333

fval =
-8.2222

exitflag =
1

output =
iterations: 3
algorithm: 'medium-scale: active-set'

firstorderopt: []
cgiterations: []

message: 'Optimization terminated.'
lambda =

lower: [2x1 double]

11-214



quadprog

upper: [2x1 double]
eqlin: [0x1 double]

ineqlin: [3x1 double]

lambda.ineqlin
ans =

3.1111
0.4444

0
lambda.lower
ans =

0
0

Nonzero elements of the vectors in the fields of lambda indicate active
constraints at the solution. In this case, the first and second inequality
constraints (in lambda.ineqlin) are active constraints (i.e., the solution
is on their constraint boundaries). For this problem, all the lower
bounds are inactive.

Notes In general quadprog locates a local solution unless the problem is
strictly convex.

Better numerical results are likely if you specify equalities explicitly,
using Aeq and beq, instead of implicitly, using lb and ub.

If the components of x have no upper (or lower) bounds, then quadprog
prefers that the corresponding components of ub (or lb) be set to Inf
(or -Inf for lb) as opposed to an arbitrary but very large positive (or
negative in the case of lower bounds) number.

Large-Scale Optimization

By default, quadprog uses the large-scale algorithm if you specify
the feasible region using one, but not both, of the following types of
constraints:

• Upper and lower bounds constraints

11-215



quadprog

• Linear equality constraints, in which the columns of the constraint
matrix Aeq are linearly independent. Aeq is typically sparse.

You cannot use inequality constraints with the large-scale algorithm.
If the preceding conditions are not met, quadprog reverts to the
medium-scale algorithm.

If you do not supply x0, or x0 is not strictly feasible, quadprog chooses a
new strictly feasible (centered) starting point.

If an equality constrained problem is posed and quadprog detects
negative curvature, the optimization terminates because the constraints
are not restrictive enough. In this case, exitflag is returned with the
value -1, a message is displayed (unless the options Display option is
'off'), and the x returned is not a solution but a direction of negative
curvature with respect to H.

For problems with simple lower and upper bounds (lb, ub), quadprog
exits based on the value of TolFun. For problems with only equality
constraints (Aeq, beq), the exit is based on TolPCG. Adjust TolFun and
TolPCG to affect your results. TolX is used by both types of problems.

Algorithm Large-Scale Optimization

The large-scale algorithm is a subspace trust-region method based on
the interior-reflective Newton method described in [1]. Each iteration
involves the approximate solution of a large linear system using the
method of preconditioned conjugate gradients (PCG). See “Trust-Region
Methods for Nonlinear Minimization” on page 6-3 and “Preconditioned
Conjugate Gradients” on page 6-12.

Medium-Scale Optimization

quadprog uses an active set method, which is also a projection method,
similar to that described in [2]. It finds an initial feasible solution by
first solving a linear programming problem. This method is discussed
in Chapter 5, “Standard Algorithms”.

11-216



quadprog

Diagnostics Large-Scale Optimization

The large-scale method does not allow equal upper and lower bounds.
For example, if lb(2) == ub(2), then quadprog gives this error:

Equal upper and lower bounds not permitted
in this large-scale method.
Use equality constraints and the medium-scale
method instead.

If you only have equality constraints you can still use the large-scale
method. But if you have both equalities and bounds, you must use the
medium-scale method.

Medium-Scale Optimization

When the problem is infeasible, quadprog gives this warning:

Warning: The constraints are overly stringent;
there is no feasible solution.

In this case, quadprog produces a result that minimizes the worst case
constraint violation.

When the equality constraints are inconsistent, quadprog gives this
warning:

Warning: The equality constraints are overly stringent;
there is no feasible solution.

Unbounded solutions, which can occur when the Hessian H is negative
semidefinite, can result in

Warning: The solution is unbounded and at infinity;
the constraints are not restrictive enough.

In this case, quadprog returns a value of x that satisfies the constraints.

11-217



quadprog

Limitations At this time the only levels of display, using the Display option in
options, are 'off' and 'final'; iterative output using 'iter' is not
available.

The solution to indefinite or negative definite problems is often
unbounded (in this case, exitflag is returned with a negative value
to show that a minimum was not found); when a finite solution does
exist, quadprog might only give local minima, because the problem
might be nonconvex.

Large-Scale Optimization

The linear equalities cannot be dependent (i.e., Aeq must have full row
rank). Note that this means that Aeq cannot have more rows than
columns. If either of these cases occurs, the medium-scale algorithm is
called instead. See Large-Scale Problem Coverage and Requirements
on page 4-44 for more information on what problem formulations are
covered and what information must be provided.

References [1] Coleman, T.F. and Y. Li, “A Reflective Newton Method for Minimizing
a Quadratic Function Subject to Bounds on some of the Variables,”
SIAM Journal on Optimization, Vol. 6, Number 4, pp. 1040-1058, 1996.

[2] Gill, P. E. and W. Murray, and M.H. Wright, Practical Optimization,
Academic Press, London, UK, 1981.

See Also linprog, lsqlin, optimtool

11-218



A

Examples

Use this list to find examples in the documentation.



A Examples

Examples that Use Standard Algorithms
“Example: Nonlinear Constrained Minimization” on page 1-4
“Unconstrained Minimization Example” on page 4-5
“Nonlinear Inequality Constrained Example” on page 4-7
“Constrained Example with Bounds” on page 4-8
“Constrained Example with Gradients” on page 4-10
“Gradient Check: Analytic vs. Numeric” on page 4-18
“Equality Constrained Example” on page 4-19
“Nonlinear Equations with Analytic Jacobian” on page 4-20
“Nonlinear Equations with Finite-Difference Jacobian” on page 4-23
“Error Estimates in Nonlinear Curve Fitting with lsqcurvefit” on page 4-24
“Using lsqnonlin With a Simulink® Model” on page 4-29
“Signal Processing Example” on page 4-38

Optimization Tool Examples
“Problem Formulation: Rosenbrock’s Function” on page 1-4
“Optimization Tool with the fmincon Solver” on page 3-18
“Optimization Tool with the lsqlin Solver” on page 3-22
“Constrained Minimization Using fmincon’s Interior-Point Algorithm With
Analytic Hessian” on page 4-12

Large-Scale Examples
“Nonlinear Equations with Jacobian” on page 4-47
“Nonlinear Equations with Jacobian Sparsity Pattern” on page 4-49
“Nonlinear Least-Squares with Full Jacobian Sparsity Pattern” on page
4-52
“Nonlinear Minimization with Gradient and Hessian” on page 4-53
“Nonlinear Minimization with Gradient and Hessian Sparsity Pattern”
on page 4-55
“Nonlinear Minimization with Bound Constraints and Banded
Preconditioner” on page 4-57
“Nonlinear Minimization with Equality Constraints” on page 4-60

A-2



Large-Scale Examples

“Nonlinear Minimization with a Dense but Structured Hessian and
Equality Constraints” on page 4-62
“Quadratic Minimization with Bound Constraints” on page 4-66
“Quadratic Minimization with a Dense but Structured Hessian” on page
4-68
“Linear Least-Squares with Bound Constraints” on page 4-73
“Linear Programming with Equalities and Inequalities” on page 4-75
“Linear Programming with Dense Columns in the Equalities” on page 4-76

A-3



A Examples

A-4



Index

IndexA
active constraints

linprog example 11-147
lsqlin example 11-175
quadprog example 11-215

active set method
fmincon medium-scale algorithm 11-56
linprog medium-scale algorithm 11-148
lsqlin medium-scale algorithm 11-176
quadprog medium-scale algorithm 11-216
sequential quadratic programming

(SQP) 5-34
attainment factor 11-25
Avoiding Global Variables 2-10
axis crossing.. See zero of a function

B
banana function. See Rosenbrock’s function
Barrier function 6-6
basin of attraction 2-39
BFGS formula 5-8

fmincon medium-scale algorithm 11-56
fminunc medium-scale algorithm 11-90

bintprog 11-2
bisection search 11-129
bound constraints, large-scale 6-15
box constraints.. See bound constraints

C
centering parameter 6-22
CG. See conjugate gradients
color 11-11
complementarity conditions 6-21
complex variables

lsqcurvefit 11-164
lsqnonlin 11-190

computing, parallel 7-1
conjugate gradients 6-4 6-6

constrained minimization 11-35 11-132
large-scale example

with bound constraints and banded
preconditioner 4-57

with equality constraints 4-60
constraints

linear 6-14
fmincon 11-55
fminimax 11-69

continuous derivative
gradient methods 5-6

convex problem 5-29
curve-fitting 10-3 11-152

categories 2-22
functions that apply 10-3

D
data-fitting 10-3 11-152

categories 2-22
functions that apply 10-3

dense columns, constraint matrix 6-22
DFP formula 11-90
direction of negative curvature 6-4
discontinuities 4-92
discontinuous problems

fminsearch 11-78
fminunc 11-90

discrete variables 4-93
distributed computing 7-1
dual problem 6-20
duality gap 6-21

E
equality constraints

dense columns 4-76
medium-scale example 4-19

equality constraints inconsistent warning,
quadprog 11-217

Index-1



Index

equality constraints, linear
large-scale 6-14

equation solving
categories 2-22
functions that apply 10-2

error, Out of memory 4-52

F
F-count 2-25
feasibility conditions 6-21
feasible point, finding 5-37
fgoalattain 11-12

example 4-39
first-order optimality measure 2-26
fixed variables 6-23
fixed-step ODE solver 4-34
flag. See exitflag on individual function pages
fminbnd 11-29
fmincon 11-35

large-scale example
with bound constraints and banded

preconditioner 4-57
with equality constraints 4-60

medium-scale example 4-7
fminimax 11-59

example 4-35
fminsearch 11-72
fminunc 11-79

large-scale example 4-53
medium-scale example 4-5
warning messages 4-91

fseminf 11-93
fsolve 11-109

large-scale Jacobian 4-47
medium-scale analytic Jacobian 4-20
medium-scale finite difference Jacobian 4-23

fsolve medium-scale default 11-120
function arguments 9-2
function discontinuities 4-92

functions
grouped by category 10-1

fzero 11-124
fzmult 11-130

G
gangstr 11-131
Gauss-Newton method (large-scale)

nonlinear least-squares 6-17
Gauss-Newton method (medium-scale)

implementation, nonlinear equations 5-27
implementation, nonlinear least

squares 5-22
least-squares optimization 5-20
solving nonlinear equations 5-25

global and local minima 2-39
global optimum 7-9
goal attainment 5-44

example 4-39
fgoalattain 10-2 11-12

goaldemo 11-24
golden section search 11-34
Gradient

writing 2-4
gradient checking, analytic 4-18
gradient examples 4-10
gradient methods

continuous first derivative 5-6
quasi-Newton 5-7
unconstrained optimization 5-6

H
Hessian 2-4

writing 2-4
Hessian modified message 5-34
Hessian modified twice message 5-34
Hessian sparsity structure 4-56
Hessian update 5-11

Index-2



Index

stage of SQP implementation 5-32
Hessian updating methods 5-8

I
inconsistent constraints 11-151
indefinite problems 11-218
infeasible message 5-34
infeasible optimization problems 4-92
infeasible problems 11-56
infeasible solution warning

linprog 11-150
quadprog 11-217

input arguments 9-2
integer variables 4-93
interior-point algorithm 4-12
interior-point linear programming 6-20
introduction to optimization 5-4

J
Jacobian 2-6

analytic 4-20
finite difference 4-23
large-scale nonlinear equations 4-47

Jacobian sparsity pattern 4-49

K
Karush-Kuhn-Tucker conditions 2-27 5-29
KKT conditions 2-27
KNITRO® 8-2
ktrlink 11-132

L
Lagrange multiplier 2-30 4-14
Lagrange multipliers

large-scale linear programming 6-24
Lagrangian 2-27 11-42 11-137
large-scale functionality coverage 4-43

large-scale methods 6-1
demos 6-11
examples 4-42

least squares 5-20
categories 2-22
functions that apply 10-3

Levenberg-Marquardt method 5-21
lsqcurvefit medium-scale default 11-164
lsqnonlin medium-scale default 11-189
search direction 5-21

line search
fminunc medium-scale default 11-90
fsolve medium-scale default 11-120
lsqcurvefit medium-scale default 11-164
lsqnonlin medium-scale default 11-189
unconstrained optimization 5-9

line search strategy 4-3
linear constraints 6-14

fmincon 11-55
fminimax 11-69

linear equations solve 11-119
linear least squares

constrained 11-167
large-scale algorithm 6-19
large-scale example 4-73
nonnegative 10-3 11-192
unconstrained 11-175

linear programming 10-2 11-142
implementation 5-37
large-scale algorithm 6-20
large-scale example

with dense columns in equalities 4-76
with equalities and inequalities 4-75

problem 5-4
linprog 11-142

large-scale example
with dense columns in equalities 4-76
with equalities and inequalities 4-75

LIPSOL 6-20
local and global minima 2-39

Index-3



Index

lower bounds 4-8
lsqcurvefit 11-152
lsqlin 11-167

large-scale example 4-73
lsqnonlin 11-178

convergence 4-93
large-scale example 4-49
medium-scale example 4-31

lsqnonneg 11-192

M
Maximization 2-9
medium-scale methods 5-1

demos 5-5
Mehrotra’s predictor-corrector algorithm 6-20
merit function 5-38 6-7
minimax examples 4-35
minimax problem, solving 10-2 11-59
minimization

categories 2-20
functions that apply 10-2

minimum
global 2-39
local 2-39

Multiobjective
categories 2-21

multiobjective optimization
examples 4-28
fgoalattain 10-2 11-12

N
negative curvature direction

in PCG algorithm 6-12
in trust-region methods 6-4

negative definite problems 11-218
Nelder and Mead 5-6
Newton direction

approximate 6-4

Newton’s method
systems of nonlinear equations 5-26
unconstrained optimization 5-6

no update message 5-34
nonconvex problems 11-218
nonlinear data-fitting

fminsearch 11-78
fminunc 11-90
lsqnonlin 11-178

nonlinear equations
Newton’s method 5-26

nonlinear equations (large-scale)
example with Jacobian 4-47
solving 11-109

nonlinear equations (medium-scale) 5-25
analytic Jacobian example 4-20
finite difference Jacobian example 4-23
Gauss-Newton method 5-25
solving 11-109
trust-region dogleg method 5-26

nonlinear least squares 5-22
fminsearch 11-78
fminunc 11-90
large-scale algorithm 6-17
large-scale example 4-49
lsqcurvefit 10-3 11-152
lsqnonlin 11-178

nonlinear programming 5-4

O
objective function

return values 4-93
optimality conditions linear programming 6-21
Optimality measure

first-order 2-26
optimality measure, first-order 2-27
optimget 11-197
optimization

functions by category 10-1

Index-4



Index

handling infeasibility 4-92
helpful hints 4-91
introduction 5-4
objective function return values 4-93
troubleshooting 4-91
unconstrained 5-6

optimization parameters structure 4-79
optimget 10-4 11-197
optimset 10-4 11-198

Optimization Tool 3-1
functions that apply 10-3
opening 3-2
optimtool 11-204
options 3-10
pausing and stopping 3-7
running a problem 3-6
steps 3-5

optimset 11-198
optimtool 11-204
optimum, global 7-9
options parameters

descriptions 9-8
possible values 11-199
utility functions 10-4

Out of memory error 4-52
output arguments 9-2
output display 4-84
output function 2-31
Output structure 2-30

P
parallel computing 7-1
Parameters, Additional 2-10
PCG. See preconditioned conjugate gradients
preconditioned conjugate gradients 6-12

algorithm 6-12
in trust-region methods 6-4

preconditioner 4-48
banded 4-57

in PCG method 6-12
predictor-corrector algorithm 6-21
preprocessing 6-23

linear programming 6-20
primal problem 6-20
primal-dual algorithm 6-21
primal-dual interior-point 6-20
projection method

quadprog medium-scale algorithm 11-216
sequential quadratic programming

(SQP) 5-34

Q
quadprog 11-207

large-scale example 4-66
quadratic programming 5-4

fmincon 11-56
large-scale algorithm 6-18
large-scale example 4-66
quadprog 11-207

quasi-Newton method
implementation 5-11

quasi-Newton methods 5-7
fminunc medium-scale algorithm 11-90
unconstrained optimization 5-7

R
reflective line search 6-18
reflective steps 6-15

definition 6-16
residual 5-19
revised simplex algorithm 5-39
Rosenbrock’s function 1-4 2-5 2-9 4-20 4-23 5-6

5-9 5-20 to 5-21 5-31 11-75

S
sampling interval 11-101
secular equation 6-4

Index-5



Index

semi-infinite constraints 10-2 11-93
Sherman-Morrison formula 6-22
signal processing example 4-38
simple bounds 4-8
simplex search 11-77

unconstrained optimization 5-6
Simulink®, multiobjective example 4-29
singleton rows 6-23
slack 6-6
solving nonlinear systems of equations 5-25
sparsity pattern, Jacobian 4-49
sparsity structure, Hessian 4-56
SQP method 5-30

fmincon 11-56
implementation 5-34

steepest descent 11-90
stopping criteria 2-28
stopping criteria, large-scale linear

programming 6-23
structural rank 6-23
subspace

determination of 6-4
subspace, two-dimensional 6-4
systems of nonlinear equations

solving 11-109

T
trust region 6-3
trust-region dogleg method (medium-scale)

implementation for nonlinear equations 5-27
systems of nonlinear equations 5-26

two-dimensional subspace 6-4

U
unbounded solutions warning

linprog 11-151
quadprog 11-217

unconstrained minimization
fminsearch 11-72
fminunc 11-79
large-scale example 4-53
medium-scale example 4-5
one dimensional 10-2 11-29

unconstrained optimization 5-6
upper bounds 4-8

V
variable-step ODE solver 4-34
Variables, Additional 2-10

W
warning

equality constraints inconsistent,
quadprog 11-217

infeasible solution, linprog 11-150
infeasible solution, quadprog 11-217
stuck at minimum, fsolve 11-121
unbounded solutions, linprog 11-151
unbounded solutions, quadprog 11-217

warnings displayed 4-92

Z
zero curvature direction 6-12
zero finding 11-109
zero of a function, finding 11-124

Index-6


	toc
	Acknowledgments
	Getting Started
	Product Overview
	Introduction
	Optimization Functions
	Optimization Tool GUI

	Example: Nonlinear Constrained Minimization
	Problem Formulation: Rosenbrock’s Function
	Defining the Problem in Toolbox Syntax
	M-file for Objective Function
	M-File for Constraint Function

	Running the Optimization
	Optimization Tool
	Minimizing at the Command Line

	Interpreting the Result


	Optimization Overview
	Introduction to Optimization Toolbox Solvers
	Writing Objective Functions
	Writing Objective Functions
	Jacobians of Vector and Matrix Objective Functions
	Jacobians of Vector Functions
	Jacobians of Matrix Functions
	Jacobians with Matrix-Valued Independent Variables

	Anonymous Function Objectives
	Maximizing an Objective
	Passing Extra Parameters
	Anonymous Functions
	Nested Functions
	Global Variables


	Writing Constraints
	Types of Constraints
	Bound Constraints
	Linear Inequality Constraints
	Linear Equality Constraints
	Nonlinear Constraints
	An Example Using All Types of Constraints

	Choosing a Solver
	Problems Handled by Optimization Toolbox Functions
	Optimization Decision Table

	Solver Inputs and Outputs
	Iterations and Function Counts
	First-Order Optimality Measure
	Unconstrained Optimality
	Constrained Optimality—Theory
	Constrained Optimality in Solver Form

	Tolerances and Stopping Criteria
	Lagrange Multiplier Structures
	Output Structures
	Output Functions
	Introduction
	Example: Using Output Functions


	Local vs. Global Optima
	What Are Local and Global Optima?
	Basins of Attraction
	Searching For Global Optima

	Reference

	Optimization Tool
	Getting Started with the Optimization Tool
	Introduction
	Opening the Optimization Tool
	Steps for Using the Optimization Tool

	Running a Problem in the Optimization Tool
	Introduction
	Pausing and Stopping the Algorithm
	Viewing Results
	Displaying Plots

	Final Point
	Starting a New Problem
	Resetting Options and Clearing the Problem
	Setting Preferences for Changing Solvers

	Closing the Optimization Tool

	Specifying Certain Options
	Plot Functions
	Output function
	Display to Command Window

	Getting Help in the Optimization Tool
	Quick Reference
	Additional Help

	Importing and Exporting Your Work
	Exporting to the MATLAB Workspace
	Importing Your Work
	Generating an M-File

	Optimization Tool Examples
	About Optimization Tool Examples
	Optimization Tool with the fmincon Solver
	Step 1: Write an M-file objfun.m for the objective function.
	Step 2: Write an M-file nonlconstr.m for the constraints.
	Step 3: Set up and run the problem with the Optimization Tool.
	Reference

	Optimization Tool with the lsqlin Solver
	The Problem
	Setting Up the Problem



	Tutorial
	Medium- and Large-Scale Algorithms
	Medium-Scale Algorithms
	Large-Scale Algorithms

	Examples That Use Standard Algorithms
	Introduction
	Unconstrained Minimization Example
	Step 1: Write an M-file objfun.m.
	Step 2: Invoke one of the unconstrained optimization routines.

	Nonlinear Inequality Constrained Example
	Step 1: Write an M-file objfun.m for the objective function.
	Step 2: Write an M-file confun.m for the constraints.
	Step 3: Invoke constrained optimization routine.

	Constrained Example with Bounds
	Constrained Example with Gradients
	Step 1: Write an M-file for the objective function and gradient.
	Step 2: Write an M-file for the nonlinear constraints and the gr
	Step 3: Invoke the constrained optimization routine.

	Constrained Minimization Using fmincon’s Interior-Point Algorith
	Gradient Check: Analytic vs. Numeric
	Equality Constrained Example
	Step 1: Write an M-file objfun.m.
	Step 2: Write an M-file confuneq.m for the nonlinear constraints
	Step 3: Invoke constrained optimization routine.

	Nonlinear Equations with Analytic Jacobian
	Step 1: Write an M-file bananaobj.m to compute the objective fun
	Step 2: Call the solve routine for the system of equations.

	Nonlinear Equations with Finite-Difference Jacobian
	Error Estimates in Nonlinear Curve Fitting with lsqcurvefit
	Nonlinear Curve Fitting Theory
	Nonlinear Curve Fitting Example
	References

	Multiobjective Examples
	Using lsqnonlin With a Simulink Model
	Using fminimax with a Simulink Model
	Signal Processing Example


	Large-Scale Examples
	Introduction
	Problems Covered by Large-Scale Methods
	Formulating Problems with Large-Scale Methods

	Nonlinear Equations with Jacobian
	Step 1: Write an M-file nlsf1.m that computes the objective func
	Step 2: Call the solve routine for the system of equations.

	Nonlinear Equations with Jacobian Sparsity Pattern
	Step 1: Write an M-file nlsf1a.m that computes the objective fun
	Step 2: Call the system of equations solve routine.

	Nonlinear Least-Squares with Full Jacobian Sparsity Pattern
	Step 1: Write an M-file myfun.m that computes the objective func
	Step 2: Call the nonlinear least-squares routine.

	Nonlinear Minimization with Gradient and Hessian
	Step 1: Write an M-file brownfgh.m that computes the objective f
	Step 2: Call a nonlinear minimization routine with a starting po

	Nonlinear Minimization with Gradient and Hessian Sparsity Patter
	Step 1: Write an M-file brownfg.m that computes the objective fu
	Step 2: Call a nonlinear minimization routine with a starting po

	Nonlinear Minimization with Bound Constraints and Banded Precond
	Step 1: Write an M-file tbroyfg.m that computes the objective fu
	Step 2: Call a nonlinear minimization routine with a starting po

	Nonlinear Minimization with Equality Constraints
	Step 1: Write an M-file brownfgh.m that computes the objective f
	Step 2: Call a nonlinear minimization routine with a starting po

	Nonlinear Minimization with a Dense but Structured Hessian and E
	Step 1: Write an M-file brownvv.m that computes the objective fu
	Step 2: Write a function to compute Hessian-matrix products for 
	Step 3: Call a nonlinear minimization routine with a starting po
	Preconditioning

	Quadratic Minimization with Bound Constraints
	Step 1: Load the Hessian and define f, lb, and ub.
	Step 2: Call a quadratic minimization routine with a starting po

	Quadratic Minimization with a Dense but Structured Hessian
	Step 1: Decide what part of H to pass to quadprog as the first a
	Step 2: Write a function to compute Hessian-matrix products for 
	Step 3: Call a quadratic minimization routine with a starting po
	Preconditioning

	Linear Least-Squares with Bound Constraints
	Linear Programming with Equalities and Inequalities
	Linear Programming with Dense Columns in the Equalities

	Default Options Settings
	Introduction
	Changing the Default Settings
	Returning All Options
	Determining Options Used by a Function
	Displaying Output
	Running Medium-Scale Optimization
	Setting More Than One Option
	Updating an options Structure
	Retrieving Option Values


	Displaying Iterative Output
	Introduction
	Most Common Output Headings
	Function-Specific Output Headings
	bintprog
	fminsearch
	fzero and fminbnd
	fminunc
	fsolve
	fgoalattain, fmincon, fminimax, and fseminf
	linprog
	lsqnonlin and lsqcurvefit


	Typical Problems and How to Deal with Them
	Selected Bibliography

	Standard Algorithms
	Optimization Theory Overview
	Demos of Medium-Scale Methods
	Unconstrained Optimization
	Introduction
	Quasi-Newton Methods
	Line Search

	Quasi-Newton Implementation
	Hessian Update
	Line Search Procedures
	Cubic Polynomial Method
	Mixed Cubic and Quadratic Polynomial Method


	Least-Squares Optimization
	Introduction
	Gauss-Newton Method
	Levenberg-Marquardt Method
	Nonlinear Least-Squares Implementation
	Gauss-Newton Implementation
	Levenberg-Marquardt Implementation


	Nonlinear Systems of Equations
	Introduction
	Gauss-Newton Method
	Trust-Region Dogleg Method
	Nonlinear Equations Implementation
	Gauss-Newton Implementation
	Trust-Region Dogleg Implementation


	Constrained Optimization
	Introduction
	Sequential Quadratic Programming (SQP)
	Quadratic Programming (QP) Subproblem
	SQP Implementation
	Updating the Hessian Matrix
	Quadratic Programming Solution
	Line Search and Merit Function

	Simplex Algorithm
	Main Algorithm
	Preprocessing
	Using the Simplex Algorithm
	Basic and Nonbasic Variables
	References


	Multiobjective Optimization
	Multiobjective Optimization Toolbox Solvers
	Goal Attainment Method
	Algorithm Improvements for the Goal Attainment Method
	Minimizing the Maximum Objective

	Selected Bibliography

	Large-Scale Algorithms
	Trust-Region Methods for Nonlinear Minimization
	Interior-Point Method
	Barrier Function
	Direct Step
	Conjugate Gradient Step
	Interior-Point Algorithm Options

	Demos of Large-Scale Methods
	Preconditioned Conjugate Gradients
	Introduction
	Algorithm

	Linearly Constrained Problems
	Linear Equality Constraints
	Box Constraints

	Nonlinear Least-Squares
	Quadratic Programming
	Linear Least-Squares
	Large-Scale Linear Programming
	Introduction
	Main Algorithm
	Preprocessing

	Selected Bibliography

	Parallel Computing for Optimization
	Parallel Computing in Optimization Toolbox Functions
	Parallel Optimization Functionality
	Parallel Estimation of Gradients
	Nested Parallel Functions

	Using Parallel Computing with fmincon, fgoalattain, and fminimax
	Using Parallel Computing with Multicore Processors
	Using Parallel Computing with a Multiprocessor Network
	Testing Parallel Computations

	Improving Performance with Parallel Computing
	Factors That Affect Speed
	Factors That Affect Results
	Searching for Global Optima


	External Interface
	ktrlink: An Interface to KNITRO Libraries
	What Is ktrlink?
	Installation and Configuration
	Setting the System Path to Include KNITRO Libraries

	Example Using ktrlink
	Setting Options
	Sparse Matrix Considerations
	Sparsity Pattern for Nonlinear Constraints
	Sparsity Pattern for Hessians



	Argument and Options Reference
	Function Arguments
	Input Arguments
	Output Arguments

	Optimization Options
	Options Structure
	Output Function
	Structure of the Output Function
	Fields in optimValues
	States of the Algorithm
	Stop Flag

	Plot Functions


	Function Reference
	Minimization
	Equation Solving
	Least Squares (Curve Fitting)
	Graphical User Interface
	Utility

	Functions — Alphabetical List
	Examples
	Examples that Use Standard Algorithms
	Optimization Tool Examples
	Large-Scale Examples

	Index

	tables
	Minimization Problems
	Multiobjective Problems
	Equation Solving Problems
	Least-Squares (Model-Fitting) Problems
	Solvers by Objective and Constraint
	Large-Scale Problem Coverage and Requirements
	Troubleshooting
	Input Arguments
	Output Arguments
	Optimization Options
	optimValues Fields


