## Optimization Toolbox ${ }^{\text {TM }} 4$ <br> User's Guide

## MATLAB

How to Contact The MathWorks

www.mathworks.com
comp.soft-sys.matlab
Web
www.mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com
Product enhancement suggestions
bugs@mathworks.com
Bug reports
doc@mathworks.com
service@mathworks.com
info@mathworks.com
Documentation error reports
Order status, license renewals, passcodes
Sales, pricing, and general information
508-647-7000 (Phone)

508-647-7001 (Fax)
The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.
Optimization Toolbox ${ }^{\text {TM }}$ User's Guide
© COPYRIGHT 1990-2008 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

## Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www. mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

## Patents

The MathWorks products are protected by one or more U.S. patents. Please see www. mathworks.com/patents for more information.

## Revision History

November 1990 First printing
December 1996 Second printing January 1999 Third printing
September 2000 June 2001
September 2003 June 2004
October 2004
March 2005
September 2005
March 2006
September 2006
March 2007
September 2007
March 2008

Fourth printing Online only Online only Fifth printing Online only Online only Online only Online only Sixth printing Seventh printing Eighth printing Online only

For MATLAB ${ }^{\circledR}{ }^{\circledR} 5$
For Version 2 (Release 11)
For Version 2.1 (Release 12)
Revised for Version 2.1.1 (Release 12.1)
Revised for Version 2.3 (Release 13SP1)
Revised for Version 3.0 (Release 14)
Revised for Version 3.0.1 (Release 14SP1)
Revised for Version 3.0.2 (Release 14SP2)
Revised for Version 3.0.3 (Release 14SP3)
Revised for Version 3.0.4 (Release 2006a)
Revised for Version 3.1 (Release 2006b)
Revised for Version 3.1.1 (Release 2007a)
Revised for Version 3.1.2 (Release 2007b)
Revised for Version 4.0 (Release 2008a)

## Acknowledgments

The MathWorks ${ }^{\text {TM }}$ would like to acknowledge the following contributors to Optimization Toolbox ${ }^{\mathrm{TM}}$ algorithms.

Thomas F. Coleman researched and contributed the large-scale algorithms for constrained and unconstrained minimization, nonlinear least squares and curve fitting, constrained linear least squares, quadratic programming, and nonlinear equations.

Dr. Coleman is Dean of Faculty of Mathematics and Professor of Combinatorics and Optimization at University of Waterloo.

Dr. Coleman has published 4 books and over 70 technical papers in the areas of continuous optimization and computational methods and tools for large-scale problems.

Yin Zhang researched and contributed the large-scale linear programming algorithm.

Dr. Zhang is Professor of Computational and Applied Mathematics on the faculty of the Keck Center for Interdisciplinary Bioscience Training at Rice University.

Dr. Zhang has published over 50 technical papers in the areas of interior-point methods for linear programming and computation mathematical programming.

Acknowledgments

## Getting Started

## 1

Product Overview ..... 1-2
Introduction ..... 1-2
Optimization Functions ..... 1-2
Optimization Tool GUI ..... 1-3
Example: Nonlinear Constrained Minimization ..... 1-4
Problem Formulation: Rosenbrock's Function ..... 1-4
Defining the Problem in Toolbox Syntax ..... 1-5
Running the Optimization ..... 1-7
Interpreting the Result ..... 1-11
Optimization Overview
2
Introduction to Optimization Toolbox ${ }^{\text {TM }}$ Solvers ..... 2-2
Writing Objective Functions ..... 2-4
Writing Objective Functions ..... 2-4
Jacobians of Vector and Matrix Objective Functions ..... 2-6
Anonymous Function Objectives ..... 2-9
Maximizing an Objective ..... 2-9
Passing Extra Parameters ..... 2-10
Writing Constraints ..... 2-14
Types of Constraints ..... 2-14
Bound Constraints ..... 2-15
Linear Inequality Constraints ..... 2-16
Linear Equality Constraints ..... 2-16
Nonlinear Constraints ..... 2-17
An Example Using All Types of Constraints ..... 2-18
Choosing a Solver ..... 2-20
Problems Handled by Optimization Toolbox ${ }^{\mathrm{TM}}$ Functions ..... 2-20
Optimization Decision Table ..... 2-23
Solver Inputs and Outputs ..... 2-25
Iterations and Function Counts ..... 2-25
First-Order Optimality Measure ..... 2-26
Tolerances and Stopping Criteria ..... 2-28
Lagrange Multiplier Structures ..... 2-30
Output Structures ..... 2-30
Output Functions ..... 2-31
Local vs. Global Optima ..... 2-39
What Are Local and Global Optima? ..... 2-39
Basins of Attraction ..... 2-39
Searching For Global Optima ..... 2-41
Reference ..... 2-44
Optimization Tool
3
Getting Started with the Optimization Tool ..... 3-2
Introduction ..... 3-2
Opening the Optimization Tool ..... 3-2
Steps for Using the Optimization Tool ..... 3-5
Running a Problem in the Optimization Tool ..... 3-6
Introduction ..... 3-6
Pausing and Stopping the Algorithm ..... 3-7
Viewing Results ..... 3-7
Final Point ..... 3-7
Starting a New Problem ..... 3-8
Closing the Optimization Tool ..... 3-9
Specifying Certain Options ..... 3-10
Plot Functions ..... 3-10
Output function ..... 3-11
Display to Command Window ..... 3-11
Getting Help in the Optimization Tool ..... 3-13
Quick Reference ..... 3-13
Additional Help ..... 3-13
Importing and Exporting Your Work ..... 3-14
Exporting to the MATLAB ${ }^{\circledR}$ Workspace ..... 3-14
Importing Your Work ..... 3-16
Generating an M-File ..... 3-16
Optimization Tool Examples ..... 3-18
About Optimization Tool Examples ..... 3-18
Optimization Tool with the fmincon Solver ..... 3-18
Optimization Tool with the lsqlin Solver ..... 3-22
Tutorial
4
Medium- and Large-Scale Algorithms ..... 4-3
Medium-Scale Algorithms ..... 4-3
Large-Scale Algorithms ..... 4-3
Examples That Use Standard Algorithms ..... 4-4
Introduction ..... 4-4
Unconstrained Minimization Example ..... 4-5
Nonlinear Inequality Constrained Example ..... 4-7
Constrained Example with Bounds ..... 4-8
Constrained Example with Gradients ..... 4-10
Constrained Minimization Using fmincon's Interior-Point Algorithm With Analytic Hessian ..... 4-12
Gradient Check: Analytic vs. Numeric ..... 4-18
Equality Constrained Example ..... 4-19
Nonlinear Equations with Analytic Jacobian ..... 4-20
Nonlinear Equations with Finite-Difference Jacobian ..... 4-23
Error Estimates in Nonlinear Curve Fitting with lsqcurvefit ..... 4-24
Multiobjective Examples ..... 4-28
Large-Scale Examples ..... 4-42
Introduction ..... 4-42
Problems Covered by Large-Scale Methods ..... 4-43
Nonlinear Equations with Jacobian ..... 4-47
Nonlinear Equations with Jacobian Sparsity Pattern ..... 4-49
Nonlinear Least-Squares with Full Jacobian Sparsity Pattern ..... 4-52
Nonlinear Minimization with Gradient and Hessian ..... 4-53
Nonlinear Minimization with Gradient and Hessian Sparsity Pattern ..... 4-55
Nonlinear Minimization with Bound Constraints and Banded Preconditioner ..... 4-57
Nonlinear Minimization with Equality Constraints ..... 4-60
Nonlinear Minimization with a Dense but Structured Hessian and Equality Constraints ..... 4-62
Quadratic Minimization with Bound Constraints ..... 4-66
Quadratic Minimization with a Dense but Structured Hessian ..... 4-68
Linear Least-Squares with Bound Constraints ..... 4-73
Linear Programming with Equalities and Inequalities ..... 4-75
Linear Programming with Dense Columns in the Equalities ..... 4-76
Default Options Settings ..... 4-79
Introduction ..... 4-79
Changing the Default Settings ..... 4-79
Displaying Iterative Output ..... 4-84
Introduction ..... 4-84
Most Common Output Headings ..... 4-84
Function-Specific Output Headings ..... 4-85
Typical Problems and How to Deal with Them ..... 4-91
Selected Bibliography ..... 4-94

5
Optimization Theory Overview ..... 5-4
Demos of Medium-Scale Methods ..... 5-5
Unconstrained Optimization ..... 5-6
Introduction ..... 5-6
Quasi-Newton Methods ..... 5-7
Line Search ..... 5-9
Quasi-Newton Implementation ..... 5-11
Hessian Update ..... 5-11
Line Search Procedures ..... 5-11
Least-Squares Optimization ..... 5-18
Introduction ..... 5-18
Gauss-Newton Method ..... 5-20
Levenberg-Marquardt Method ..... 5-21
Nonlinear Least-Squares Implementation ..... 5-22
Nonlinear Systems of Equations ..... 5-25
Introduction ..... 5-25
Gauss-Newton Method ..... 5-25
Trust-Region Dogleg Method ..... 5-26
Nonlinear Equations Implementation ..... 5-27
Constrained Optimization ..... 5-29
Introduction ..... 5-29
Sequential Quadratic Programming (SQP) ..... 5-30
Quadratic Programming (QP) Subproblem ..... 5-31
SQP Implementation ..... 5-32
Simplex Algorithm ..... 5-39
Multiobjective Optimization ..... 5-44
Multiobjective Optimization Toolbox ${ }^{\text {TM }}$ Solvers ..... 5-44
Goal Attainment Method ..... 5-44
Algorithm Improvements for the Goal Attainment Method ..... 5-46
Minimizing the Maximum Objective ..... 5-47
Selected Bibliography ..... 5-49
Large-Scale Algorithms
6
Trust-Region Methods for Nonlinear Minimization ..... 6-3
Interior-Point Method ..... 6-6
Barrier Function ..... 6-6
Direct Step ..... 6-7
Conjugate Gradient Step ..... 6-8
Interior-Point Algorithm Options ..... 6-9
Demos of Large-Scale Methods ..... 6-11
Preconditioned Conjugate Gradients ..... 6-12
Introduction ..... 6-12
Algorithm ..... 6-12
Linearly Constrained Problems ..... 6-14
Linear Equality Constraints ..... 6-14
Box Constraints ..... 6-15
Nonlinear Least-Squares ..... 6-17
Quadratic Programming ..... 6-18
Linear Least-Squares ..... 6-19
Large-Scale Linear Programming ..... 6-20
Introduction ..... 6-20
Main Algorithm ..... 6-20
Preprocessing ..... 6-23
Selected Bibliography ..... 6-25
Parallel Computing for Optimization
7
Parallel Computing in Optimization Toolbox ${ }^{\text {TM }}$ Functions ..... 7-2
Parallel Optimization Functionality ..... 7-2
Parallel Estimation of Gradients ..... 7-2
Nested Parallel Functions ..... 7-3
Using Parallel Computing with fmincon, fgoalattain, and fminimax ..... 7-5
Using Parallel Computing with Multicore Processors ..... 7-5
Using Parallel Computing with a Multiprocessor Network ..... 7-6
Testing Parallel Computations ..... 7-7
Improving Performance with Parallel Computing ..... 7-8
Factors That Affect Speed ..... 7-8
Factors That Affect Results ..... 7-8
Searching for Global Optima ..... 7-9
External Interface
8
ktrlink: An Interface to KNITRO ${ }^{\circledR}$ Libraries ..... 8-2
What Is ktrlink? ..... 8-2
Installation and Configuration ..... 8-2
Example Using ktrlink ..... 8-4
Setting Options ..... 8-7
Sparse Matrix Considerations ..... 8-9

## Argument and Options Reference

9
Function Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-2
Input Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-2
Output Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 9-5

Optimization Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 9-8
Options Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 9-8
Output Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 9-18
Plot Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-27

## Function Reference

10
Minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 -2

Equation Solving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-2

Least Squares (Curve Fitting) . . . . . . . . . . . . . . . . . . . . . . . 10-3

Graphical User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-3
Utility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $10-4$

## Functions - Alphabetical List

## 11

Examples
A
Examples that Use Standard Algorithms ..... A-2
Optimization Tool Examples ..... A-2
Large-Scale Examples ..... A-2
Index

## Getting Started

Product Overview (p. 1-2)<br>Example: Nonlinear Constrained Minimization (p. 1-4)

Introduces the toolbox and describes the types of problems it is designed to solve

Presents an example that minimizes a nonlinear function with a nonlinear constraint

## Product Overview

In this section...<br>"Introduction" on page 1-2<br>"Optimization Functions" on page 1-2<br>"Optimization Tool GUI" on page 1-3

## Introduction

Optimization Toolbox ${ }^{\mathrm{TM}}$ software extends the capability of the MATLAB ${ }^{\circledR}$ numeric computing environment. The software includes functions for many types of optimization including

- Unconstrained nonlinear minimization
- Constrained nonlinear minimization, including semi-infinite minimization problems
- Quadratic and linear programming
- Nonlinear least-squares and curve fitting
- Constrained linear least squares
- Sparse and structured large-scale problems, including linear programming and constrained nonlinear minimization
- Multiobjective optimization, including goal attainment problems and minimax problems

The toolbox also includes functions for solving nonlinear systems of equations.

## Optimization Functions

Most toolbox functions are MATLAB M-files, made up of MATLAB statements that implement specialized optimization algorithms. You can view the MATLAB code for these functions using the statement

```
type function_name
```

You can extend the capabilities of Optimization Toolbox software by writing your own M-files, or by using the software in combination with other toolboxes, or with the MATLAB or Simulink ${ }^{\circledR}$ environments.

## Optimization Tool GUI

Optimization Tool (optimtool) is a graphical user interface (GUI) for selecting a toolbox function, specifying optimization options, and running optimizations. It provides a convenient interface for all optimization routines, including those from Genetic Algorithm and Direct Search Toolbox ${ }^{\mathrm{TM}}$ software, which is licensed separately.

Optimization Tool makes it easy to

- Define and modify problems quickly
- Use the correct syntax for optimization functions
- Import and export from the MATLAB workspace
- Generate code containing your configuration for a solver and options
- Change parameters of an optimization during the execution of certain Genetic Algorithm and Direct Search Toolbox functions


## Example: Nonlinear Constrained Minimization

## In this section...

"Problem Formulation: Rosenbrock's Function" on page 1-4
"Defining the Problem in Toolbox Syntax" on page 1-5
"Running the Optimization" on page 1-7
"Interpreting the Result" on page 1-11

## Problem Formulation: Rosenbrock's Function

Consider the problem of minimizing Rosenbrock's function

$$
f(x)=100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2}
$$

over the unit disk, i.e., the disk of radius 1 centered at the origin. In other words, find $x$ that minimizes the function $f(x)$ over the set $x_{1}^{2}+x_{2}^{2} \leq 1$. This problem is a minimization of a nonlinear function with a nonlinear constraint.

Note Rosenbrock's function is a standard test function in optimization. It has a unique minimum value of 0 attained at the point $(1,1)$. Finding the minimum is a challenge for some algorithms since it has a shallow minimum inside a deeply curved valley.

Here are two view of Rosenbrock's function in the unit disk. The vertical axis is $\log$-scaled; in other words, the plot shows $\log (1+f(x))$. Contour lines lie beneath the surface plot.


## Rosenbrock's function, log-scaled: two views.

The function $f(x)$ is called the objective function. This is the function you wish to minimize. The inequality $x_{1}^{2}+x_{2}^{2} \leq 1$ is called a constraint. Constraints limit the set of $x$ over which you may search for a minimum. You may have any number of constraints, which may be inequalities or equations.

All Optimization Toolbox ${ }^{\mathrm{TM}}$ optimization functions minimize an objective function. To maximize a function $f$, apply an optimization routine to minimize $-f$.

## Defining the Problem in Toolbox Syntax

To use Optimization Toolbox software, you need to
1 Define your objective function in the MATLAB ${ }^{\circledR}$ language, as an M-file or anonymous function. This example will use an M-file.

2 Define your constraint(s) as a separate M-file or anonymous function.

## M-file for Objective Function

An M-file is a text file containing MATLAB commands with the extension .m. Create a new M-file in any text editor, or use the built-in MATLAB Editor as follows:

1 At the command line type

```
edit rosenbrock
```

The MATLAB Editor opens.
2 In the editor type:

```
function f = rosenbrock(x)
f = 100*(x(2) - x(1)^2)^2 + (1 - x(1))^2;
```

3 Save the file by selecting File > Save.

## M-File for Constraint Function

Constraint functions must be formulated so that they are in the form
$c(x) \leq 0$ or $\operatorname{ceq}(x)=0$. The constraint $x_{1}^{2}+x_{2}^{2} \leq 1$ needs to be reformulated as $x_{1}^{2}+x_{2}^{2}-1 \leq 0$ in order to have the correct syntax.

Furthermore, toolbox functions that accept nonlinear constraints need to have both equality and inequality constraints defined. In this example there is only an inequality constraint, so you must pass an empty array [ ] as the equality constraint function ceq.

With these considerations in mind, write a function M-file for the nonlinear constraint:

1 Create a file named unitdisk.m containing the following code:

```
function [c, ceq] = unitdisk(x)
c = x(1)^2 + x(2)^2 - 1;
ceq = [ ];
```

2 Save the file unitdisk.m.

## Running the Optimization

There are two ways to run the optimization:

- Using the "Optimization Tool" on page 1-7 Graphical User Interface (GUI)
- Using command line functions; see "Minimizing at the Command Line" on page 1-10.


## Optimization Tool

1 Start the Optimization Tool by typing optimtool at the command line. The following GUI opens.


For more information about this tool, see Chapter 3, "Optimization Tool".

2 The default Solver fmincon - Constrained nonlinear minimization is selected. This solver is appropriate for this problem, since Rosenbrock's function is nonlinear, and the problem has a constraint. For more information about how to choose a solver, see "Choosing a Solver" on page 2-20.

3 In the Algorithm pop-up menu choose Active set-the default Trust region reflective solver doesn't handle nonlinear constraints.

4 For Objective function type @rosenbrock. The @ character indicates that this is a function handle of the M-file rosenbrock.m.

5 For Start point type [ 0 0]. This is the initial point where fmincon begins its search for a minimum.

6 For Nonlinear constraint function type @unitdisk, the function handle of unitdisk.m.

7 In the Options pane (center bottom), select iterative in the Level of display pop-up menu. (If you don't see the option, click $\boxplus$ Display to command window.) This shows the progress of fmincon in the command window.

## 8 Click Start under Run solver and view results.

The following message appears in the box below the Start button:

```
Optimization running.
Optimization terminated.
Objective function value: 0.04567571111479972
Optimization terminated: magnitude of directional derivative in search
    direction less than 2*options.TolFun and maximum constraint violation
    is less than options.TolCon.
```

Your objective function value may differ slightly, depending on your computer system and version of Optimization Toolbox software.

The message tells you that:

- The search for a constrained optimum ended because the derivative of the objective function is nearly 0 in directions allowed by the constraint.
- The constraint is very nearly satisfied.

The minimizer x appears under Final point.

| Final point: |  |
| :---: | :---: |
| 1 | 2 |
| 0.786 | 0.618 |

## Minimizing at the Command Line

You can run the same optimization from the command line, as follows.
1 Create an options structure to choose iterative display and the active-set algorithm:

```
options = optimset('Display','iter','Algorithm','active-set');
```

2 Run the fmincon solver with the structure options, reporting both the location $x$ of the minimizer, and value fval attained by the objective function:

```
[x,fval] = fmincon(@rosenbrock,[0 0],...
    [],[],[],[],[],[],@unitdisk,options)
```

The six sets of empty brackets represent optional constraints that are not being used in this example. See the fmincon function reference pages for the syntax.

MATLAB outputs a table of iterations, and the results of the optimization:

```
Optimization terminated: magnitude of directional derivative in search
    direction less than 2*options.TolFun and maximum constraint violation
    is less than options.TolCon.
No active inequalities.
x =
    0.7864 0.6177
fval =
    0.0457
```

The message tells you that the search for a constrained optimum ended because the derivative of the objective function is nearly 0 in directions allowed by the constraint, and that the constraint is very nearly satisfied.

## Interpreting the Result

The iteration table in the command window shows how MATLAB searched for the minimum value of Rosenbrock's function in the unit disk. This table is the same whether you use Optimization Tool or the command line. MATLAB reports the minimization as follows:

| Iter | F-count | $f(x)$ | Max constraint | Line search steplength | Directional derivative | First-order optimality | Procedure |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 3 | 1 | -1 |  |  |  |  |
| 1 | 9 | 0.953127 | -0.9375 | 0.125 | 9.5 | 12.5 |  |
| 2 | 16 | 0.808445 | -0.8601 | 0.0625 | 0.715 | 12.4 |  |
| 3 | 21 | 0.462347 | -0.836 | 0.25 | 1.83 | 5.15 |  |
| 4 | 24 | 0.340677 | -0.7969 | 1 | -0.0409 | 0.811 |  |
| 5 | 27 | 0.300877 | -0.7193 | 1 | 0.0087 | 3.72 |  |
| 6 | 30 | 0.261949 | -0.6783 | 1 | -0.0348 | 3.02 |  |
| 7 | 33 | 0.164971 | -0.4972 | 1 | -0.0632 | 2.29 |  |
| 8 | 36 | 0.110766 | -0.3427 | 1 | -0.0272 | 2 |  |
| 9 | 40 | 0.0750932 | -0.1592 | 0.5 | -0.00514 | 2.41 |  |
| 10 | 43 | 0.0580976 | -0.007608 | 1 | -0.00908 | 3.19 |  |
| 11 | 47 | 0.0482475 | -0.003783 | 0.5 | -0.0122 | 1.41 |  |
| 12 | 51 | 0.0464333 | -0.001888 | 0.5 | -0.00257 | 0.726 |  |
| 13 | 55 | 0.0459217 | -0.0009431 | 0.5 | -0.000759 | 0.362 |  |
| 14 | 59 | 0.0457652 | -0.0004713 | 0.5 | -0.000247 | 0.181 |  |
| 15 | 63 | 0.0457117 | -0.0002356 | 0.5 | -9.04e-005 | 0.0906 | Hessian modified |
| 16 | 67 | 0.0456912 | -0.0001178 | 0.5 | -3.69e-005 | 0.0453 | Hessian modified |
| 17 | 71 | 0.0456825 | -5.889e-005 | 0.5 | -1.64e-005 | 0.0226 | Hessian modified |
| 18 | 75 | 0.0456785 | -2.944e-005 | 0.5 | -7.67e-006 | 0.0113 | Hessian modified |
| 19 | 79 | 0.0456766 | -1.472e-005 | 0.5 | -3.71e-006 | 0.00566 | Hessian modified |
| 20 | 83 | . 45675 | 61e-00 | 0.5 | . 82e-00 | . 0028 | Hessian modified |

This table might differ from yours depending on toolbox version and computing platform. The following description applies to the table as displayed.

- The first column, labeled Iter, is the iteration number from 0 to 20. fmincon took 20 iterations to converge.
- The second column, labeled F-count, reports the cumulative number of times Rosenbrock's function was evaluated. The final row shows an F -count of 83 , indicating that fmincon evaluated Rosenbrock's function 83 times in the process of finding a minimum.
- The third column, labeled $f(x)$, displays the value of the objective function. The final value, 0.0456757 , is the minimum that is reported in the Optimization Tool Run solver and view results box, and at the end of the exit message in the command window.
- The fourth column, Max constraint, goes from a value of -1 at the initial value, to very nearly $0,-7.361 \mathrm{e}-006$, at the final iteration. This column shows the value of the constraint function unitdisk at each iteration. Since the value of unitdisk was nearly 0 at the final iteration, $x_{1}^{2}+x_{2}^{2} \approx 1$ there.

The other columns of the iteration table are described in "Displaying Iterative Output" on page 4-84.

# Optimization Overview 

Introduction to Optimization
Toolbox ${ }^{\text {TM }}$ Solvers (p. 2-2)
Writing Objective Functions (p. 2-4)
Writing Constraints (p. 2-14)
Choosing a Solver (p. 2-20)

Solver Inputs and Outputs (p. 2-25)
Local vs. Global Optima (p. 2-39)

Reference (p. 2-44)

What is an optimization solver?

Defining optimization objectives Defining optimization constraints Finding the right solver for your problem
Optimization terms
Explains why solvers may not find the smallest minimum
Bibliography

## Introduction to Optimization Toolbox ${ }^{\text {TM }}$ Solvers

There are four general categories of Optimization Toolbox ${ }^{\mathrm{TM}}$ solvers:

- Minimizers

This group of solvers attempts to find a local minimum of the objective function near a starting point $x 0$. They address problems of unconstrained optimization, linear programming, quadratic programming, and general nonlinear programming.

- Multiobjective minimizers

This group of solvers attempts to either minimize the maximum value of a set of functions (fminimax), or to find a location where a collection of functions is below some prespecified values (fgoalattain).

- Equation solvers

This group of solvers attempts to find a solution to a scalar- or vector-valued nonlinear equation $f(x)=0$ near a starting point $x 0$. Equation-solving can be considered a form of optimization because it is equivalent to finding the minimum norm of $f(x)$ near $\times 0$.

- Least-Squares (curve-fitting) solvers

This group of solvers attempts to minimize a sum of squares. This type of problem frequently arises in fitting a model to data. The solvers address problems of finding nonnegative solutions, bounded or linearly constrained solutions, and fitting parameterized nonlinear models to data.

For more information see "Problems Handled by Optimization Toolbox ${ }^{\text {TM }}$ Functions" on page 2-20. See "Optimization Decision Table" on page 2-23 for aid in choosing among solvers for minimization.

Minimizers formulate optimization problems in the form

$$
\min _{x} f(x)
$$

possibly subject to constraints. $f(x)$ is called an objective function. In general, $f(x)$ is a scalar function of type double, and $x$ is a vector or scalar of type double. However, multiobjective optimization, equation solving, and some sum-of-squares minimizers, can have vector or matrix objective functions $F(x)$
of type double. To use Optimization Toolbox solvers for maximization instead of minimization, see "Maximizing an Objective" on page 2-9.

Write the objective function for a solver in the form of an M-file or anonymous function handle. You can supply a gradient $\nabla f(x)$ for many solvers, and you can supply a Hessian for several solvers. See "Writing Objective Functions" on page 2-4. Constraints have a special form, as described in "Writing Constraints" on page 2-14.

## Writing Objective Functions

In this section...<br>"Writing Objective Functions" on page 2-4<br>"Jacobians of Vector and Matrix Objective Functions" on page 2-6<br>"Anonymous Function Objectives" on page 2-9<br>"Maximizing an Objective" on page 2-9<br>"Passing Extra Parameters" on page 2-10

## Writing Objective Functions

This section relates to scalar-valued objective functions. For vector-valued or matrix-valued objective functions, see "Jacobians of Vector and Matrix Objective Functions" on page 2-6.

An objective function M-file can return one, two, or three outputs. It can return:

- A single double-precision number, representing the value of $f(x)$
- Both $f(x)$ and its gradient $\nabla f(x)$
- All three of $f(x), \nabla f(x)$, and the Hessian matrix $H(x)=\partial^{2} f / \partial x_{i} \partial x_{j}$

You are not required to provide a gradient for some solvers, and you are never required to provide a Hessian, but providing one or both can lead to faster execution and more reliable answers. If you do not provide a gradient or Hessian, solvers may attempt to estimate them using finite difference approximations or other numerical schemes.

Some solvers do not use gradient or Hessian information. You should "conditionalize" an M-file so that it returns just what is needed:

- $f(x)$ alone
- Both $f(x)$ and $\nabla f(x)$
- All three of $f(x), \nabla f(x)$, and $H(x)$

For example, consider Rosenbrock's function

$$
f(x)=100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2}
$$

which is described and plotted in "Example: Nonlinear Constrained Minimization" on page 1-4. The gradient of $f(x)$ is

$$
\nabla f(x)=\left[\begin{array}{c}
-400\left(x_{2}-x_{1}^{2}\right) x_{1}-2\left(1-x_{1}\right) \\
200\left(x_{2}-x_{1}^{2}\right)
\end{array}\right],
$$

and the Hessian $H(x)$ is

$$
H(x)=\left[\begin{array}{cc}
1200 x_{1}^{2}-400 x_{2}+2 & -400 x_{1} \\
-400 x_{1} & 200
\end{array}\right] .
$$

Function rosenboth returns the value of Rosenbrock's function in $f$, the gradient in g, and the Hessian in H if required:

```
function [f g H] = rosenboth(x)
% Calculate objective f
f = 100*(x(2) - x(1)^2)^2 + (1-x(1))^2;
if nargout > 1 % gradient required
    g = [-400*(x(2)-x(1)^2)*x(1)-2*(1-x(1));
        200*(x(2)-x(1)^2)];
    if nargout > 2 % Hessian required
        H = [1200*x(1)^2-400*x(2)+2, -400*x(1);
            -400*x(1), 200];
    end
end
```

nargout checks the number of arguments that a calling function specifies; see "Checking the Number of Input Arguments" in the MATLAB ${ }^{\circledR}$ Programming Fundamentals documentation.

The solver fminunc, designed for unconstrained optimization, allows you to minimize Rosenbrock's function. Tell fminunc to use the gradient and Hessian by setting options:

```
options = optimset('GradObj','on','Hessian','on');
```

Run fminunc starting at $[-1,2]$ :

```
[x fval] = fminunc(@rosenboth, [-1; 2], options)
Optimization terminated: first-order optimality less than OPTIONS.TolFun,
    and no negative/zero curvature detected in trust region model.
x =
    1.0000
    1.0000
fval =
    1.9310e-017
```


## Jacobians of Vector and Matrix Objective Functions

Some solvers, such as fsolve and lsqcurvefit, can have objective functions that are vectors or matrices. The only difference in usage between these types of objective functions and scalar objective functions is the way to write their derivatives. The first-order partial derivatives of a vector-valued or matrix-valued function is called a Jacobian; the first-order partial derivatives of a scalar function is called a gradient.

## Jacobians of Vector Functions

If $x$ represents a vector of independent variables, and $F(x)$ is the vector function, the Jacobian $J(x)$ is defined as

$$
J_{i j}(x)=\frac{\partial F_{i}(x)}{\partial x_{j}} .
$$

If $F$ has $m$ components, and $x$ has $k$ components, $J$ is a $m$-by- $k$ matrix.
For example, if

$$
F(x)=\left[\begin{array}{c}
x_{1}^{2}+x_{2} x_{3} \\
\sin \left(x_{1}+2 x_{2}-3 x_{3}\right)
\end{array}\right],
$$

then $J(x)$ is

$$
J(x)=\left[\begin{array}{ccc}
2 x_{1} & x_{3} & x_{2} \\
\cos \left(x_{1}+2 x_{2}-3 x_{3}\right) & 2 \cos \left(x_{1}+2 x_{2}-3 x_{3}\right) & -3 \cos \left(x_{1}+2 x_{2}-3 x_{3}\right)
\end{array}\right] .
$$

## Jacobians of Matrix Functions

The Jacobian of a matrix $F(x)$ is defined by changing the matrix to a vector, column by column. For example, the matrix

$$
F=\left[\begin{array}{ll}
F_{11} & F_{12} \\
F_{21} & F_{22} \\
F_{31} & F_{32}
\end{array}\right]
$$

is rewritten as a vector $f$ :

$$
f=\left[\begin{array}{l}
F_{11} \\
F_{21} \\
F_{31} \\
F_{12} \\
F_{22} \\
F_{32}
\end{array}\right] .
$$

The Jacobian of $F$ is defined as the Jacobian of $f$,

$$
J_{i j}=\frac{\partial f_{i}}{\partial x_{j}} .
$$

If $F$ is an $m$-by- $n$ matrix, and $x$ is a $k$-vector, the Jacobian is a $m n$-by- $k$ matrix.
For example, if

$$
F(x)=\left[\begin{array}{cc}
x_{1} x_{2} & x_{1}^{3}+3 x_{2}^{2} \\
5 x_{2}-x_{1}^{4} & x_{2} / x_{1} \\
4-x_{2}^{2} & x_{1}^{3}-x_{2}^{4}
\end{array}\right],
$$

the Jacobian of $F$ is

$$
J(x)=\left[\begin{array}{cc}
x_{2} & x_{1} \\
-4 x_{1}^{3} & 5 \\
0 & -2 x_{2} \\
3 x_{1}^{2} & 6 x_{2} \\
-x_{2} / x_{1}^{2} & 1 / x_{1} \\
3 x_{1}^{2} & -4 x_{2}^{3}
\end{array}\right] .
$$

## Jacobians with Matrix-Valued Independent Variables

If $x$ is a matrix, the Jacobian of $F(x)$ is defined by changing the matrix $x$ to a vector, column by column. For example, if

$$
X=\left[\begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{array}\right]
$$

then the gradient is defined in terms of the vector

$$
x=\left[\begin{array}{l}
x_{11} \\
x_{21} \\
x_{12} \\
x_{22}
\end{array}\right] .
$$

With

$$
F=\left[\begin{array}{ll}
F_{11} & F_{12} \\
F_{21} & F_{22} \\
F_{31} & F_{32}
\end{array}\right],
$$

and $f$ the vector form of $F$ as above, the Jacobian of $F(X)$ is defined to be the Jacobian of $f(x)$ :

$$
J_{i j}=\frac{\partial f_{i}}{\partial x_{j}}
$$

So, for example,

$$
J(3,2)=\frac{\partial f(3)}{\partial x(2)}=\frac{\partial F_{31}}{\partial X_{21}} \text {, and } J(5,4)=\frac{\partial f(5)}{\partial x(4)}=\frac{\partial F_{22}}{\partial X_{22}} .
$$

If $F$ is an $m$-by- $n$ matrix, and $x$ is a $j$-by- $k$ matrix, the Jacobian is a $m n$-by- $j k$ matrix.

## Anonymous Function Objectives

Anonymous functions are useful for writing simple objective functions, without gradient or Hessian information. Rosenbrock's function is simple enough to write as an anonymous function:

```
anonrosen = @(x)(100*(x(2) - x(1)^2)^2 + (1-x(1))^2 );
```

Check that this evaluates correctly at ( $-1,2$ ):

```
>> anonrosen([-1 2])
ans =
    1 0 4
```

Using anonrosen in fminunc yields the following results:

```
[x fval] = fminunc(anonrosen, [-1; 2])
Warning: Gradient must be provided for trust-region method;
    using line-search method instead.
> In fminunc at 265
Optimization terminated: relative infinity-norm of gradient less than options.TolFun.
x =
    1.0000
    1.0000
fval =
    1.2262e-010
```


## Maximizing an Objective

All solvers are designed to minimize an objective function. If you have a maximization problem, that is, a problem of the form

```
max 
```

then define $g(x)=-f(x)$, and minimize $g$.

For example, to find the maximum of $\tan (\cos (x))$ near $x=5$, evaluate:

```
[x fval] = fminunc(@(x)-tan(cos(x)),5)
Warning: Gradient must be provided for trust-region method;
    using line-search method instead.
> In fminunc at 265
Optimization terminated: relative infinity-norm of gradient less than options.TolFun.
x =
    6.2832
fval =
    -1.5574
```

The maximum is 1.5574 (the negative of the reported fval), and occurs at $x=6.2832$. This is correct since, to 5 digits, the maximum is $\tan (1)=1.5574$, which occurs at $x=2 \pi=6.2832$.

## Passing Extra Parameters

Sometimes objective (or constraint) functions have parameters in addition to the independent variable. There are three methods of including these parameters:

- "Anonymous Functions" on page 2-11
- "Nested Functions" on page 2-12
- "Global Variables" on page 2-13

Global variables are troublesome because they do not allow names to be reused among functions. It is better to use one of the other two methods.

For example, suppose you want to minimize the function

$$
\begin{equation*}
f(x)=\left(a-b x_{1}^{2}+x_{1}^{4 / 3}\right) x_{1}^{2}+x_{1} x_{2}+\left(-c+c x_{2}^{2}\right) x_{2}^{2} \tag{2-1}
\end{equation*}
$$

for different values of $a, b$, and $c$. Solvers accept objective functions that depend only on a single variable ( $x$ in this case). The following sections show how to provide the additional parameters $a, b$, and $c$. The solutions are for parameter values $a=4, b=2.1$, and $c=4$ near $x_{0}=[0.50 .5]$ using fminunc.

## Anonymous Functions

To pass parameters using anonymous functions:
1 Write an M-file containing the following code:

```
function y = parameterfun(x,a,b,c)
y = (a - b*x(1)^2 + x(1)^4/3)*x(1)^2 + x(1)*x(2) + ...
    (-c + c*x(2)^2)*x(2)^2;
```

2 Assign values to the parameters and define a function handle $f$ to an anonymous function by entering the following commands at the MATLAB prompt:

```
a = 4; b = 2.1; c = 4; % Assign parameter values
x0 = [0.5,0.5];
f = @(x)parameterfun(x,a,b,c)
```

3 Call the solver fminunc with the anonymous function:

$$
[x, f v a l]=\operatorname{fminunc}(f, x 0)
$$

The following output is displayed in the command window:

```
Warning: Gradient must be provided for trust-region method;
    using line-search method instead.
> In fminunc at 265
Optimization terminated: relative infinity-norm of gradient less than options.TolFun.
x =
    -0.0898 0.7127
fval =
    -1.0316
```

You can create anonymous functions of more than one argument. For example, to use lsqcurvefit, first create a function that takes two input arguments, $x$ and xdata:

```
fh = @(x,xdata)(sin(x).*xdata +(x.^2).*cos(xdata));
x = pi; xdata = pi*[4;2;3];
fh(x, xdata)
ans =
```

9.8696
9.8696
-9.8696

Now call lsqcurvefit:

```
% Assume ydata exists
x = lsqcurvefit(fh,x,xdata,ydata)
```


## Nested Functions

To pass the parameters for Equation 2-1 via a nested function, write a single M-file that

- Accepts a, b, c, and x0 as inputs
- Contains the objective function as a nested function
- Calls fminunc

Here is the code for the M-file for this example:

```
function [x,fval] = runnested(a,b,c,x0)
[x,fval] = fminunc(@nestedfun,x0);
% Nested function that computes the objective function
    function y = nestedfun(x)
        y = (a - b*x(1)^2 + x(1)^4/3)*x(1)^2 + x(1)*x(2) +...
            (-c + c*x(2)^2)*x(2)^2;
    end
end
```

Note that the objective function is computed in the nested function nestedfun, which has access to the variables $a, b$, and $c$.

To run the optimization, enter:

```
a = 4; b = 2.1; c = 4;% Assign parameter values
x0 = [0.5,0.5];
[x,fval] = runnested(a,b,c,x0)
```

The output is the same as in "Anonymous Functions" on page 2-11.

## Global Variables

Global variables can be troublesome, it is better to avoid using them. To use global variables, declare the variables to be global in the workspace and in the functions that use the variables.

1 Write an M-file containing code for your function:

```
function y = globalfun(x)
global a b c
y = (a - b*x(1)^2 + x(1)^4/3)*x(1)^2 + x(1)*x(2) + ...
    (-c + c*x(2)^2)*x(2)^2;
```

2 In your MATLAB workspace, define the variables and run fminunc:

```
global a b c;
a = 4; b = 2.1; c = 4; % Assign parameter values
x0 = [0.5,0.5];
[x,fval] = fminunc(@globalfun,x0)
```

The output is the same as in "Anonymous Functions" on page 2-11.

## Writing Constraints

## In this section...

"Types of Constraints" on page 2-14
"Bound Constraints" on page 2-15
"Linear Inequality Constraints" on page 2-16
"Linear Equality Constraints" on page 2-16
"Nonlinear Constraints" on page 2-17
"An Example Using All Types of Constraints" on page 2-18

## Types of Constraints

Optimization Toolbox ${ }^{\mathrm{TM}}$ solvers have special forms for constraints. Constraints are separated into the following types:

- "Bound Constraints" on page 2-15 - Lower and upper bounds on individual components: $x \geq l$ and $x \leq u$.
- "Linear Inequality Constraints" on page 2-16-A•x $\leq b . A$ is an $m$-by-n matrix, which represents $m$ constraints for an $n$-dimensional vector $x . b$ is $m$-dimensional.
- "Linear Equality Constraints" on page 2-16-Aeq•x $=$ beq. This is a system of equations.
- "Nonlinear Constraints" on page $2-17-c(x) \leq 0$ and $c e q(x)=0$. Both $c$ and ceq are scalars or vectors representing several constraints.

Optimization Toolbox functions assume that inequality constraints are of the form $c_{i}(x) \leq 0$ or $A x \leq b$. Greater-than constraints are expressed as less-than constraints by multiplying them by -1 . For example, a constraint of the form $c_{i}(x) \geq 0$ is equivalent to the constraint $-c_{i}(x) \leq 0$. A constraint of the form $A \cdot x \geq b$ is equivalent to the constraint $-A \cdot x \leq-b$. For more information, see "Linear Inequality Constraints" on page 2-16 and "Nonlinear Constraints" on page 2-17.

You can sometimes write constraints in a variety of ways. To make the best use of the solvers, use the lowest numbered constraints possible:

## 1 Bounds

2 Linear equalities
3 Linear inequalities
4 Nonlinear equalities

## 5 Nonlinear inequalities

For example, with a constraint $5 x \leq 20$, use a bound $x \leq 4$ instead of a linear inequality or nonlinear inequality.

## Bound Constraints

Lower and upper bounds on the components of the vector $x$. You need not give gradients for this type of constraint; solvers calculate them automatically. Bounds do not affect Hessians.

If you know bounds on the location of your optimum, then you may obtain faster and more reliable solutions by explicitly including these bounds in your problem formulation.

Bounds are given as vectors, with the same length as $x$.

- If a particular component is not bounded below, use -Inf as the bound; similarly, use Inf if a component is not bounded above.
- If you have only bounds of one type (upper or lower), you do not need to write the other type. For example, if you have no upper bounds, you do not need to supply a vector of Infs. Also, if only the first $m$ out of $n$ components are bounded, then you need only supply a vector of length $m$ containing bounds.

For example, suppose your bounds are:

- $x_{3} \geq 8$
- $x_{2} \leq 3$

Write the constraint vectors as

- $l=[-I n f ;-\operatorname{Inf} ; 8]$
- $u=[\operatorname{Inf} ; 3]$ or $u=[\operatorname{Inf} ; 3 ; \operatorname{Inf}]$


## Linear Inequality Constraints

Linear inequality constraints are of the form $A \cdot x \leq b$. When $A$ is $m$-by-n, this represents $m$ constraints on a variable $x$ with $n$ components. You supply the $m$-by- $n$ matrix $A$ and the $m$-component vector $b$. You do not need to give gradients for this type of constraint; solvers calculate them automatically. Linear inequalities do not affect Hessians.

For example, suppose that you have the following linear inequalities as constraints:

$$
\begin{aligned}
& x_{1}+x_{3} \leq 4, \\
& 2 x_{2}-x_{3} \geq-2, \\
& x_{1}-x_{2}+x_{3}-x_{4} \geq 9 .
\end{aligned}
$$

Here $m=3$ and $n=4$.
Write these using the following matrix $A$ and vector $b$ :

$$
\begin{aligned}
& A=\left[\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & -2 & 1 & 0 \\
-1 & 1 & -1 & 1
\end{array}\right], \\
& b=\left[\begin{array}{c}
4 \\
2 \\
-9
\end{array}\right] .
\end{aligned}
$$

Notice that the "greater than" inequalities were first multiplied by -1 in order to get them into "less than" inequality form.

## Linear Equality Constraints

Linear equalities are of the form $A e q \cdot x=b e q$. This represents $m$ equations with $n$-component vector $x$. You supply the $m$-by- $n$ matrix $A e q$ and the $m$-component vector beq. You do not need to give a gradient for this type of constraint; solvers calculate them automatically. Linear equalities do not affect Hessians. The form of this type of constraint is exactly the same as
for "Linear Inequality Constraints" on page 2-16. Equalities rather than inequalities are implied by the position in the input argument list of the various solvers.

## Nonlinear Constraints

Nonlinear inequality constraints are of the form $c(x) \leq 0$, where $c$ is a vector of constraints, one component for each constraint. Similarly, nonlinear equality constraints are of the form $c e q(x)=0$. If you provide gradients for $c$ and ceq, your solver may run faster and give more reliable results.

For example, suppose that you have the following inequalities as constraints:

$$
\begin{aligned}
\frac{x_{1}^{2}}{9}+\frac{x_{2}^{2}}{4} & \leq 1, \\
x_{2} & \geq x_{1}^{2}-1 .
\end{aligned}
$$

Write these constraints in an M-file as follows:

```
function [c,ceq]=ellipseparabola(x)
% Inside the ellipse bounded by (-3<x<3),(-2<y<2)
% Above the line y=x^2-1
c(1) = (x(1)^2)/9 + (x(2)^2)/4 - 1;
c(2) = x(1)^2 - x(2) - 1;
ceq = [];
end
```

The constraint function returns empty [] as the nonlinear equality function. Nonlinear constraint functions must return both inequality and equality constraints, even if they do not both exist. Also, both inequalities were put into $\leq 0$ form.

To include gradient information, write a conditionalized function as follows:

```
function [c,ceq,gradc,gradceq]=ellipseparabola(x)
% Inside the ellipse bounded by (-3<x<3),(-2<y<2)
% Above the line y=x^2-1
c(1) = x(1)^2/9 + x(2)^2/4 - 1;
c(2) = x(1)^2 - x(2) - 1;
ceq = [];
```

```
if nargout > 2
    gradc = [2*x(1)/9, 2*x(1);...
        x(2)/2, -1];
    gradceq = [];
end
```

See "Writing Objective Functions" on page 2-4 for information on conditionalized gradients. The gradient matrix is of the form

$$
\operatorname{gradc}_{i, j}=\left[\partial \mathrm{c}(j) / \partial x_{i}\right] .
$$

The first column of the gradient matrix is associated with c(1), and the second column is associated with c(2). This is the transpose of the form of Jacobians.

To have a solver use gradients of nonlinear constraints, you must indicate that you have supplied them by using optimset:

```
options=optimset('GradConstr', 'on');
```

Make sure to pass the options structure to your solver:

```
[x,fval] = fmincon(@myobj,x0,A,b,Aeq,beq,lb,ub,...
    @ellipseparabola,options)
```


## An Example Using All Types of Constraints

This section contains an example of a nonlinear minimization problem with all possible types of constraints. The objective function is in the subfunction myobj $(x)$. The nonlinear constraints are in the subfunction myconstr $(x)$. Gradients are not used in this example.

```
function fullexample
x0 = [1; 4; 5; 2; 5];
lb = [-Inf; -Inf; 0; -Inf; 1];
ub = [ Inf; Inf; 20];
Aeq = [1 -0.3 0 0 0];
beq = 0;
A = [0 0 0 -1 0.1
    0 0 0 1 -0.5
    0 0-1 0 0.9];
b = [0; 0; 0];
```

```
[x,fval,exitflag]=fmincon(@myobj,x0,A,b,Aeq,beq,lb,ub,...
    @myconstr)
%---------------------------------------------------------
function f = myobj(x)
f = 6*x(2)*x(5) + 7*x(1)*x(3) + 3*x(2)^2;
%-------------------------------------------------------
function [c, ceq] = myconstr(x)
c = [x(1) - 0.2*x(2)*x(5) - 71
    0.9*x(3) - x(4)^2 - 67];
ceq = 3*x(2)^2*x(5) + 3*x(1)^2*x(3) - 20.875;
```

Calling fullexample produces the following display in the command window:

```
fullexample
Warning: Trust-region-reflective method does not currently solve this type of problem,
    using active-set (line search) instead.
> In fmincon at 317
    In fullexample at }1
Optimization terminated: first-order optimality measure less than options.TolFun
    and maximum constraint violation is less than options.TolCon.
Active inequalities (to within options.TolCon = 1e-006):
    lower upper ineqlin ineqnonlin
        3
x =
        0.6114
        2.0380
        1.3948
        0.3585
        1.5498
fval =
    37.3806
exitflag =
    1
```


## Choosing a Solver

## In this section...

"Problems Handled by Optimization Toolbox ${ }^{\text {TM }}$ Functions" on page 2-20
"Optimization Decision Table" on page 2-23

## Problems Handled by Optimization Toolbox ${ }^{\text {TM }}$ Functions

The following tables show the functions available for minimization, equation solving, multiobjective optimization, and solving least-squares or data-fitting problems.

## Minimization Problems

| Type | Formulation | Solver |
| :--- | :--- | :--- |
| Scalar minimization | $\min _{x} f(x)$ <br> such that $l<x<u(x$ is scalar $)$ | fminbnd |
| Unconstrained minimization | $\min _{x} f(x)$ | fminunc, <br> fminsearch |
| Linear programming | $\min _{x} f^{T} x$ <br> $\operatorname{such} \operatorname{that} A \cdot x \leq b, \quad$ Aeq $\cdot x=b e q, \quad l \leq x \leq u$ | linprog |
| Quadratic programming | min $\frac{1}{2} x^{T} H x+f^{T} x$ <br> such that $A \cdot x \leq b, ~ A e q \cdot x=b e q, \quad l \leq x \leq u$ | quadprog |

## Minimization Problems (Continued)

| Type | Formulation | Solver |
| :---: | :---: | :---: |
| Constrained minimization | $\begin{aligned} & \quad \min _{x} f(x) \\ & \text { such that } \quad c(x) \leq 0, \quad \operatorname{ceq}(x)=0, \quad A \cdot x \leq b, \\ & \text { Aeq } \cdot x=b e q, \quad l \leq x \leq u \end{aligned}$ | fmincon |
| Semi-infinite minimization | $\begin{aligned} & \min _{x} f(x) \\ & \text { such that } \quad K(x, w) \leq 0 \text { for all } w, \quad c(x) \leq 0, \\ & c e q(x)=0, \quad A \cdot x \leq b, \quad \text { Aeq } \cdot x=b e q, \quad l \leq x \leq u \end{aligned}$ | fseminf |
| Binary integer programming | $\min _{x} f^{T} x$ <br> such that $A \cdot x \leq b, A e q \cdot x=b e q, x$ binary | bintprog |

## Multiobjective Problems

| Type | Formulation | Solver |
| :--- | :--- | :--- |
| Goal attainment | $\min _{x, \gamma} \gamma$ <br> such that $\quad F(x)-w \cdot \gamma \leq \operatorname{goal}, \quad c(x) \leq 0, \quad \operatorname{leq}(x)=0$, <br> $A \cdot x \leq b, \quad$ Aeq $\cdot x=b e q, \quad l \leq x \leq u$ | fgoalattain |
| Minimax | $\min _{x} \max _{i} F_{i}(x)$ | fminimax |
|  | such that $\quad c(x) \leq 0, \quad c e q(x)=0, \quad A \cdot x \leq b$, <br> Aeq $x=b e q, \quad l \leq x \leq u$ |  |

## Equation Solving Problems

| Type | Formulation | Solver |
| :--- | :--- | :--- |
| Linear equations | $C \cdot x=d, n$ equations, $n$ variables |  |
| (matrix left division) |  |  |
| Nonlinear equation of one <br> variable | $f(x)=0$ | fzero |
| Nonlinear equations | $F(x)=0, n$ equations, $n$ variables | fsolve |

## Least-Squares (Model-Fitting) Problems

| Type | Formulation | Solver |
| :---: | :---: | :---: |
| Linear least-squares | $\min _{x}\\|C \cdot x-d\\|_{2}^{2}$ <br> $m$ equations, $n$ variables | \ (matrix left division) |
| Nonnegative linear-least-squares | $\min _{x}\\|C \cdot x-d\\|_{2}^{2}$ <br> such that $x \geq 0$ | lsqnonneg |
| Constrained linear-least-squares | $\begin{aligned} & \quad \min _{x}\\|C \cdot x-d\\|_{2}^{2} \\ & \text { such that } \quad A \cdot x \leq b, \quad \text { Aeq } \cdot x=b e q, \\ & l b \leq x \leq u b \end{aligned}$ | lsqlin |
| Nonlinear least-squares | $\min _{x}\\|F(x)\\|_{2}^{2}=\min _{x} \sum_{i} F_{i}^{2}(x)$ <br> such that $l b \leq x \leq u b$ | lsqnonlin |
| Nonlinear curve fitting | $\min _{x}\\|F(x, x d a t a)-y d a t a\\|_{2}^{2}$ <br> such that $l b \leq x \leq u b$ | lsqcurvefit |

## Optimization Decision Table

The following table is designed to help you choose a solver. It does not address multiobjective optimization or equation solving. There are more details on all the solvers in "Problems Handled by Optimization Toolbox ${ }^{\mathrm{TM}}$ Functions" on page 2-20.

Use the table as follows:
1 Identify your objective function as one of five types:

- Linear
- Quadratic
- Sum-of-squares (Least squares)
- Smooth nonlinear
- Nonsmooth

2 Identify your constraints as one of five types:

- None (unconstrained)
- Bound
- Linear (including bound)
- General smooth
- Discrete (integer)

3 Use the table to identify a relevant solver.
In this table:

- Blank entries means there is no Optimization Toolbox ${ }^{\mathrm{TM}}$ solver specifically designed for this type of problem.
-     * means relevant solvers are found in Genetic Algorithm and Direct Search Toolbox ${ }^{\text {TM }}$ functions (licensed separately from Optimization Toolbox solvers).
- fmincon applies to most smooth objective functions with smooth constraints. It is not listed as a preferred solver for least squares or linear
or quadratic programming because the listed solvers are usually more efficient.
- The table has suggested functions, but it is not meant to unduly restrict your choices. For example, fmincon is known to be effective on some non-smooth problems.
- The Genetic Algorithm and Direct Search Toolbox function ga can be programmed to address discrete problems. It is not listed in the table because additional programming is needed to solve discrete problems.


## Solvers by Objective and Constraint

| Constraint <br> Type | Objective Type |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | Linear | Quadratic | Least <br> Squares | Smooth <br> nonlinear | Nonsmooth |
| None | n/a $(f=$ const, <br> or min $=-\infty)$ | quadprog | l, <br> lsqcurvefit, <br> lsqnonlin | fminsearch, <br> fminunc | fminsearch, * |
| Bound | linprog | quadprog | lsqcurvefit, <br> lsqlin, <br> lsqnonlin, <br> lsqnonneg | fminbnd, <br> fmincon, <br> fseminf | $*$ |
| Linear | linprog | quadprog | lsqlin | fmincon, <br> fseminf | $*$ |
| General <br> smooth | fmincon | fmincon | fmincon | fmincon, <br> fseminf | $*$ |
| Discrete | bintprog |  |  |  |  |

Note This table does not list multiobjective solvers nor equation solvers. See "Problems Handled by Optimization Toolbox ${ }^{\text {TM }}$ Functions" on page 2-20 for a complete list of problems addressed by Optimization Toolbox functions.

## Solver Inputs and Outputs

In this section...<br>"Iterations and Function Counts" on page 2-25<br>"First-Order Optimality Measure" on page 2-26<br>"Tolerances and Stopping Criteria" on page 2-28<br>"Lagrange Multiplier Structures" on page 2-30<br>"Output Structures" on page 2-30<br>"Output Functions" on page 2-31

## Iterations and Function Counts

In general, Optimization Toolbox ${ }^{\text {TM }}$ solvers iterate to find an optimum. This means a solver begins at an initial value $x_{0}$, performs some intermediate calculations that eventually lead to a new point $x_{1}$, and then repeats the process to find successive approximations $x_{2}, x_{3}, \ldots$ of the local minimum. Processing stops after some number of iterations $k$.

At any step, intermediate calculations may involve evaluating the objective function and constraints, if any, at points near the current iterate $x_{i}$. For example, the solver may estimate a gradient by finite differences. At each of these nearby points, the function count ( $F$-count) is increased by one.

- If there are no constraints, the F-count reports the total number of objective function evaluations.
- If there are constraints, the F-count reports only the number of points where function evaluations took place, not the total number of evaluations of constraint functions.
- If there are many constraints, the F-count can be significantly less than the total number of function evaluations.

F-count is a header in the iterative display for many solvers. For an example, see "Interpreting the Result" on page 1-11.

The F-count appears in the output structure as output.funcCount. This enables you to access the evaluation count programmatically. For more information on output structures, see "Output Structures" on page 2-30.

Note Intermediate calculations do not count towards the reported number of iterations $k$. The number of iterations is the total number of steps $x_{i}, 1 \leq i \leq k$.

## First-Order Optimality Measure

First-order optimality is a measure of how close a point $x$ is to optimal. It is used in all smooth solvers, constrained and unconstrained, though it has different meanings depending on the problem and solver. For more information about first-order optimality, see [1].

The tolerance TolFun relates to the first-order optimality measure. If the optimality measure is less than TolFun, the solver iterations will end.

## Unconstrained Optimality

For a smooth unconstrained problem,

$$
\min _{x} f(x),
$$

the optimality measure is the infinity-norm (i.e., maximum absolute value) of $\nabla f(x)$ :

$$
\text { First-order optimality measure }=\max _{i}\left|(\nabla f(x))_{i}\right|=\|\nabla f(x)\|_{\infty} .
$$

This measure of optimality is based on the familiar condition for a smooth function to achieve a minimum: its gradient must be zero. For unconstrained problems, when the first-order optimality measure is nearly zero, the objective function has gradient nearly zero, so the objective function could be nearly minimized. If the first-order optimality measure is not small, the objective function is not minimized.

## Constrained Optimality-Theory

The theory behind the definition of first-order optimality measure for constrained problems. The definition as used in Optimization Toolbox functions is in "Constrained Optimality in Solver Form" on page 2-28.

For a smooth constrained problem let $g$ and $h$ be vector functions representing all inequality and equality constraints respectively (i.e., bound, linear, and nonlinear constraints):

$$
\min _{x} f(x) \text { subject to } g(x) \leq 0, h(x)=0 .
$$

The meaning of first-order optimality in this case is more involved than for unconstrained problems. The definition is based on the Karush-Kuhn-Tucker (KKT) conditions. The KKT conditions are analogous to the condition that the gradient must be zero at a minimum, modified to take constraints into account. The difference is that The KKT conditions hold for constrained problems.

The KKT conditions are given via an auxiliary Lagrangian function

$$
\begin{equation*}
L(x, \lambda)=f(x)+\sum \lambda_{i} g_{i}(x)+\sum \lambda_{i} h_{i}(x) . \tag{2-2}
\end{equation*}
$$

The vector $\lambda$ is called the Lagrange multiplier vector. Its length is the total number of constraints.

The KKT conditions are:

$$
\begin{align*}
& \nabla_{x} L(x, \lambda)=0,  \tag{2-3}\\
& \lambda_{i} g_{i}(x)=0 \forall i  \tag{2-4}\\
& \left\{\begin{aligned}
g(x) & \leq 0 \\
h(x) & =0 \\
\lambda_{i} & \geq 0 \text { for inequality constraints. }
\end{aligned}\right. \tag{2-5}
\end{align*}
$$

The three expressions in Equation 2-5 are not used in the calculation of optimality measure.

The optimality measure associated with Equation 2-3 is

$$
\begin{equation*}
\| \nabla_{x} L\left(x, \lambda\|=\| \nabla f(x)+\sum \lambda_{i} \nabla g_{i}(x)+\sum \lambda_{i} \nabla h_{i}(x) \| .\right. \tag{2-6}
\end{equation*}
$$

The optimality measure associated with Equation 2-4 is

$$
\begin{equation*}
\|\overrightarrow{\lambda g}(x)\|, \tag{2-7}
\end{equation*}
$$

where the infinity norm (maximum) is used for the vector $\overrightarrow{\lambda_{i} g_{i}}(x)$.
The combined optimality measure is the maximum of the values calculated in Equation 2-6 and Equation 2-7. Any constraint violations $g(x)>0$ or $|h(x)|>0$ are measured and reported as tolerance violations; see "Tolerances and Stopping Criteria" on page 2-28.

## Constrained Optimality in Solver Form

The first-order optimality measure used by toolbox solvers is expressed as follows for constraints given separately by bounds, linear functions, and nonlinear functions. The measure is the maximum of the following two norms, which correspond to Equation 2-6 and Equation 2-7:

$$
\begin{align*}
& \| \nabla_{x} L\left(x, \lambda\|=\| \nabla f(x)+A^{T} \lambda_{\text {ineq }}+A e q^{T} \lambda_{e q}+\sum \lambda_{i} \nabla c_{i}(x)+\sum \lambda_{i} \nabla c e q_{i}(x) \|,\right.  \tag{2-8}\\
& \left\|\overrightarrow{l_{i}-x_{i} \mid \lambda_{i}},\left|\overline{x_{i}-u_{i} \mid \lambda_{i}}, \overline{(A x-b)_{i} \mid \lambda_{i}},\right| \overrightarrow{c_{i}(x) \mid \lambda_{i}}\right\|, \tag{2-9}
\end{align*}
$$

where the infinity norm (maximum) is used for the vector in Equation 2-8 and in Equation 2-9. The summations in Equation 2-8 range over all constraints. If a bound is $\pm \mathrm{Inf}$, that term is not considered constrained, so is not part of the summation.

For some large-scale problems with only linear equalities, the first-order optimality measure is the infinity norm of the projected gradient (i.e., the gradient projected onto the nullspace of Aeq).

## Tolerances and Stopping Criteria

The number of iterations in an optimization depends on a solver's stopping criteria. These criteria include:

- First-order optimality measure
- Tolerance TolX
- Tolerance TolFun
- Tolerance TolCon
- Bound on number of iterations taken Maxiter
- Bound on number of function evaluations MaxFunEvals

First-order optimality measure is defined in "First-Order Optimality Measure" on page 2-26. Iterations and function evaluations are discussed in "Iterations and Function Counts" on page 2-25. The remainder of this section describes how Optimization Toolbox solvers use stopping criteria to terminate optimizations.

- TolX is a lower bound on the size of a step, meaning the norm of $\left(x_{i}-x_{i+1}\right)$. If the solver attempts to take a step that is smaller than TolX, the iterations end. TolX is sometimes used as a relative bound, meaning iterations end when $\left|\left(x_{i}-x_{i+1}\right)\right|<\operatorname{TolX} *\left(1+\left|x_{i}\right|\right)$, or a similar relative measure.
- TolFun is a lower bound on the change in the value of the objective function during a step. If $\left|f\left(x_{i}\right)-f\left(x_{i+1}\right)\right|<$ TolFun, the iterations end. TolFun is sometimes used as a relative bound, meaning iterations end when $\left|f\left(x_{i}\right)-f\left(x_{i+1}\right)\right|<\operatorname{TolFun}\left(1+\left|f\left(x_{i}\right)\right|\right)$, or a similar relative measure.
- TolFun is also a bound on the first-order optimality measure. If the optimality measure is less than TolFun, the iterations end. TolFun can also be a relative bound.
- TolCon is an upper bound on the magnitude of any constraint functions. If a solver returns a point $x$ with $c(x)>$ TolCon or $|c e q(x)|>$ TolCon, the solver reports that the constraints are violated at $x$. TolCon can also be a relative bound.

Note TolCon operates differently from other tolerances. If TolCon is not satisfied (i.e., if the magnitude of the constraint function exceeds TolCon), the solver attempts to continue, unless it is halted for another reason. A solver does not halt simply because TolCon is satisfied.

There are two other tolerances that apply to particular solvers: TolPCG and MaxPCGIter. These relate to preconditioned conjugate gradient steps. For more information, see "Preconditioned Conjugate Gradients" on page 6-12.

There are several tolerances that apply only to the interior-point algorithm in the solver fmincon. See "Optimization Options" on page 9-8 for more information.

## Lagrange Multiplier Structures

Constrained optimization involves a set of Lagrange multipliers, as described in "First-Order Optimality Measure" on page 2-26. Solvers return estimated Lagrange multipliers in a structure. The structure is called lambda, since the conventional symbol for Lagrange multipliers is the Greek letter lambda ( $\lambda$ ). The structure separates the multipliers into the following types, called fields:

- lower, associated with lower bounds
- upper, associated with upper bounds
- eqlin, associated with linear equalities
- ineqlin, associated with linear inequalities
- eqnonlin, associated with nonlinear equalities
- ineqnonlin, associated with nonlinear inequalities

To access, for example, the nonlinear inequality field of a Lagrange multiplier structure, enter lambda.inqnonlin. To access the third element of the Lagrange multiplier associated with lower bounds, enter lambda.lower (3).

The content of the Lagrange multiplier structure depends on the solver. For example, linear programming has no nonlinearities, so it does not have eqnonlin or ineqnonlin fields. Each applicable solver's function reference pages contains a description of its Lagrange multiplier structure under the heading "Outputs."

## Output Structures

An output structure contains information on a solver's result. All solvers can return an output structure. To obtain an output structure, invoke the solver
with the output structure in the calling syntax. For example, to get an output structure from lsqnonlin, use the syntax
[x,resnorm,residual,exitflag,output] = lsqnonlin(...)

You can also obtain an output structure by running a problem using the Optimization Tool. All results exported from Optimization Tool contain an output structure.

The contents of the output structure are listed in each solver's reference pages. For example, the output structure returned by lsqnonlin contains firstorderopt, iterations, funcCount, cgiterations, stepsize, algorithm, and message. To access, for example, the message, enter output.message.

Optimization Tool exports results in a structure. The results structure contains the output structure. To access, for example, the number of iterations, use the syntax optimresults.output.iterations.

You can also see the contents of an output structure by double-clicking the output structure in the MATLAB ${ }^{\circledR}$ Workspace pane.

## Output Functions

## Introduction

For some problems, you might want output from an optimization algorithm at each iteration. For example, you might want to find the sequence of points that the algorithm computes and plot those points. To do this, create an output function that the optimization function calls at each iteration. See "Output Function" on page 9-18 for details and syntax.

Generally, the solvers that can employ an output function are the ones that can take nonlinear functions as inputs. You can determine which solvers can have an output function by looking in the Options section of function reference pages, or by checking whether the Output function option is available in the Optimization Tool GUI for a solver.

## Example: Using Output Functions

- "What the Example Contains" on page 2-32
- "Writing the Output Function" on page 2-32
- "Writing the Example M-File" on page 2-34
- "Running the Example" on page 2-35

What the Example Contains. The following example continues the one in "Nonlinear Inequality Constrained Example" on page 4-7, which calls the function fmincon at the command line to solve a nonlinear, constrained optimization problem. The example in this section uses an M-file to call fmincon. The M-file also contains all the functions needed for the example, including:

- The objective function
- The constraint function
- An output function that records the history of points computed by the algorithm for fmincon. At each iteration of the algorithm for fmincon, the output function:
- Plots the current point computed by the algorithm.
- Stores the point and its corresponding objective function value in a variable called history, and stores the current search direction in a variable called searchdir. The search direction is a vector that points in the direction from the current point to the next one.

The code for the M-file is here: "Writing the Example M-File" on page 2-34.
Writing the Output Function. You specify the output function in the options structure

```
options = optimset('OutputFcn',@outfun)
```

where outfun is the name of the output function. When you call an optimization function with options as an input, the optimization function calls outfun at each iteration of its algorithm.

In general, outfun can be any MATLAB function, but in this example, it is a nested subfunction of the M-file described in "Writing the Example M-File" on page 2-34. The following code defines the output function:

```
function stop = outfun(x,optimValues,state)
stop = false;
    switch state
        case 'init'
            hold on
        case 'iter'
            % Concatenate current point and objective function
            % value with history. x must be a row vector.
            history.fval = [history.fval; optimValues.fval];
            history.x = [history.x; x];
            % Concatenate current search direction with
            % searchdir.
            searchdir = [searchdir;...
                    optimValues.searchdirection'];
            plot(x(1),x(2),'o');
            % Label points with iteration number.
            text(x(1)+.15,x(2),num2str(optimValues.iteration));
        case 'done'
            hold off
        otherwise
    end
end
```

See "Using Function Handles with Nested Functions" in the MATLAB Programming Fundamentals documentation for more information about nested functions.

The arguments that the optimization function passes to outfun are:

- $x$ - The point computed by the algorithm at the current iteration
- optimValues - Structure containing data from the current iteration

The example uses the following fields of optimValues:

- optimValues.iteration - Number of the current iteration
- optimValues.fval - Current objective function value
- optimValues.searchdirection - Current search direction
- state - The current state of the algorithm ('init', 'interrupt', 'iter', or 'done')

For more information about these arguments, see "Output Function" on page 9-18.

Writing the Example M-File. To create the M-file for this example:
1 Open a new M-file in the MATLAB Editor.
2 Copy and paste the following code into the M-file:

```
function [history,searchdir] = runfmincon
% Set up shared variables with OUTFUN
history.x = [];
history.fval = [];
searchdir = [];
% call optimization
x0 = [-1 1];
options = optimset('outputfcn',@outfun,'display','iter',...
'largescale','off');
xsol = fmincon(@objfun,x0,[],[],[],[],[],[],@confun,options);
function stop = outfun(x,optimValues,state)
    stop = false;
    switch state
            case 'init'
                    hold on
            case 'iter'
            % Concatenate current point and objective function
            % value with history. x must be a row vector.
                history.fval = [history.fval; optimValues.fval];
                history.x = [history.x; x];
            % Concatenate current search direction with
```

```
        % searchdir.
            searchdir = [searchdir;...
                    optimValues.searchdirection'];
            plot(x(1),x(2),'o');
            % Label points with iteration number and add title.
            text(x(1)+.15,x(2),...
                num2str(optimValues.iteration));
            title('Sequence of Points Computed by fmincon');
                case 'done'
            hold off
                otherwise
    end
end
    function f = objfun(x)
    f = exp(x(1))*(4*x(1)^2 + 2*x(2)^2 + 4*x(1)*x(2) +...
                                    2*x(2) + 1);
end
function [c, ceq] = confun(x)
    % Nonlinear inequality constraints
    c = [1.5 + x(1)*x(2) - x(1) - x(2);
        -x(1)*x(2) - 10];
    % Nonlinear equality constraints
    ceq = [];
end
end
```

3 Save the file as runfmincon.m in a directory on the MATLAB path.
Running the Example. To run the example, enter:

```
[history searchdir] = runfmincon;
```

This displays the following iterative output in the Command Window.

| Iter | F-count | f(x) | $\begin{gathered} \text { Max } \\ \text { constraint } \end{gathered}$ | Line search steplength | Directional derivative | First-order optimality Procedure |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 3 | 1.8394 | 0.5 |  |  | Infeasible start point |
| 1 | 6 | 1.85127 | -0.09197 | 1 | -0.027 | 0.778 |
| 2 | 9 | 0.300167 | 9.33 | 1 | -0.825 | 0.313 Hessian modified |


| 3 | 12 | 0.529835 | 0.9209 | 1 | 0.302 | 0.232 | twice |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | 16 | 0.186965 | -1.517 | 0.5 | -0.437 | 0.13 |  |
| 5 | 19 | 0.0729085 | 0.3313 | 1 | -0.0715 | 0.054 |  |
| 6 | 22 | 0.0353323 | -0.03303 | 1 | -0.026 | 0.0271 |  |
| 7 | 25 | 0.0235566 | 0.003184 | 1 | -0.00963 | 0.00587 |  |
| 8 | 28 | 0.0235504 | 9.032e-008 | 1 | -6.22e-006 | 8.51e-007 |  |
| ```Optimization terminated: first-order optimality measure less than options.TolFun and maximum constraint violation is less than options.TolCon.``` |  |  |  |  |  |  |  |
| Active inequalities (to within options.TolCon = 1e-006): |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |

The output history is a structure that contains two fields:

```
history =
    x: [9x2 double]
fval: [9x1 double]
```

The fval field contains the objective function values corresponding to the sequence of points computed by fmincon:
history.fval

| ans | $=$ |
| ---: | :--- |
|  |  |
| 1.8394 |  |
| 1.8513 |  |
| 0.3002 |  |
| 0.5298 |  |
| 0.1870 |  |
| 0.0729 |  |
| 0.0353 |  |
| 0.0236 |  |
| 0.0236 |  |

These are the same values displayed in the iterative output in the column with header $f(x)$.

The x field of history contains the sequence of points computed by the algorithm:

```
history.x
ans =
\begin{tabular}{ll}
-1.0000 & 1.0000 \\
-1.3679 & 1.2500 \\
-5.5708 & 3.4699 \\
-4.8000 & 2.2752 \\
-6.7054 & 1.2618 \\
-8.0679 & 1.0186 \\
-9.0230 & 1.0532 \\
-9.5471 & 1.0471 \\
-9.5474 & 1.0474
\end{tabular}
```

This example displays a plot of this sequence of points, in which each point is labeled by its iteration number.


The optimal point occurs at the eighth iteration. Note that the last two points in the sequence are so close that they overlap.

The second output argument, searchdir, contains the search directions for fmincon at each iteration. The search direction is a vector pointing from the point computed at the current iteration to the point computed at the next iteration:

| searchdir $=$ |  |
| ---: | ---: |
| -0.3679 | 0.2500 |
| -4.2029 | 2.2199 |
| 0.7708 | -1.1947 |
| -3.8108 | -2.0268 |
| -1.3625 | -0.2432 |
| -0.9552 | 0.0346 |
| -0.5241 | -0.0061 |
| -0.0003 | 0.0003 |

## Local vs. Global Optima

## What Are Local and Global Optima?

Usually, the goal of an optimization is to find a local minimum of a function-a point where the function value is smaller than at nearby points, but possibly greater than at a distant point in the search space. Sometimes the goal of an optimization is to find the global minimum-a point where the function value is smaller than all others in the search space. In general, optimization algorithms return a local minimum. This section describes why solvers behave this way, and gives suggestions for ways to search for a global minimum, if needed.

## Basins of Attraction

If an objective function $f(x)$ is smooth, the vector $-\nabla f(x)$ points in the direction where $f(x)$ decreases most quickly. The equation of steepest descent, namely

$$
\frac{d}{d t} x(t)=-\nabla f(x(t))
$$

yields a path $x(t)$ that goes to a local minimum as $t$ gets large. Generally, initial values $x(0)$ that are near to each other give steepest descent paths that tend to the same minimum point along their steepest descent paths. The set of initial values that lead to the same local minimum is called a basin of attraction for steepest descent.

The following figure shows two one-dimensional minima. Different basins of attraction are plotted with different line styles, and directions of steepest descent are indicated by arrows. For this and subsequent figures, black dots represent local minima. Every steepest descent path, starting at a point $x(0)$, goes to the black dot in the basin containing $x(0)$.


## One-dimensional basins

The following figure shows how steepest descent paths can be more complicated in more dimensions.


One basin of attraction, showing steepest descent paths from various starting points

The following figure shows even more complicated paths and basins.


## Several basins of attraction

Constraints can break up one basin of attraction into several pieces, where a steepest descent path may be restricted from proceeding.

## Searching For Global Optima

Many numerical methods for optimization are based, in part, on the method of steepest descent.

Note Solvers do not precisely follow steepest descent paths. They attempt to take large steps, in the interest of efficiency. Basins of attraction associated with solver algorithms can be more complex than those of steepest descent.

The problem of global optimization turns into two parts:

- Finding a good initial value for optimizers
- Finding the minimum point in the basin associated with the initial value

Note Optimization Toolbox ${ }^{\text {TM }}$ solvers generally find the minimum point in the basin, but leave the choice of starting point to you.

Generally, Optimization Toolbox solvers are not designed to find global optima. They find the optimum in the basin of attraction of the starting point. If you need a global optimum, you must find an initial value contained in the basin of attraction of a global optimum.

There are some exceptions to this general rule.

- Linear programming and positive definite quadratic programming problems are convex, with convex feasible regions, so there is only one basin of attraction. Indeed, under certain choices of options, linprog ignores any user-supplied starting point, and quadprog does not require one, though supplying one can sometimes speed a minimization.
- Multiobjective optimization does not have basins of attraction, but still depends on initial values.
- Some Genetic Algorithm and Direct Search Toolbox ${ }^{\text {TM }}$ functions, such as simulannealbnd, are designed to search through more than one basin of attraction.

Suggestions for ways to set initial values to search for a global optimum:

- Use a regular grid of initial points.
- Use random points drawn from a uniform distribution if your problem has all its coordinates bounded, or from normal, exponential, or other random distributions if some components are unbounded. The less you know about the location of the global optimum, the more spread-out your random distribution should be. For example, normal distributions rarely sample more than three standard deviations away from their means, but a Cauchy distribution (density $\left.1 /\left(\pi\left(1+x^{2}\right)\right)\right)$ makes hugely disparate samples.
- Use identical initial points with added random perturbations on each coordinate, bounded, normal, exponential, or other.
- Use the Genetic Algorithm and Direct Search Toolbox function gacreationlinearfeasible to obtain a set of random initial points in a region with linear constraints.

The more you know about possible initial points, the more focused and successful your search will be.

## Reference

[1] Nocedal, Jorge and Wright, Stephen J. Numerical Optimization, Second Edition. New York: Springer, 2006.

## Optimization Tool

Getting Started with the
Optimization Tool (p. 3-2)

Running a Problem in the Optimization Tool (p. 3-6)
Specifying Certain Options (p. 3-10)
Getting Help in the Optimization Tool (p. 3-13)
Importing and Exporting Your Work (p. 3-14)

Understand the Optimization Tool-how to open the tool and steps for use

Run the solver and view results

Set option values
Access help within the Optimization Tool
Start a new problem, import, export, and generate an M-file of your problem and options
Optimization Tool Examples (p. 3-18) Examples using the Optimization Tool

# Getting Started with the Optimization Tool 

In this section...<br>"Introduction" on page 3-2<br>"Opening the Optimization Tool" on page 3-2<br>"Steps for Using the Optimization Tool" on page 3-5

## Introduction

The Optimization Tool is a GUI for solving optimization problems. With the Optimization Tool, you select a solver from a list and set up your problem visually. If you are familiar with the optimization problem you want to solve, the Optimization Tool lets you select a solver, specify the optimization options, and run your problem. You can also import and export data from the MATLAB ${ }^{\circledR}$ workspace, and generate M-files containing your configuration for the solver and options. Chapter 4, "Tutorial" provides information on how to use the toolbox functions and examples for solving different optimization problems.

## Opening the Optimization Tool

To open the tool, type

```
optimtool
```

in the Command Window. This opens the Optimization Tool, as shown in the following figure.


You can also open the Optimization Tool from the main MATLAB window as pictured:


The reference page for the Optimization Tool provides variations for starting the optimtool function.

## Steps for Using the Optimization Tool

This is a summary of the steps to set up your optimization problem and view results with the Optimization Tool.


## Running a Problem in the Optimization Tool

```
In this section...
"Introduction" on page 3-6
"Pausing and Stopping the Algorithm" on page 3-7
"Viewing Results" on page 3-7
"Final Point" on page 3-7
"Starting a New Problem" on page 3-8
"Closing the Optimization Tool" on page 3-9
```


## Introduction

After defining your problem and specifying the options, you are ready to run the solver.


To run the selected solver, click the Start button. For most solvers, as the algorithm runs, the Current iteration field updates. This field does not update for solvers for which the current iteration does not apply.

## Pausing and Stopping the Algorithm

While the algorithm is running, you can

- Click Pause to temporarily suspend the algorithm. To resume the algorithm using the current iteration at the time you paused, click Resume.
- Click Stop to stop the algorithm. The Run solver and view results window displays information for the current iteration at the moment you clicked Stop.

You can export your results after stopping the algorithm. For details, see "Exporting to the MATLAB ${ }^{\circledR}$ Workspace" on page 3-14.

## Viewing Results

When the algorithm terminates, the Run solver and view results window displays the reason the algorithm terminated. To clear the Run solver and view results window between runs, click Clear Results.

## Displaying Plots

In addition to the Run solver and view results window, you can also display measures of progress while the algorithm executes by generating plots. Each plot selected draws a separate axis in the figure window. You can select a predefined plot function from the Optimization Tool, or you can write your own. For more information on what plot functions are available, see "Plot Functions" on page 3-10.

## Final Point

The Final point updates to show the coordinates of the final point when the algorithm terminated. If you don't see the final point, click the upward-pointing triangle on the $\boldsymbol{\Delta \boldsymbol { V }}$ icon on the lower-left.

## Starting a New Problem

## Resetting Options and Clearing the Problem

Selecting File > Reset Optimization Tool resets the problem definition and options to the original default values. This action is equivalent to closing and restarting the optimtool.

To clear only the problem definition, select File > Clear Problem Fields. With this action, fields in the Problem Setup and Results pane are reset to the defaults, with the exception of the selected solver and algorithm choice. Any options that you have modified from the default values in the Options pane are not reset with this action.

## Setting Preferences for Changing Solvers

To modify how your options are handled in the Optimization Tool when you change solvers, select File > Preferences, which opens the Preferences dialog box shown below.


The default value, Reset options to defaults, discards any options you specified previously in the optimtool. Under this choice, you can select the option Prompt before resetting options to defaults.

Alternatively, you can select Keep current options if possible to preserve the values you have modified. Changed options that are not valid with the newly selected solver are kept but not used, while active options relevant
to the new solver selected are used. This choice allows you to try different solvers with your problem without losing your options.

## Closing the Optimization Tool

To close the optimtool window, select File > Close.

## Specifying Certain Options

In this section...<br>"Plot Functions" on page 3-10<br>"Output function" on page 3-11<br>"Display to Command Window" on page 3-11

## Plot Functions

You can select a plot function to easily plot various measures of progress while the algorithm executes. Each plot selected draws a separate axis in the figure window. If available for the solver selected, the Stop button in the Run solver and view results window to interrupt a running solver. You can select a predefined plot function from the Optimization Tool, or you can select Custom function to write your own. Plot functions not relevant to the solver selected are grayed out. The following lists the available plot functions:

- Current point - Select to show a bar plot of the point at the current iteration.
- Function count - Select to plot the number of function evaluations at each iteration.
- Function value - Select to plot the function value at each iteration.
- Norm of residuals - Select to show a bar plot of the current norm of residuals at the current iteration.
- Max constraint - Select to plot the maximum constraint violation value at each iteration.
- Current step - Select to plot the algorithm step size at each iteration.
- First order optimality - Select to plot the violation of the optimality conditions for the solver at each iteration.
- Custom function - Enter your own plot function as a function handle. To provide more than one plot function use a cell array, for example, by typing:

```
{@plotfcn,@plotfcn2}
```

See "Plot Functions" on page 9-27.

| $\square$ Plot functions |  |  |
| :--- | :--- | :--- |
| $\square$ Current point | $\Gamma$ Function count | $\square$ Function value |
| $\square$ Max constraint | $\Gamma$ Current step | $\square$ First order optimality |
| $\square$ Custom function: |  |  |

The graphic above shows the plot functions available for the default fmincon solver.

## Output function

Output function is a function or collection of functions the algorithm calls at each iteration. Through an output function you can observe optimization quantities such as function values, gradient values, and current iteration. Specify no output function, a single output function using a function handle, or multiple output functions. To provide more than one output function use a cell array of function handles in the Custom function field, for example by typing:
\{@outputfen, @outputfen2\}
For more information on writing an output function, see "Output Function" on page 9-18.

## $\square$ Output function

「 Custom function:

## Display to Command Window

Select Level of display to specify the amount of information displayed when you run the algorithm. Choose from the following:

- off (default) - Display no output.
- final - Display only the reason for stopping at the end of the run.
- notify - Display output only if the function does not converge.
- iterative - Display information at each iteration of the algorithm.

Set Node interval, with the bintprog solver selected, to specify the interval of explored nodes you want to display output for. Note that integer feasible solution nodes are always shown.

Selecting Show diagnostics lists problem information and options that have changed from the defaults.

The graphic below shows the display options.
$\square$ Display to command window
Level of display: off
$\square$ Show diagnostics

# Getting Help in the Optimization Tool 

In this section...<br>"Quick Reference" on page 3-13<br>"Additional Help" on page 3-13

## Quick Reference

The Optimization Tool provides extensive context-sensitive help directly in the GUI.

For assistance with the primary tasks in the Optimization Tool window, use the Quick Reference pane. To toggle between displaying or hiding the Quick Reference pane, do either of the following:

- Select Help > Show Quick Reference
- Click the $\gg$ or ${ }^{\ll}$ buttons in the upper right of the GUI

To resize the Quick Reference pane, drag the vertical divider to the left or to the right.

## Additional Help

In addition to the Quick Reference pane, you can access the documentation for the Optimization Tool by selecting Help > Optimization Tool Help.

## Importing and Exporting Your Work

## In this section...

"Exporting to the MATLAB ${ }^{\circledR}$ Workspace" on page 3-14
"Importing Your Work" on page 3-16
"Generating an M-File" on page 3-16

## Exporting to the MATLAB ${ }^{\text {® }}$ Workspace

The Export to Workspace dialog box enables you to send your problem information to the MATLAB ${ }^{\circledR}$ workspace as a structure that you may then manipulate in the Command Window.

To access the Export to Workspace dialog box shown below, select File > Export to Workspace.


You can specify a structure that contains:

- The problem and options information
- The problem and options information, and the state of the solver when stopped (this means the latest point for most solvers, the current population for Genetic Algorithms solvers, and the best point found for Simulated Annealing and Threshold Acceptance solvers)
- The states of random number generators rand and randn at the start of the previous run, by checking the Use random states from previous run box for applicable solvers
- The options information only
- The results of running your problem in optimtool

Exported results structures contain all optional information. For example, an exported results structure for lsqcurvefit contains the data x , resnorm, residual, exitflag, output, lambda, and jacobian.

After you have exported information from the Optimization Tool to the MATLAB workspace, you can see your data in the MATLAB Workspace browser or by typing the name of the structure at the Command Window. To see the value of a field in a structure, double-click on the structure in the Workspace window. Alternatively, see the values by entering structurename.fieldname at the command line. For example, so see the message in an output structure, enter output.message. If a structure contains structures, you can double-click again in the workspace browser, or enter structure1.structure2.fieldname at the command line. For example, to see the level of iterative display contained in the options structure of an exported problem structure, enter optimproblem.options.Display.

You can run a solver on an exported problem at the command line by typing

```
solver(problem)
```

For example, if you have exported a fmincon problem named optimproblem, you can type

```
fmincon(optimproblem)
```

This runs fmincon on the problem with the saved options structure contained in optimproblem. You can exercise more control over outputs by typing, for example,

```
[x,fval,exitflag] = fmincon(optimproblem)
```

or use any other supported syntax.

## Importing Your Work

Whether you saved options from Optimization Toolbox ${ }^{\mathrm{TM}}$ functions at the Command Window or if you exported options, or the problem and options, from the optimtool, you can resume work on your problem using the optimtool.

There are three ways to import your options, or problem and options, to optimtool.

- Call the optimtool function from the Command Window specifying your options, or problem and options, as the input, tor example,

```
optimtool(options)
```

- Select File > Import Options in the Optimization Tool.
- Select File > Import Problem in the Optimization Tool.

The methods described above require that the options, or problem and options, be present in the MATLAB workspace.

If you import a problem that was generated with the Include information needed to resume this run box checked, the initial point is the latest point generated in the previous run. (For Genetic Algorithm solvers, the initial population is the latest population generated in the previous run. For Simulated Annealing and Threshold Acceptance solvers, the initial point is the best point generated in the previous run.) If you import a problem that was generated with this box unchecked, the initial point (or population) is the initial point (or population) of the previous run.

## Generating an M-File

You may want to generate an M-file to continue with your optimization problem in the Command Window at another time. You can run the M-file without modification to recreate the results that you created with the Optimization Tool. You can also edit and modify the M-file and run it from the Command Window.

To export data from the Optimization Tool to an M-file, select File > Generate M-file.

The M-file captures the following:

- The problem definition, including the solver, information on the function to be minimized, algorithm specification, constraints, and start point
- The options (using optimset) with the currently selected option value

Running the M-file at the Command Window reproduces your problem results.
Although you cannot export your problem results to a generated M-file, you can save them in a MAT-file that you can use with your generated M-file, by exporting the results using the Export to Workspace dialog box, then saving the data to a MAT-file from the Command Window.

## Optimization Tool Examples

## In this section...

"About Optimization Tool Examples" on page 3-18
"Optimization Tool with the fmincon Solver" on page 3-18
"Optimization Tool with the lsqlin Solver" on page 3-22

## About Optimization Tool Examples

This section contains two examples showing how to use the Optimization Tool to solve representative problems. There are other examples available: "Problem Formulation: Rosenbrock's Function" on page 1-4 and "Constrained Minimization Using fmincon's Interior-Point Algorithm With Analytic Hessian" on page $4-12$ in this User's Guide, and several in the Genetic Algorithm and Direct Search Toolbox ${ }^{\text {TM }}$ User's Guide.

## Optimization Tool with the fmincon Solver

This example shows how to use the Optimization Tool with the fmincon solver to minimize a quadratic subject to linear and nonlinear constraints and bounds.

Consider the problem of finding $\left[x_{1}, x_{2}\right]$ that solves

$$
\min _{x} f(x)=x_{1}{ }^{2}+x_{2}{ }^{2}
$$

subject to the constraints

$$
\begin{aligned}
0.5 & \leq x_{1} \\
-x_{1}-x_{2}+1 & \leq 0 \\
-x_{1}^{2}-x_{2}^{2}+1 & \leq 0 \\
-9 x_{1}^{2}-x_{2}^{2}+9 & \leq 0 \\
-x_{1}^{2}-x_{2} & \leq 0 \\
-x_{2}^{2}+x_{1} & \leq 0
\end{aligned}
$$

The starting guess for this problem is $x_{1}=3$ and $x_{2}=1$.

## Step 1: Write an M-file objfun.m for the objective function.

```
function f = objfun(x)
f = x(1)^2 + x(2)^2;
```


## Step 2: Write an M-file nonlconstr.m for the constraints.

```
function [c,ceq] = nonlconstr(x)
c = [-x(1)^2 - x(2)^2 + 1;
    -9*x(1)^2 - x(2)^2 + 9;
    -x(1)^2 + x(2);
    -x(2)^2 + x(1)];
ceq = [];
```


## Step 3: Set up and run the problem with the Optimization Tool.

1 Enter optimtool in the Command Window to open the Optimization Tool.
2 Select fmincon from the selection of solvers and change the Algorithm field to Active set.


3 Enter @objfun in the Objective function field to call the M-file objfun.m.
4 Enter [3; 1] in the Start point field.

| Objective function: | @objfun |  |
| :--- | :--- | :--- |
| Derivatives: | Approximated by solver |  |
| Start point: | $[3 ; 1]$ |  |

5 Define the constraints.

- To create variables for the equality constraints, enter [-1 -1] in the A field and enter-1in the $\mathbf{b}$ field.
- Set the bounds on the variables to be $0.5 \leq x_{1}$ by entering 0.5 for Lower.
- Enter @nonlconstr in the Nonlinear constraint function field to call the M-file nonlconstr.m.


6 In the Options pane, expand the Display to command window option if necessary, and select Iterative to show algorithm information at the Command Window for each iteration.

```
\square \mp@code { D i s p l a y ~ t o ~ c o m m a n d ~ w i n d o w }
Level of display: iterative
```

7 Click the Start button as shown in the following figure.


8 When the algorithm terminates, under Run solver and view results the following information is displayed:


- The Current iteration value when the algorithm terminated, which for this example is 7 .
- The final value of the objective function when the algorithm terminated:

Objective function value: 2.000000000000001

- The algorithm termination message:

Optimization terminated: first-order optimality measure less than options.TolFun and maximum constraint violation is less than options.TolCon.

- The final point, which for this example is

1
1

9 In the Command Window, the algorithm information is displayed for each iteration:


## Reference

[1] Schittkowski, K., "More Test Examples for Nonlinear Programming Codes," Lecture Notes in Economics and Mathematical Systems, Number 282, Springer, p. 45, 1987.

## Optimization Tool with the Isqlin Solver

This example shows how to use the Optimization Tool to solve a constrained least-squares problem.

## The Problem

The problem in this example is to find the point on the plane $x_{1}+2 x_{2}+4 x_{3}=7$ that is closest to the origin. The easiest way to solve this problem is to minimize the square of the distance from a point $x=\left(x_{1}, x_{2}, x_{3}\right)$ on the plane to the origin, which returns the same optimal point as minimizing the actual distance. Since the square of the distance from an arbitrary point $\left(x_{1}, x_{2}, x_{3}\right)$ to the origin is $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}$, you can describe the problem as follows:

$$
\min _{x} f(x)=x_{1}^{2}+x_{2}^{2}+x_{3}^{2},
$$

subject to the constraint

$$
x_{1}+2 x_{2}+4 x_{3}=7 .
$$

The function $f(x)$ is called the objective function and $x_{1}+2 x_{2}+4 x_{3}=7$ is an equality constraint. More complicated problems might contain other equality constraints, inequality constraints, and upper or lower bound constraints.

## Setting Up the Problem

This section shows how to set up the problem with the lsqlin solver in the Optimization Tool.

1 Enter optimtool in the Command Window to open the Optimization Tool.
2 Select lsqlin from the selection of solvers. Use the default large-scale algorithm.

| Solver: | Isqlin - Constrained linear least squares |  |
| :--- | :--- | ---: |
| Algorithm: | Large scale |  |

3 Enter the following to create variables for the objective function:

- In the $\mathbf{C}$ field, enter eye (3).
- In the d field, enter zeros $(3,1)$.

The $\mathbf{C}$ and $\mathbf{d}$ fields should appear as shown in the following figure.

## Problem

C: eye(3)
d: zeros $(3,1)$

4 Enter the following to create variables for the equality constraints:

- In the Aeq field, enter [llllllll $\left.\begin{array}{ll}1 & 2\end{array}\right]$.
- In the beq field, enter 7 .

The Aeq and beq fields should appear as shown in the following figure.


5 Click the Start button as shown in the following figure.

```
Run solver and view results
```



6 When the algorithm terminates, under Run solver and view results the following information is displayed:


- The Current iteration value when the algorithm terminated, which for this example is 1 .
- The final value of the objective function when the algorithm terminated:

Objective function value: 2.333333333333333

- The algorithm termination message:

Optimization terminated.

- The final point, which for this example is
0.3333
0.6667
1.3333

3 Optimization Tool

## Tutorial

The Tutorial provides information on how to use Optimization Toolbox ${ }^{\mathrm{TM}}$ functions. It also provides examples for solving different optimization problems.

Medium- and Large-Scale Algorithms (p. 4-3)

Examples That Use Standard
Algorithms (p. 4-4)

Large-Scale Examples (p. 4-42)

Introduces medium- and large-scale problems, and gives a high-level account of their algorithms.
Presents medium-scale algorithms through a selection of minimization examples. These examples include unconstrained and constrained problems, as well as problems with and without user-supplied gradients. This section also discusses maximization, greater-than-zero constraints, passing additional arguments, and multiobjective examples.

Presents large-scale algorithms through a selection of large-scale examples. These examples include specifying sparsity structures, and preconditioners, as well as unconstrained and constrained problems.

| Default Options Settings (p. 4-79) | Describes the use of default options <br> settings, how to change them and <br> how to determine which options are <br> used by a specified function. It also <br> includes examples of setting some <br> commonly used options. |
| :--- | :--- |
| Displaying Iterative Output (p. 4-84) | Describes iterative output you can <br> display in the Command Window. |
| Typical Problems and How to Deal | Provides tips to improve solutions <br> found using optimization functions, <br> improve efficiency of algorithms, <br> overcome common difficulties, and <br> transform problems typically not in |
| standard form. |  |

## Medium- and Large-Scale Algorithms

In this section...<br>"Medium-Scale Algorithms" on page 4-3<br>"Large-Scale Algorithms" on page 4-3

## Medium-Scale Algorithms

This guide separates "medium-scale" algorithms from "large-scale" algorithms. Medium-scale is not a standard term and is used here only to distinguish these algorithms from the large-scale algorithms, which are designed to handle large-scale problems efficiently.

Optimization Toolbox ${ }^{\mathrm{TM}}$ functions offer a choice of algorithms and line search strategies. The principal algorithms for unconstrained minimization are the Nelder-Mead simplex search method and the BFGS (Broyden, Fletcher, Goldfarb, and Shanno) quasi-Newton method. For constrained minimization, minimax, goal attainment, and semi-infinite optimization, variations of sequential quadratic programming (SQP) are used. Nonlinear least-squares problems use the Gauss-Newton and Levenberg-Marquardt methods.
Nonlinear equation solving also uses the trust-region dogleg algorithm.
A choice of line search strategy is given for unconstrained minimization and nonlinear least-squares problems. The line search strategies use safeguarded cubic and quadratic interpolation and extrapolation methods.

## Large-Scale Algorithms

All the large-scale algorithms, except linear programming, are trust-region methods. Bound constrained problems are solved using reflective Newton methods. Equality constrained problems are solved using a projective preconditioned conjugate gradient iteration. You can use sparse iterative solvers or sparse direct solvers in solving the linear systems to determine the current step. Some choice of preconditioning in the iterative solvers is also available.

The linear programming method is a variant of Mehrotra's predictor-corrector algorithm, a primal-dual interior-point method.

## Examples That Use Standard Algorithms

In this section...<br>"Introduction" on page 4-4<br>"Unconstrained Minimization Example" on page 4-5<br>"Nonlinear Inequality Constrained Example" on page 4-7<br>"Constrained Example with Bounds" on page 4-8<br>"Constrained Example with Gradients" on page 4-10<br>"Constrained Minimization Using fmincon's Interior-Point Algorithm With Analytic Hessian" on page 4-12<br>"Gradient Check: Analytic vs. Numeric" on page 4-18<br>"Equality Constrained Example" on page 4-19<br>"Nonlinear Equations with Analytic Jacobian" on page 4-20<br>"Nonlinear Equations with Finite-Difference Jacobian" on page 4-23<br>"Error Estimates in Nonlinear Curve Fitting with lsqcurvefit" on page 4-24<br>"Multiobjective Examples" on page 4-28

## Introduction

This section presents the medium-scale (i.e., standard) algorithms through a tutorial. Examples similar to those in the first part of this tutorial ("Unconstrained Minimization Example" on page 4-5 through the "Equality Constrained Example" on page 4-19) can also be found in the tutorial walk-through demo, tutdemo. (From the MATLAB ${ }^{\circledR}$ Help browser or the MathWorks ${ }^{\text {TM }}$ Web site documentation, you can click the demo name to display the demo.)

Note Medium-scale is not a standard term and is used to differentiate these algorithms from the large-scale algorithms described in Chapter 6, "Large-Scale Algorithms".

The tutorial uses the functions fminunc, fmincon, and fsolve. The other optimization routines, fgoalattain, fminimax, lsqnonlin, and fseminf, are used in a nearly identical manner, with differences only in the problem formulation and the termination criteria. The section "Multiobjective Examples" on page 4-28 discusses multiobjective optimization and gives several examples using lsqnonlin, fminimax, and fgoalattain, including how to use Simulink ${ }^{\circledR}$ parameters with toolbox functions.

## Unconstrained Minimization Example

Consider the problem of finding a set of values $\left[x_{1}, x_{2}\right]$ that solves

$$
\begin{equation*}
\min _{x} f(x)=e^{x_{1}}\left(4 x_{1}^{2}+2 x_{2}^{2}+4 x_{1} x_{2}+2 x_{2}+1\right) . \tag{4-1}
\end{equation*}
$$

To solve this two-dimensional problem, write an M-file that returns the function value. Then, invoke the unconstrained minimization routine fminunc.

## Step 1: Write an M-file objfun.m.

```
function f = objfun(x)
f = exp(x(1))*(4*x(1)^2+2*x(2)^2+4*x(1)*x(2)+2*x(2)+1);
```


## Step 2: Invoke one of the unconstrained optimization routines.

```
x0 = [-1,1]; % Starting guess
options = optimset('LargeScale','off');
[x,fval,exitflag,output] = fminunc(@objfun,x0,options)
```

This produces the following output:

```
Optimization terminated: relative infinity-norm
    of gradient less than options.TolFun.
x =
    0.5000 -1.0000
fval =
```

```
    3.6609e-015
exitflag =
    1
output =
    iterations: 8
        funcCount: 66
        stepsize: 1
    firstorderopt: 1.2284e-007
        algorithm: 'medium-scale: Quasi-Newton line search'
            message: 'Optimization terminated: relative infinity-norm
                        of gradient less than options.TolFun.'
```

The exitflag tells whether the algorithm converged. exitflag $=1$ means a local minimum was found. The meanings of flags are given in function reference pages.

The output structure gives more details about the optimization. For fminunc, it includes the number of iterations in iterations, the number of function evaluations in funcCount, the final step-size in stepsize, a measure of first-order optimality (which in this unconstrained case is the infinity norm of the gradient at the solution) in firstorderopt, the type of algorithm used in algorithm, and the exit message (the reason the algorithm stopped).

Pass the variable options to fminunc to change characteristics of the optimization algorithm, as in

```
x = fminunc(@objfun,x0,options);
```

options is a structure that contains values for termination tolerances and algorithm choices. Create an options structure using the optimset function:

```
options = optimset('LargeScale','off');
```

You can also create an options structure by exporting from the Optimization Tool.

In this example, we have turned off the default selection of the large-scale algorithm and so the medium-scale algorithm is used. Other options include controlling the amount of command line display during the optimization
iteration, the tolerances for the termination criteria, whether a user-supplied gradient or Jacobian is to be used, and the maximum number of iterations or function evaluations. See optimset, the individual optimization functions, and "Optimization Options" on page 9-8 for more options and information.

## Nonlinear Inequality Constrained Example

If inequality constraints are added to Equation 4-1, the resulting problem can be solved by the fmincon function. For example, find $x$ that solves

$$
\begin{equation*}
\min _{x} f(x)=e^{x_{1}}\left(4 x_{1}^{2}+2 x_{2}^{2}+4 x_{1} x_{2}+2 x_{2}+1\right) . \tag{4-2}
\end{equation*}
$$

subject to the constraints

$$
\begin{aligned}
& x_{1} x_{2}-x_{1}-x_{2} \leq-1.5, \\
& x_{1} x_{2} \geq-10 .
\end{aligned}
$$

Because neither of the constraints is linear, you cannot pass the constraints to fmincon at the command line. Instead you can create a second M-file, confun.m, that returns the value at both constraints at the current $x$ in a vector c . The constrained optimizer, fmincon, is then invoked. Because fmincon expects the constraints to be written in the form $c(x) \leq 0$, you must rewrite your constraints in the form

$$
\begin{align*}
& x_{1} x_{2}-x_{1}-x_{2}+1.5 \leq 0, \\
& -x_{1} x_{2}-10 \leq 0 . \tag{4-3}
\end{align*}
$$

## Step 1: Write an M-file objfun.m for the objective function.

```
function f = objfun(x)
f = exp(x(1))*(4*x(1)^2 + 2*x(2)^2 + 4*x(1)*x(2) + 2*x(2) + 1);
```


## Step 2: Write an M-file confun.m for the constraints.

```
function [c, ceq] = confun(x)
% Nonlinear inequality constraints
c = [1.5 + x(1)*x(2) - x(1) - x(2);
    -x(1)*x(2) - 10];
% Nonlinear equality constraints
```

```
ceq = [];
```


## Step 3: Invoke constrained optimization routine.

```
x0 = [-1,1]; % Make a starting guess at the solution
options = optimset('Algorithm','active-set');
[x,fval] = ...
fmincon(@objfun,x0,[],[],[],[],[],[],@confun,options)
```

After 38 function calls, the solution $\times$ produced with function value fval is

```
x =
    -9.5474 1.0474
fval =
    0.0236
```

You can evaluate the constraints at the solution by entering

```
[c,ceq] = confun(x)
```

This returns numbers close to zero, such as

```
C =
    1.0e-007 *
        -0.9032
        0.9032
ceq =
```

    []
    Note that both constraint values are, to within a small tolerance, less than or equal to 0 ; that is, x satisfies $c(x) \leq 0$.

## Constrained Example with Bounds

The variables in x can be restricted to certain limits by specifying simple bound constraints to the constrained optimizer function. For fmincon, the command

```
x = fmincon(@objfun,x0,[],[],[],[],lb,ub,@confun,options);
```

limits x to be within the range $\mathrm{lb} \leq \mathrm{x} \leq \mathrm{ub}$.
To restrict x in Equation $4-2$ to be greater than 0 (i.e., $x_{1} \geq 0, x_{1} \geq 0$ ), use the commands

```
x0 = [-1,1]; % Make a starting guess at the solution
lb = [0,0]; % Set lower bounds
ub = [ ]; % No upper bounds
options = optimset('LargeScale','off');
[x,fval] = ...
fmincon(@objfun,x0,[],[],[],[],lb,ub,@confun,options)
[c, ceq] = confun(x)
```

Note that to pass in the lower bounds as the seventh argument to fmincon, you must specify values for the third through sixth arguments. In this example, we specified [] for these arguments since there are no linear inequalities or linear equalities.

After 13 function evaluations, the solution produced is

```
x =
    0 1.5000
fval =
    8.5000
C =
        0
    -10
ceq =
```

When $1 b$ or ub contains fewer elements than $x$, only the first corresponding elements in $x$ are bounded. Alternatively, if only some of the variables are bounded, then use -inf in lb for unbounded below variables and inf in ub for unbounded above variables. For example,

```
lb = [-inf 0];
ub = [10 inf];
```

bounds $x_{1} \leq 10, x_{2} \geq 0$. $x_{1}$ has no lower bound, and $x_{2}$ has no upper bound. Using inf and -inf give better numerical results than using a very large positive number or a very large negative number to imply lack of bounds.

Note that the number of function evaluations to find the solution is reduced because we further restricted the search space. Fewer function evaluations are usually taken when a problem has more constraints and bound limitations because the optimization makes better decisions regarding step size and regions of feasibility than in the unconstrained case. It is, therefore, good practice to bound and constrain problems, where possible, to promote fast convergence to a solution.

## Constrained Example with Gradients

Ordinarily the medium-scale minimization routines use numerical gradients calculated by finite-difference approximation. This procedure systematically perturbs each of the variables in order to calculate function and constraint partial derivatives. Alternatively, you can provide a function to compute partial derivatives analytically. Typically, the problem is solved more accurately and efficiently if such a function is provided.

To solve Equation 4-2 using analytically determined gradients, do the following.

## Step 1: Write an M-file for the objective function and gradient.

```
function [f,G] = objfungrad(x)
f = exp(x(1))*(4*x(1)^2+2*x(2)^2+4*x(1)*x(2)+2*x(2)+1);
% Gradient of the objective function
if nargout > 1
    G = [ f + exp(x(1)) * (8*x(1) + 4*x(2)),
    exp(x(1))*(4*x(1)+4*x(2)+2)];
end
```


## Step 2: Write an M-file for the nonlinear constraints and the gradients of the nonlinear constraints.

```
function [c,ceq,DC,DCeq] = confungrad(x)
c(1) = 1.5 + x(1) * x(2) - x(1) - x(2); %Inequality constraints
c(2) = -x(1) * x(2)-10;
% No nonlinear equality constraints
ceq=[];
% Gradient of the constraints
```

```
if nargout > 2
    DC= [x(2)-1, -x(2);
        x(1)-1, -x(1)];
    DCeq = [];
end
```

G contains the partial derivatives of the objective function, f, returned by objfungrad ( $x$ ), with respect to each of the elements in $x$ :

$$
\nabla f=\left[\begin{array}{c}
e^{x_{1}}\left(4 x_{1}^{2}+2 x_{2}^{2}+4 x_{1} x_{2}+2 x_{2}+1\right)+e^{x_{1}}\left(8 x_{1}+4 x_{2}\right)  \tag{4-4}\\
e^{x_{1}}\left(4 x_{1}+4 x_{2}+2\right)
\end{array}\right]
$$

The columns of DC contain the partial derivatives for each respective constraint (i.e., the ith column of DC is the partial derivative of the ith constraint with respect to $x$ ). So in the above example, DC is

$$
\left[\begin{array}{ll}
\frac{\partial c_{1}}{\partial x_{1}} & \frac{\partial c_{2}}{\partial x_{1}}  \tag{4-5}\\
\frac{\partial c_{1}}{\partial x_{2}} & \frac{\partial c_{2}}{\partial x_{2}}
\end{array}\right]=\left[\begin{array}{ll}
x_{2}-1 & -x_{2} \\
x_{1}-1 & -x_{1}
\end{array}\right]
$$

Since you are providing the gradient of the objective in objfungrad.m and the gradient of the constraints in confungrad.m, you must tell fmincon that these M-files contain this additional information. Use optimset to turn the options GradObj and GradConstr to 'on ' in the example's existing options structure:

```
options = optimset(options,'GradObj','on','GradConstr','on');
```

If you do not set these options to 'on ' in the options structure, fmincon does not use the analytic gradients.

The arguments lb and ub place lower and upper bounds on the independent variables in x . In this example, there are no bound constraints and so they are both set to [].

## Step 3: Invoke the constrained optimization routine.

```
x0 = [-1, 1];
    % Starting guess
```

```
options = optimset('LargeScale','off');
options = optimset(options,'GradObj','on','GradConstr','on');
lb = [ ]; ub = [ ]; % No upper or lower bounds
[x,fval] = fmincon(@objfungrad,x0,[],[],[],[],lb,ub,...
    @confungrad,options)
[c,ceq] = confungrad(x) % Check the constraint values at x
```

After 20 function evaluations, the solution produced is

```
x =
    -9.5474 1.0474
fval =
    0.0236
c =
    1.0e-14 *
    0.1110
    -0.1776
ceq =
```

    []
    
## Constrained Minimization Using fmincon's Interior-Point Algorithm With Analytic Hessian

fmincon's interior-point algorithm can accept a Hessian function as an input. When you supply a Hessian, you may obtain a faster, more accurate solution to a constrained minimization problem.

The constraint set for this example is the intersection of the interior of two cones-one pointing up, and one pointing down. The constraint function c is a two-component vector, one component for each cone. Since this is a three-dimensional example, the gradient of the constraint c is a 3-by-2 matrix.

```
function [c ceq gradc gradceq] = twocone(x)
% This constraint is two cones, z > -10 + r
% and z < 3 - r
ceq = [];
r = sqrt(x(1)^2 + x(2)^2);
c = [-10+r-x(3);
    x(3)-3+r];
```

```
if nargout > 2
    gradceq = [];
    gradc = [x(1)/r,x(1)/r;
        x(2)/r,x(2)/r;
        -1,1];
end
```

The objective function grows rapidly negative as the $\mathrm{x}(1)$ coordinate becomes negative. Its gradient is a three-element vector.

```
function [f gradf] = bigtoleft(x)
% This is a simple function that grows rapidly negative
% as x(1) gets negative
%
f=10*x(1)^3+x(1)*x(2)^2+x(3)*(x(1)^2+x(2)^2);
if nargout > 1
    gradf=[30*x(1)^2+x(2)^2+2*x(3)*x(1);
    2*x(1)*x(2)+2*x(3)*x(2);
    (x(1)^2+x(2)^2)];
end
```

Here is a plot of the problem. The shading represents the value of the objective function. You can see that the objective function is minimized near $x=[-6.5,0,-3.5]$ :


The Hessian of the Lagrangian is given by the equation:

$$
\nabla_{x x}^{2} L(x, \lambda)=\nabla^{2} f(x)+\sum \lambda_{i} \nabla^{2} c_{i}(x)+\sum \lambda_{i} \nabla^{2} c e q_{i}(x) .
$$

The following function computes the Hessian at a point x with Lagrange multiplier structure lambda:

```
function h = hessinterior(x,lambda)
```

```
h = [60*x(1)+2*x(3),2*x(2),2*x(1);
    2*x(2),2*(x(1)+x(3)),2*x(2);
    2*x(1),2*x(2),0];% Hessian of f
r = sqrt(x(1)^2+x(2)^2);% radius
rinv3 = 1/r^3;
hessc = [(x(2))^2*rinv3,-x(1)*x(2)*rinv3,0;
    -x(1)*x(2)*rinv3,x(1)^2*rinv3,0;
    O,O,O];% Hessian of both c(1) and c(2)
h = h + lambda.ineqnonlin(1)*hessc + lambda.ineqnonlin(2)*hessc;
```

Run this problem using the interior-point algorithm in fmincon. To do this using the Optimization Tool:

1 Set the problem as in the following figure.


2 For iterative output, scroll to the bottom of the Options pane and select Level of display, iterative.


3 In the Options pane, give the analytic Hessian function handle.

| $\boxed{\square}$ Hessian |  |
| :--- | :--- |
| Hessian: | user-supplied |
|  | C Hessian function |
|  | Function: @hessianterior multiply function |
|  |  |

4 Under Run solver and view results, click Start.


To perform the minimization at the command line:
1 Set options as follows:

```
options = optimset('Algorithm','interior-point',...
    'Display','iter','GradObj','on','GradConstr','on',...
    'Hessian','user-supplied','HessFcn',@hessinterior);
```

2 Run fmincon with starting point [ $-1,-1,-1$ ], using the options structure:

```
[x fval flag]=fmincon(@bigtoleft,[-1,-1,-1],...
    [],[],[],[],[],[],@twocone,options)
```

The output is:

| er | cou | $t \quad f(x)$ | ty | First-order optimality | Norm of step |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | $-1.300000 \mathrm{e}+001$ | $0.000 \mathrm{e}+000$ | $3.067 \mathrm{e}+001$ |  |
| 1 | 2 | -2.011543e+002 | $0.000 \mathrm{e}+000$ | $1.739 \mathrm{e}+002$ | . |
| 2 | 3 | -1.270471e+003 | $9.844 \mathrm{e}-002$ | 378e+002 | $410 \mathrm{e}+000$ |
| 3 | 4 | $-2.881667 \mathrm{e}+003$ | $1.937 \mathrm{e}-002$ | $1.079 \mathrm{e}+002$ | $2.206 \mathrm{e}+000$ |
| 4 | 5 | $-2.931003 \mathrm{e}+00$ | .798e-00 | . $813 \mathrm{e}+000$ | 006e |
| 5 | 6 | -2.894085e+003 | $0.000 \mathrm{e}+000$ | $2.352 \mathrm{e}-002$ | $2.800 \mathrm{e}-002$ |
| 6 | 7 | $-2.894125 e+003$ | $0.000 \mathrm{e}+000$ | 5.981e-005 | 3.048e-005 |
| Optimization terminated: first-order optimality relative error less than options.TolFun, and relative constraint violation less than options.TolCon. |  |  |  |  |  |
|  |  |  |  |  |  |

```
x =
    -6.5000 -0.0000 -3.5000
fval =
    -2.8941e+003
flag =
    1
```

If you do not use a Hessian function, fmincon takes 9 iterations to converge, instead of 6 :

```
options = optimset('Algorithm','interior-point',...
    'Display','iter','GradObj','on','GradConstr','on');
[x fval flag]=fmincon(@bigtoleft,[-1,-1,-1],...
    [],[],[],[],[],[],@twocone,options)
```



Both runs lead to similar solutions, but the F-count and number of iterations are lower when using an analytic Hessian.

## Gradient Check: Analytic vs. Numeric

When you provide analytically determined gradients to a solver, you can compare the supplied gradients with a set calculated by finite differences. This is particularly useful for detecting mistakes in either the objective function or the gradient function formulation.

If you want such gradient checks, set the DerivativeCheck option to 'on' using optimset:

```
options = optimset(options,'DerivativeCheck','on');
```

The first cycle of the optimization checks the analytically determined gradients (of the objective function and, if they exist, the nonlinear constraints). If they do not match the finite difference estimates to within a given tolerance, a warning message indicates the discrepancy and asks if you want to abort the optimization or to continue.

## Equality Constrained Example

For routines that permit equality constraints, nonlinear equality constraints must be computed in the M-file with the nonlinear inequality constraints. For linear equalities, the coefficients of the equalities are passed in through the matrix Aeq and the right-hand-side vector beq.

For example, if you have the nonlinear equality constraint $x_{1}^{2}+x_{2}=1$ and the nonlinear inequality constraint $x_{1} x_{2} \geq-10$, rewrite them as

$$
\begin{aligned}
& x_{1}^{2}+x_{2}-1=0 \\
& -x_{1} x_{2}-10 \leq 0
\end{aligned}
$$

and then solve the problem using the following steps.

## Step 1: Write an M-file objfun.m.

```
function f = objfun(x)
f = exp(x(1))*(4*x(1)^2+2*x(2)^2+4*x(1)*x(2)+2*x(2)+1);
```


## Step 2: Write an M-file confuneq.m for the nonlinear constraints.

```
function [c, ceq] = confuneq(x)
% Nonlinear inequality constraints
c = -x(1)*x(2) - 10;
% Nonlinear equality constraints
ceq = x(1)^2 + x(2) - 1;
```


## Step 3: Invoke constrained optimization routine.

```
x0 = [-1,1]; % Make a starting guess at the solution
options = optimset('LargeScale','off');
[x,fval] = fmincon(@objfun,x0,[],[],[],[],[],[],...
    @confuneq,options)
[c,ceq] = confuneq(x) % Check the constraint values at x
```

After 21 function evaluations, the solution produced is

```
\(x=\)
    \(-0.7529 \quad 0.4332\)
fval =
    1.5093
C \(=\)
    -9.6739
ceq \(=\)
    4.0684e-010
```

Note that ceq is equal to 0 within the default tolerance on the constraints of $1.0 \mathrm{e}-006$ and that c is less than or equal to 0 as desired.

## Nonlinear Equations with Analytic Jacobian

This example demonstrates the use of the default medium-scale fsolve algorithm. It is intended for problems where

- The system of nonlinear equations is square, i.e., the number of equations equals the number of unknowns.
- There exists a solution $x$ such that $F(x)=0$.

The example uses fsolve to obtain the minimum of the banana (or Rosenbrock) function by deriving and then solving an equivalent system of nonlinear equations. The Rosenbrock function, which has a minimum of $F(x)=0$, is a common test problem in optimization. It has a high degree of nonlinearity and converges extremely slowly if you try to use steepest descent type methods. It is given by

$$
f(x)=100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2}
$$

First generalize this function to an $n$-dimensional function, for any positive, even value of $n$ :

$$
f(x)=\sum_{i=1}^{n / 2} 100\left(x_{2 i}-x_{2 i-1}^{2}\right)^{2}+\left(1-x_{2 i-1}\right)^{2} .
$$

This function is referred to as the generalized Rosenbrock function. It consists of $n$ squared terms involving $n$ unknowns.

Before you can use fsolve to find the values of $x$ such that $F(x)=0$, i.e., obtain the minimum of the generalized Rosenbrock function, you must rewrite the function as the following equivalent system of nonlinear equations:

$$
\begin{aligned}
F(1) & =1-x_{1} \\
F(2) & =10\left(x_{2}-x_{1}^{2}\right) \\
F(3) & =1-x_{3} \\
F(4) & =10\left(x_{4}-x_{3}^{2}\right) \\
& \vdots \\
F(n-1) & =1-x_{n-1} \\
F(n) & =10\left(x_{n}-x_{n-1}^{2}\right) .
\end{aligned}
$$

This system is square, and you can use fsolve to solve it. As the example demonstrates, this system has a unique solution given by $x_{i}=1, i=1, \ldots, n$.

## Step 1: Write an M-file bananaobj.m to compute the objective function values and the Jacobian.

```
function [F,J] = bananaobj(x);
% Evaluate the vector function and the Jacobian matrix for
% the system of nonlinear equations derived from the general
% n-dimensional Rosenbrock function.
% Get the problem size
n = length(x);
if n == O, error('Input vector, x, is empty.'); end
if mod(n,2) ~= 0,
```

```
    error('Input vector, x, must have an even number of
components.');
end
% Evaluate the vector function
odds = 1:2:n;
evens = 2:2:n;
F = zeros(n,1);
F(odds,1) = 1-x(odds);
F(evens,1) = 10.*(x(evens)-x(odds).^2);
% Evaluate the Jacobian matrix if nargout > 1
if nargout > 1
    c = - ones(n/2,1); C = sparse(odds,odds,c,n,n);
    d = 10*ones(n/2,1); D = sparse(evens,evens,d,n,n);
    e = -20.*x(odds); E = sparse(evens,odds,e,n,n);
    J = C + D + E;
end
```


## Step 2: Call the solve routine for the system of equations.

```
n = 64;
x0(1:n,1) = -1.9;
x0(2:2:n,1) = 2;
options=optimset('Display','iter','Jacobian','on');
[x,F,exitflag,output,JAC] = fsolve(@bananaobj,x0,options);
```

Use the starting point $x(i)=-1.9$ for the odd indices, and $x(i)=2$ for the even indices. Accept the fsolve default 'off' for the LargeScale option, and the default medium-scale nonlinear equation algorithm 'dogleg'. Then set Jacobian to 'on' to use the Jacobian defined in bananaobj.m. The fsolve function generates the following output:

|  |  |  | Norm of | First-order | Trust-region |
| :---: | ---: | ---: | ---: | :---: | ---: |
| Iteration | Func-count | $f(x)$ | step | optimality | radius |
| 0 | 1 | 4281.92 |  | 615 | 1 |
| 1 | 2 | 1546.86 | 1 | 329 | 1 |
| 2 | 3 | 112.552 | 2.5 | 34.8 | 2.5 |
| 3 | 4 | 106.24 | 6.25 | 34.1 | 6.25 |
| 4 | 5 | 106.24 | 6.25 | 34.1 | 6.25 |
| 5 | 6 | 51.3854 | 1.5625 | 6.39 | 1.56 |
| 6 | 7 | 51.3854 | 3.90625 | 6.39 | 3.91 |


| 7 | 8 | 43.8722 | 0.976562 | 2.19 | 0.977 |
| :---: | ---: | ---: | ---: | ---: | ---: |
| 8 | 9 | 37.0713 | 2.44141 | 6.27 | 2.44 |
| 9 | 10 | 37.0713 | 2.44141 | 6.27 | 2.44 |
| 10 | 11 | 26.2485 | 0.610352 | 1.52 | 0.61 |
| 11 | 12 | 20.6649 | 1.52588 | 4.63 | 1.53 |
| 12 | 13 | 17.2558 | 1.52588 | 6.97 | 1.53 |
| 13 | 14 | 8.48582 | 1.52588 | 4.69 | 1.53 |
| 14 | 15 | 4.08398 | 1.52588 | 3.77 | 1.53 |
| 15 | 16 | 1.77589 | 1.52588 | 3.56 | 1.53 |
| 16 | 17 | 0.692381 | 1.52588 | 3.31 | 1.53 |
| 17 | 18 | 0.109777 | 1.16206 | 1.66 | 1.53 |
| 18 | 19 | 0 | 0.0468565 | 0 | 1.53 |
| Optimization terminated successfully: |  |  |  |  |  |
| First-order optimality is less than options.TolFun |  |  |  |  |  |

## Nonlinear Equations with Finite-Difference Jacobian

In the preceding example, the function bananaobj evaluates $F$ and computes the Jacobian J . What if the code to compute the Jacobian is not available? By default, if you do not indicate that the Jacobian can be computed in the objective function (by setting the Jacobian option in options to 'on'), fsolve, lsqnonlin, and lsqcurvefit instead use finite differencing to approximate the Jacobian. This is the default Jacobian option. You can select finite differencing by setting Jacobian to 'off' using optimset.

This example uses bananaobj from the preceding example as the objective function, but sets Jacobian to 'off' so that fsolve approximates the Jacobian and ignores the second bananaobj output. It accepts the fsolve default 'off' for the LargeScale option, and the default nonlinear equation medium-scale algorithm 'dogleg':

```
n = 64;
x0(1:n,1) = -1.9;
x0(2:2:n,1) = 2;
options=optimset('Display','iter','Jacobian','off');
[x,F,exitflag,output,JAC] = fsolve(@bananaobj,x0,options);
```

The example produces the following output:

|  | Norm of | First-order Trust-region |
| :--- | ---: | ---: | ---: | ---: |
| Iteration Func-count | $f(x) \quad$ step | optimality $\quad$ radius |


| 0 | 65 | 4281.92 |  | 615 | 1 |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | :---: | :---: | :---: | :---: |
| 1 | 130 | 1546.86 | 1 | 329 | 1 |  |  |  |  |
| 2 | 195 | 112.552 | 2.5 | 34.8 | 2.5 |  |  |  |  |
| 3 | 260 | 106.24 | 6.25 | 34.1 | 6.25 |  |  |  |  |
| 4 | 261 | 106.24 | 6.25 | 34.1 | 6.25 |  |  |  |  |
| 5 | 326 | 51.3854 | 1.5625 | 6.39 | 1.56 |  |  |  |  |
| 6 | 327 | 51.3854 | 3.90625 | 6.39 | 3.91 |  |  |  |  |
| 7 | 392 | 43.8722 | 0.976562 | 2.19 | 0.977 |  |  |  |  |
| 8 | 457 | 37.0713 | 2.44141 | 6.27 | 2.44 |  |  |  |  |
| 9 | 458 | 37.0713 | 2.44141 | 6.27 | 2.44 |  |  |  |  |
| 10 | 523 | 26.2485 | 0.610352 | 1.52 | 0.61 |  |  |  |  |
| 11 | 588 | 20.6649 | 1.52588 | 4.63 | 1.53 |  |  |  |  |
| 12 | 653 | 17.2558 | 1.52588 | 6.97 | 1.53 |  |  |  |  |
| 13 | 718 | 8.48582 | 1.52588 | 4.69 | 1.53 |  |  |  |  |
| 14 | 783 | 4.08398 | 1.52588 | 3.77 | 1.53 |  |  |  |  |
| 15 | 848 | 1.77589 | 1.52588 | 3.56 | 1.53 |  |  |  |  |
| 16 | 913 | 0.692381 | 1.52588 | 3.31 | 1.53 |  |  |  |  |
| 17 | 978 | 0.109777 | 1.16206 | 1.66 | 1.53 |  |  |  |  |
| 18 | 1043 | 0 |  |  |  |  | 0.0468565 | 0 | 1.53 |
| Optimization terminated successfully: |  |  |  |  |  |  |  |  |  |
| First-order optimality is less than options. TolFun |  |  |  |  |  |  |  |  |  |

The finite-difference version of this example requires the same number of iterations to converge as the analytic Jacobian version in the preceding example. It is generally the case that both versions converge at about the same rate in terms of iterations. However, the finite-difference version requires many additional function evaluations. The cost of these extra evaluations might or might not be significant, depending on the particular problem.

## Error Estimates in Nonlinear Curve Fitting with Isqcurvefit

lsqcurvefit enables you to fit parameterized nonlinear functions to data easily. It also aids in calculating confidence intervals for the fitted parameters. "Nonlinear Curve Fitting Theory" on page 4-25 describes how to calculate approximate confidence intervals in general, and "Nonlinear Curve Fitting Example" on page 4-26 gives a worked example.

## Nonlinear Curve Fitting Theory

In general, there are $n$ data points $x$, and $n$ measured responses $y$. The parameterized nonlinear model is, for a particular function $F$,

$$
y_{i}=F\left(a, x_{i}\right)+\varepsilon_{i} .
$$

$a$ is a vector of parameters of size $p$, and $\varepsilon_{i}$ is noise at the $i$ th data point.
If you give an initial guess $a_{0}$ for the parameters, then lsqcurvefit can generate an estimate $\hat{a}$ that causes the model to best fit the data (in a least-squares sense). lsqcurvefit can also generate a vector of residuals

$$
r_{i}=y_{i}-F\left(\hat{a}, x_{i}\right),
$$

and an estimated Jacobian

$$
J=\nabla_{a} F(\hat{a}, x) .
$$

$J$ is an $n$-by- $p$ matrix.
Here are standard formulas for approximate confidence intervals; see [1] and [2]. The mean squared residual is defined to be

$$
s^{2}=\frac{1}{n-p} \sum_{i=1}^{n} r_{i}^{2}
$$

The covariance matrix of the estimated parameters $\hat{a}$ can be approximated as

$$
\hat{\Sigma}=\left[J^{T} J\right]^{-1} s^{2}
$$

$\hat{\Sigma}$ is a $p$-by-p matrix. The vector of standard errors for $\hat{\alpha}$ is

$$
\sqrt{\operatorname{diag}(\hat{\Sigma})} .
$$

For computational stability it is best to calculate the matrix $\hat{\Sigma}$ as follows. Calculate the QR decomposition of $J$ using the MATLAB command

$$
[Q, R]=\operatorname{qr}(J, 0) ;
$$

$Q$ is an $n$-by- $p$ orthogonal matrix, and $R$ is a $p$-by- $p$ upper triangular matrix. Because

$$
J^{T} J=R^{T} Q^{T} Q R=R^{T} R,
$$

it holds that

$$
\left[J^{T} J\right]^{-1}=R^{-1}\left[R^{-1}\right]^{T}
$$

Use $R^{-1}\left[R^{-1}\right]^{T}$ in the calculation of $\hat{\Sigma}$.
To calculate approximate $1-\alpha$ confidence intervals for the parameters, use $\left[\hat{a}_{i}-\Delta_{i}, \hat{a}_{i}+\Delta_{i}\right]$, where $\hat{a}$ are the estimated parameters, and $\Delta_{i}$ is the $i$ th standard error multiplied by the $1-\alpha / 2$ quantile of Student's $t$ distribution with $n-p$ degrees of freedom.

## Nonlinear Curve Fitting Example

This example has 100 data points represented as the vector xdat and associated measurements represented as the vector ydat. Generate the data using the following script.

```
rand('twister', 5489);
randn('state', 0);
xdat=-2* log(rand(100,1));
ydat=(ones(100,1) + .1*randn(100,1)) + (3*ones(100,1) + ...
    .5*randn(100,1)) .*exp((-(2*ones(100,1)+.5*randn(100,1))). *xdat);
```

The modeled relationship between xdat and ydat is

$$
y d a t_{i}=a_{1}+a_{2} \exp \left(-a_{3} x d a t_{i}\right)+\varepsilon_{i} .
$$

The goal is to find parameters $\hat{a}_{i}, i=1,2,3$, for the model that best fit the data. Furthermore, the goal is to find confidence intervals for these estimated parameters.

In order to fit the parameters to the data using lsqcurvefit, you need to define a fitting function. Define the fitting function predicted as an anonymous function:

```
predicted = @(a,xdat) a(1)*ones(100,1) + a(2)*exp(-a(3)*xdat);
```

To fit the model to the data, lsqcurvefit needs an initial estimate a0 of the parameters. Enter

```
a0=[2;2;2];
```

Run the solver lsqcurvefit as follows:

```
[ahat,resnorm,residual,exitflag,output,lambda,jacobian]=...
    lsqcurvefit(predicted,a0,xdat,ydat);
```

The least-squares estimate of $\hat{a}$ is calculated to be

```
ahat =
    1.0259
    2.9774
    2.0074
```

Enter the following commands to calculate the standard errors:

```
s2=resnorm/(length(residual) - 3);
[Q,R]=qr(jacobian,0);
Rinv=inv(R);
sigmaest=(Rinv*Rinv')*s2;
stderrors=sqrt(diag(sigmaest));
```

The resulting vector of standard errors is

```
stderrors = [0.0430; 0.1085; 0.1503]
```

Student's $t$ distribution with many degrees of freedom is very close to a normal distribution. For example, a $95 \%$ confidence interval on the parameters is approximately plus or minus two standard errors from the observed mean. In other words, approximate $95 \%$ confidence intervals for this example are

$$
\hat{a} \pm 2 * \text { stderrors }=\left[\begin{array}{l}
1.0259 \\
2.9774 \\
2.0074
\end{array}\right] \pm 2 *\left[\begin{array}{l}
0.0430 \\
0.1085 \\
0.1503
\end{array}\right]=\left(\left[\begin{array}{l}
0.9399 \\
2.7604 \\
1.7068
\end{array}\right],\left[\begin{array}{l}
1.1118 \\
3.1944 \\
2.3080
\end{array}\right]\right) .
$$

xdat was generated by 100 independent samples from an exponential distribution with mean 2 . ydat was generated from predicted(a,xdat)
using $\mathrm{a}=[1 ; 3 ; 2]$, perturbed by adding normal deviates with standard deviations $[0.1 ; 0.5 ; 0.5]$. The confidence interval just given shows that the $95 \%$ confidence interval contains the vector $[1 ; 3 ; 2]$.

Note The standard error and confidence interval calculations shown here are approximations. They are based on the assumptions that the random errors in the data are small and approximately normally distributed, and that the number of data points is large compared to the number of parameters. When these assumptions are violated, the approximations may not be valid.

If you have Statistics Toolbox ${ }^{\mathrm{TM}}$ software, you can use the function nlparci to generate the confidence intervals without doing all these calculations.

## References

[1] Draper, Norman R., and Smith, Harry. Applied Regression Analysis, Third Edition. New York: Wiley-Interscience, 1998.
[2] Seber, G.A.F., and Wild, C.J. Nonlinear Regression, New York: Wiley-Interscience, 2003.

## Multiobjective Examples

The previous examples involved problems with a single objective function. This section shows how to solve problems with multiobjective functions using lsqnonlin, fminimax, and fgoalattain. The first two examples show how to optimize parameters in a Simulink model.

This section presents the following examples:

- "Using lsqnonlin With a Simulink ${ }^{\circledR}$ Model" on page 4-29
- "Using fminimax with a Simulink ${ }^{\circledR}$ Model" on page 4-35
- "Signal Processing Example" on page 4-38


## Using Isqnonlin With a Simulink ${ }^{\circledR}$ Model

Suppose that you want to optimize the control parameters in the Simulink model optsim.mdl. (This model can be found in the optim directory. Note that Simulink must be installed on your system to load this model.) The model includes a nonlinear process plant modeled as a Simulink block diagram.


## Plant with Actuator Saturation

The plant is an under-damped third-order model with actuator limits. The actuator limits are a saturation limit and a slew rate limit. The actuator saturation limit cuts off input values greater than 2 units or less than -2 units. The slew rate limit of the actuator is 0.8 units $/ \mathrm{sec}$. The closed-loop response of the system to a step input is shown in Closed-Loop Response on page $4-30$. You can see this response by opening the model (type optsim at the command line or click the model name), and selecting Start from the Simulation menu. The response plots to the scope.


## Closed-Loop Response

The problem is to design a feedback control loop that tracks a unit step input to the system. The closed-loop plant is entered in terms of the blocks where the plant and actuator have been placed in a hierarchical Subsystem block. A Scope block displays output trajectories during the design process.

Tunable Variables are PID gains, Kp . Ki , and Kd .


## Closed-Loop Model

One way to solve this problem is to minimize the error between the output and the input signal. The variables are the parameters of the Proportional Integral Derivative (PID) controller. If you only need to minimize the error at one time unit, it would be a single objective function. But the goal is to minimize the error for all time steps from 0 to 100 , thus producing a multiobjective function (one function for each time step).

The routine lsqnonlin is used to perform a least-squares fit on the tracking of the output. The tracking is performed via an M-file function tracklsq, which returns the error signal yout, the output computed by calling sim, minus the input signal 1. The code for tracklsq, shown below, is contained in the file runtracklsq.m, which is included with Optimization Toolbox ${ }^{\mathrm{TM}}$ software.

The function runtracklsq sets up all the needed values and then calls lsqnonlin with the objective function tracklsq, which is nested inside runtracklsq. The variable options passed to lsqnonlin defines the criteria and display characteristics. In this case you ask for output, use the medium-scale algorithm, and give termination tolerances for the step and objective function on the order of 0.001 .

To run the simulation in the model optsim, the variables $\mathrm{Kp}, \mathrm{Ki}, \mathrm{Kd}$, a1, and a2 (a1 and a2 are variables in the Plant block) must all be defined. Kp, Ki, and Kd are the variables to be optimized. The function tracklsq is nested inside runtracklsq so that the variables a1 and a2 are shared between the two functions. The variables a1 and a2 are initialized in runtracklsq.

The objective function tracklsq must run the simulation. The simulation can be run either in the base workspace or the current workspace, that is, the workspace of the function calling sim, which in this case is the workspace of tracklsq. In this example, the simset command is used to tell sim to run the simulation in the current workspace by setting 'SrcWorkspace' to 'Current'. You can also choose a solver for sim using the simset function. The simulation is performed using a fixed-step fifth-order method to 100 seconds.

When the simulation is completed, the variables tout, xout, and yout are now in the current workspace (that is, the workspace of tracklsq). The Outport block in the block diagram model puts yout into the current workspace at the end of the simulation.

The following is the code for runtracklsq:

```
function [Kp,Ki,Kd] = runtracklsq
% RUNTRACKLSQ demonstrates using LSQNONLIN with Simulink.
optsim % Load the model
pidO = [0.63 0.0504 1.9688]; % Set initial values
a1 = 3; a2 = 43; % Initialize model plant variables
options = optimset('LargeScale','off','Display','iter',...
    'TolX',0.001,'TolFun',0.001);
pid = lsqnonlin(@tracklsq, pid0, [], [], options);
Kp = pid(1); Ki = pid(2); Kd = pid(3);
    function F = tracklsq(pid)
        % Track the output of optsim to a signal of 1
        % Variables a1 and a2 are needed by the model optsim.
        % They are shared with RUNTRACKLSQ so do not need to be
        % redefined here.
        Kp = pid(1);
        Ki = pid(2);
        Kd = pid(3);
        % Compute function value
        simopt = simset('solver','ode5',...
                            'SrcWorkspace','Current');
        % Initialize sim options
        [tout,xout,yout] = sim('optsim',[0 100],simopt);
        F = yout-1;
    end
end
```

When you run runtracklsq, the optimization gives the solution for the proportional, integral, and derivative ( $\mathrm{Kp}, \mathrm{Ki}, \mathrm{Kd}$ ) gains of the controller after 64 function evaluations:

```
[Kp, Ki, Kd] = runtracklsq
```

|  |  |  | Directional |  |
| :---: | :---: | ---: | :---: | ---: |
| Iteration | Func-count | Residual | Step-size | derivative Lambda |
| 0 | 4 | 8.66531 |  |  |



Here is the resulting closed-loop step response.


Closed-Loop Response Using Isqnonlin

Note The call to sim results in a call to one of the Simulink ordinary differential equation (ODE) solvers. A choice must be made about the type of solver to use. From the optimization point of view, a fixed-step solver is the best choice if that is sufficient to solve the ODE. However, in the case of a stiff system, a variable-step method might be required to solve the ODE.

The numerical solution produced by a variable-step solver, however, is not a smooth function of parameters, because of step-size control mechanisms. This lack of smoothness can prevent the optimization routine from converging. The lack of smoothness is not introduced when a fixed-step solver is used. (For a further explanation, see [1].)

Simulink ${ }^{\circledR}$ Response Optimization ${ }^{\text {TM }}$ software is recommended for solving multiobjective optimization problems in conjunction with Simulink variable-step solvers. It provides a special numeric gradient computation that works with Simulink and avoids introducing a problem of lack of smoothness.

## Using fminimax with a Simulink ${ }^{\oplus}$ Model

Another approach to optimizing the control parameters in the Simulink model shown in Plant with Actuator Saturation on page 4-29 is to use the fminimax function. In this case, rather than minimizing the error between the output and the input signal, you minimize the maximum value of the output at any time t between 0 and 100 .

The code for this example, shown below, is contained in the function runtrackmm, in which the objective function is simply the output yout returned by the sim command. But minimizing the maximum output at all time steps might force the output to be far below unity for some time steps. To keep the output above 0.95 after the first 20 seconds, the constraint function trackmmcon contains the constraint yout >= 0.95 from $\mathrm{t}=20$ to $\mathrm{t}=100$. Because constraints must be in the form $\mathrm{g} \leq 0$, the constraint in the function is $g=-y o u t(20: 100)+.95$.

Both trackmmobj and trackmmcon use the result yout from sim, calculated from the current PID values. The nonlinear constraint function is always called immediately after the objective function in fmincon, fminimax, fgoalattain, and fseminf with the same values. This way you can avoid calling the simulation twice by using nested functions so that the value of yout can be shared between the objective and constraint functions as long as it is initialized in runtrackmm.

The following is the code for runtrackmm:

```
function [Kp, Ki, Kd] = runtrackmm
optsim
pid0 = [0.63 0.0504 1.9688];
% a1, a2, yout are shared with TRACKMMOBJ and TRACKMMCON
a1 = 3; a2 = 43; % Initialize plant variables in model
yout = []; % Give yout an initial value
options = optimset('Display','iter',...
    'TolX',0.001,'TolFun',0.001);
pid = fminimax(@trackmmobj,pid0,[],[],[],[],[],[],...
    @trackmmcon,options);
Kp = pid(1); Ki = pid(2); Kd = pid(3);
    function F = trackmmobj(pid)
```

```
    % Track the output of optsim to a signal of 1.
    % Variables a1 and a2 are shared with RUNTRACKMM.
    % Variable yout is shared with RUNTRACKMM and
    % RUNTRACKMMCON.
    Kp = pid(1);
    Ki = pid(2);
    Kd = pid(3);
    % Compute function value
    opt = simset('solver','ode5','SrcWorkspace','Current');
    [tout,xout,yout] = sim('optsim',[0 100],opt);
    F = yout;
    end
    function [c,ceq] = trackmmcon(pid)
    % Track the output of optsim to a signal of 1.
    % Variable yout is shared with RUNTRACKMM and
    % TRACKMMOBJ
    % Compute constraints.
    % Objective TRACKMMOBJ is called before this
    % constraint function, so yout is current.
    c = -yout(20:100)+.95;
    ceq=[];
    end
end
```

When you run the code, it returns the following results:

```
[Kp,Ki,Kd] = runtrackmm
```

|  | Max |  |  |  |  |
| ---: | :---: | :---: | :---: | :---: | :---: |
| Iter | F-count | $\{F$, constraints $\}$ | Step-size | derivative | Procedure |
| 0 | 5 | 1.11982 |  |  |  |
| 1 | 11 | 1.264 | 1 | 1.18 |  |
| 2 | 17 | 1.055 | 1 | -0.172 |  |
| 3 | 23 | 1.004 | 1 | -0.0128 | Hessian modified twice |
| 4 | 29 | 0.9997 | 1 | $3.48 e-005$ | Hessian modified |
| 5 | 35 | 0.9996 | 1 | $-1.36 e-006$ | Hessian modified twice |

```
Optimization terminated: magnitude of directional derivative in search
    direction less than 2*options.TolFun and maximum constraint violation
    is less than options.TolCon.
    lower upper ineqlin ineqnonlin
                                    1
                                    1 4
                                    182
Kp =
    0.5894
Ki =
    0.0605
Kd
    5.5295
```

The last value shown in the MAX \{F, constraints \} column of the output shows that the maximum value for all the time steps is 0.9996 . The closed loop response with this result is shown in the following Closed-Loop Response Using fminimax on page 4-38.

This solution differs from the solution lsqnonlin because you are solving different problem formulations.


Closed-Loop Response Using fminimax

## Signal Processing Example

Consider designing a linear-phase Finite Impulse Response (FIR) filter. The problem is to design a lowpass filter with magnitude one at all frequencies between 0 and 0.1 Hz and magnitude zero between 0.15 and 0.5 Hz .

The frequency response $H(f)$ for such a filter is defined by

$$
\begin{align*}
H(f) & =\sum_{n=0}^{2 M} h(n) e^{-j 2 \pi f n} \\
& =A(f) e^{-j 2 \pi f M}, \\
A(f) & =\sum_{n=0}^{M-1} a(n) \cos (2 \pi f n), \tag{4-6}
\end{align*}
$$

where $A(f)$ is the magnitude of the frequency response. One solution is to apply a goal attainment method to the magnitude of the frequency response.

Given a function that computes the magnitude, the function fgoalattain will attempt to vary the magnitude coefficients $\alpha(n)$ until the magnitude response matches the desired response within some tolerance. The function that computes the magnitude response is given in filtmin.m. This function takes a, the magnitude function coefficients, and w, the discretization of the frequency domain we are interested in.

To set up a goal attainment problem, you must specify the goal and weights for the problem. For frequencies between 0 and 0.1, the goal is one. For frequencies between 0.15 and 0.5 , the goal is zero. Frequencies between 0.1 and 0.15 are not specified, so no goals or weights are needed in this range.

This information is stored in the variable goal passed to fgoalattain. The length of goal is the same as the length returned by the function filtmin. So that the goals are equally satisfied, usually weight would be set to abs (goal). However, since some of the goals are zero, the effect of using weight=abs (goal) will force the objectives with weight 0 to be satisfied as hard constraints, and the objectives with weight 1 possibly to be underattained (see "Goal Attainment Method" on page 5-44). Because all the goals are close in magnitude, using a weight of unity for all goals will give them equal priority. (Using abs (goal) for the weights is more important when the magnitude of goal differs more significantly.) Also, setting

```
options = optimset('GoalsExactAchieve',length(goal));
```

specifies that each objective should be as near as possible to its goal value (neither greater nor less than).

## Step 1: Write an M-file filtmin.m.

```
function y = filtmin(a,w)
n = length(a);
y = cos(w'*(0:n-1)*2*pi)*a ;
```


## Step 2: Invoke optimization routine.

```
% Plot with initial coefficients
a0 = ones(15,1);
incr = 50;
w = linspace(0,0.5,incr);
```

```
y0 = filtmin(a0,w);
clf, plot(w,y0,'.r');
drawnow;
% Set up the goal attainment problem
w1 = linspace(0,0.1,incr) ;
w2 = linspace(0.15,0.5,incr);
w0 = [w1 w2];
goal = [1.0*ones(1,length(w1)) zeros(1,length(w2))];
weight = ones(size(goal));
% Call fgoalattain
options = optimset('GoalsExactAchieve',length(goal));
[a,fval,attainfactor,exitflag]=fgoalattain(@(x) filtmin(x,w0)...
    a0,goal,weight,[],[],[],[],[],[],[],options);
% Plot with the optimized (final) coefficients
y = filtmin(a,w);
hold on, plot(w,y,'r')
axis([0 0.5 -3 3])
xlabel('Frequency (Hz)')
ylabel('Magnitude Response (dB)')
legend('initial', 'final')
grid on
```

Compare the magnitude response computed with the initial coefficients and the final coefficients (Magnitude Response with Initial and Final Magnitude Coefficients on page 4-41). Note that you could use the firpm function in Signal Processing Toolbox ${ }^{\mathrm{TM}}$ software to design this filter.


Magnitude Response with Initial and Final Magnitude Coefficients

## Large-Scale Examples

## In this section... <br> "Introduction" on page 4-42 <br> "Problems Covered by Large-Scale Methods" on page 4-43 <br> "Nonlinear Equations with Jacobian" on page 4-47 <br> "Nonlinear Equations with Jacobian Sparsity Pattern" on page 4-49 <br> "Nonlinear Least-Squares with Full Jacobian Sparsity Pattern" on page 4-52 <br> "Nonlinear Minimization with Gradient and Hessian" on page 4-53 <br> "Nonlinear Minimization with Gradient and Hessian Sparsity Pattern" on page 4-55 <br> "Nonlinear Minimization with Bound Constraints and Banded Preconditioner" on page 4-57 <br> "Nonlinear Minimization with Equality Constraints" on page 4-60 <br> "Nonlinear Minimization with a Dense but Structured Hessian and Equality Constraints" on page 4-62 <br> "Quadratic Minimization with Bound Constraints" on page 4-66 <br> "Quadratic Minimization with a Dense but Structured Hessian" on page 4-68 <br> "Linear Least-Squares with Bound Constraints" on page 4-73 <br> "Linear Programming with Equalities and Inequalities" on page 4-75 <br> "Linear Programming with Dense Columns in the Equalities" on page 4-76

## Introduction

Some of the optimization functions include algorithms for continuous optimization problems especially targeted to large problems with sparsity or structure. The main large-scale algorithms are iterative, i.e., a sequence of approximate solutions is generated. In each iteration a linear system is (approximately) solved. The linear systems are solved using MATLAB ${ }^{\circledR}$ sparse matrix capabilities and a variety of sparse linear solution techniques, both iterative and direct.

Generally speaking, the large-scale optimization methods preserve structure and sparsity, using exact derivative information wherever possible. To solve the large-scale problems efficiently, some problem formulations are restricted (such as only solving overdetermined linear or nonlinear systems), or require additional information (e.g., the nonlinear minimization algorithm requires that the gradient be computed in the user-supplied function).

This section summarizes the kinds of problems covered by large-scale methods and provides examples.

## Problems Covered by Large-Scale Methods

This section describes how to formulate problems for functions that use large-scale methods. It is important to keep in mind that there are some restrictions on the types of problems covered by large-scale methods. For example, the function fmincon cannot use large-scale methods when the feasible region is defined by either of the following:

- Nonlinear equality or inequality constraints
- Both upper- or lower-bound constraints and equality constraints

When a function is unable to solve a problem using large-scale methods, it reverts to medium-scale methods.

## Formulating Problems with Large-Scale Methods

The following table summarizes how to set up problems for large-scale methods and provide the necessary input for the optimization functions. For each function, the second column of the table describes how to formulate the problem and the third column describes what additional information is needed for the large-scale algorithms. For fminunc and fmincon, the gradient must be computed along with the objective in the user-supplied function (the gradient is not required for the medium-scale algorithms).

Since these methods can also be used on small- to medium-scale problems that are not necessarily sparse, the last column of the table emphasizes what conditions are needed for large-scale problems to run efficiently without exceeding your computer system's memory capabilities, e.g., the linear constraint matrices should be sparse. For smaller problems the conditions in the last column are unnecessary.

Note The following table lists the functions in order of increasing problem complexity.

Several examples, which follow this table, clarify the contents of the table.

## Large-Scale Problem Coverage and Requirements

| Function | Problem Formulations | Additional Information Needed | For Large Problems |
| :---: | :---: | :---: | :---: |
| fminunc | $\min _{x} f(x)$ | Must provide gradient for $f(x)$ in fun. | - Provide sparsity structure of the Hessian, or compute the Hessian in fun. <br> - The Hessian should be sparse. |
| fmincon | $\min _{x} f(x)$ such that $l \leq x \leq u$, where $l<u$. <br> - $\min _{x} f(x)$ <br> such that $A e q \cdot x=b e q$, and $A e q$ is an $m$-by- $n$ matrix where $m \leq n$. | Must provide gradient for $f(x)$ in fun. | - Provide sparsity structure of the Hessian or compute the Hessian in fun. <br> - The Hessian should be sparse. <br> - Aeq should be sparse. |

## Large-Scale Problem Coverage and Requirements (Continued)

| Function | Problem Formulations | Additional Information Needed | For Large Problems |
| :---: | :---: | :---: | :---: |
| lsqnonlin | $\min _{x}\\|F(x)\\|_{2}^{2}=\min _{x} \sum_{i} F_{i}^{2}(x)$ $\min _{x}\\|F(x)\\|_{2}^{2}=\min _{x} \sum_{i} F_{i}^{2}(x)$ <br> such that $l \leq x \leq u$ where $l<u$. <br> $F(x)$ must be overdetermined (have at least as many equations as variables). | None | - Provide sparsity structure of the Jacobian or compute the Jacobian in fun. <br> - The Jacobian should be sparse. |
| lsqcurvefit | $\min _{x}\\|F(x, x d a t a)-y d a t a\\|_{2}^{2}$ $\min _{x}\\|F(x, x d a t a)-y d a t a\\|_{2}^{2}$ <br> such that $l \leq x \leq u$, where $l<u$. <br> $F(x, x d a t a)$ must be overdetermined (have at least as many equations as variables). | None | - Provide sparsity structure of the Jacobian or compute the Jacobian in fun. <br> - The Jacobian should be sparse. |
| fsolve | $F(x)=0$ <br> $F(x)$ must have the same number of equations as variables. | None | - Provide sparsity structure of the Jacobian or compute the Jacobian in fun. <br> - The Jacobian should be sparse. |

## Large-Scale Problem Coverage and Requirements (Continued)

| Function | Problem <br> Formulations | Additional Information Needed | For Large Problems |
| :---: | :---: | :---: | :---: |
| lsqlin | $\min _{x}\\|C \cdot x-d\\|_{2}^{2}$ <br> such that $l \leq x \leq u$, where $l<u$. <br> $C$ is an $m$-by- $n$ matrix where $m \geq n$, i.e., the problem must be overdetermined. | None | $C$ should be sparse. |
| linprog | $\begin{aligned} & \min _{x} f^{T} x \\ & \text { such that } A \cdot x \leq b, \text { Aeq } \cdot x=b e q, \\ & l \leq x \leq u \end{aligned}$ | None | $A$ and Aeq should be sparse. |
| quadprog | $\min _{x} \frac{1}{2} x^{T} H x+f^{T} x$ such that $l \leq x \leq u$, where $l<u$ $\min _{x} \frac{1}{2} x^{T} H x+f^{T} x$ <br> such that such that $A e q \cdot x=b e q$, and Aeq is an $m$-by- $n$ matrix where $m \leq n$. | None | - $H$ should be sparse. <br> - Aeq should be sparse. |

In the following examples, many of the M-file functions are available in the optim directory. Most of these do not have a fixed problem size, i.e., the size of your starting point xstart determines the size problem that is computed. If your computer system cannot handle the size suggested in the examples below, use a smaller-dimension start point to run the problems. If the problems have upper or lower bounds or equalities, you must adjust the size of those vectors or matrices as well.

## Nonlinear Equations with Jacobian

Consider the problem of finding a solution to a system of nonlinear equations whose Jacobian is sparse. The dimension of the problem in this example is 1000 . The goal is to find $x$ such that $F(x)=0$. Assuming $n=1000$, the nonlinear equations are

$$
\begin{aligned}
& F(1)=3 x_{1}-2 x_{1}^{2}-2 x_{2}+1, \\
& F(i)=3 x_{i}-2 x_{i}^{2}-x_{i-1}-2 x_{i+1}+1, \\
& F(n)=3 x_{n}-2 x_{n}^{2}-x_{n-1}+1 .
\end{aligned}
$$

To solve a large nonlinear system of equations, $F(x)=0$, use the large-scale method available in fsolve.

## Step 1: Write an M-file nlsf1.m that computes the objective function values and the Jacobian.

```
function [F,J] = nlsf1(x)
% Evaluate the vector function
n = length(x);
F = zeros(n,1);
i = 2:(n-1);
F(i) = (3-2*x(i)).*x(i)-x(i-1)-2*x(i+1) + 1;
F(n) = (3-2*x(n)).*x(n)-x(n-1) + 1;
F(1) = (3-2*x(1)).*x(1)-2*x(2) + 1;
% Evaluate the Jacobian if nargout > 1
if nargout > 1
        d = -4*x + 3*ones(n,1); D = sparse(1:n,1:n,d,n,n);
        c = -2*ones(n-1,1); C = sparse(1:n-1,2:n,c,n,n);
        e = -ones(n-1,1); E = sparse(2:n,1:n-1,e,n,n);
        J = C + D + E;
end
```


## Step 2: Call the solve routine for the system of equations.

```
xstart = -ones(1000,1);
fun = @nlsf1;
options = optimset('Display','iter','LargeScale','on',...
```

```
    'Jacobian','on','PrecondBandWidth',0);
[x,fval,exitflag,output] = fsolve(fun,xstart,options);
```

A starting point is given as well as the function name. The default method for fsolve is medium-scale, so it is necessary to specify 'LargeScale' as 'on' in the options argument. Setting the Display option to 'iter' causes fsolve to display the output at each iteration. Setting Jacobian to 'on', causes fsolve to use the Jacobian information available in nlsf1.m.

The commands display this output:

| Iteration | Func-count | $\mathrm{f}(\mathrm{x})$ | Norm of | step | First-order <br> optimality |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 1011 |  | CG-iterations |  |
| 1 | 2 | 16.1942 | 7.91898 | 2.35 |  |
| 2 | 3 | 0.0228027 | 1.33142 | 0.291 | 3 |
| 3 | 4 | 0.000103359 | 0.0433329 | 0.0201 | 4 |
| 4 | 5 | $7.3792 e-007$ | 0.0022606 | 0.000946 | 4 |
| 5 | 6 | $4.02299 e-010$ | 0.000268381 | $4.12 e-005$ | 5 |
| Optimization terminated: relative function value |  |  |  |  |  |
| changing by less than OPTIONS. TolFun. |  |  |  |  |  |

A linear system is (approximately) solved in each major iteration using the preconditioned conjugate gradient method. Setting PrecondBandWidth to 0 in options means a diagonal preconditioner is used. (PrecondBandWidth specifies the bandwidth of the preconditioning matrix. A bandwidth of 0 means there is only one diagonal in the matrix.)

From the first-order optimality values, fast linear convergence occurs. The number of conjugate gradient (CG) iterations required per major iteration is low, at most five for a problem of 1000 dimensions, implying that the linear systems are not very difficult to solve in this case (though more work is required as convergence progresses).

If you want to use a tridiagonal preconditioner, i.e., a preconditioning matrix with three diagonals (or bandwidth of one), set PrecondBandWidth to the value 1:

```
options = optimset('Display','iter','Jacobian','on',...
    'LargeScale', 'on','PrecondBandWidth',1);
[x,fval,exitflag,output] = fsolve(fun,xstart,options);
```

In this case the output is

| Iteration | Func-count | $t \quad f(x)$ | Norm of step | First-order optimality | CG-iterations |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 1011 |  | 19 |  |
| 1 | 2 | 16.0839 | 7.92496 | 1.92 | 1 |
| 2 | 3 | 0.0458181 | 1.3279 | 0.579 | 1 |
| 3 | 4 | 0.000101184 | 0.0631898 | 0.0203 | 2 |
| 4 | 53 | 3.16615e-007 | 0.00273698 | 0.00079 | 2 |
| 5 | 69 | 9.72481e-010 | 0.00018111 | 5.82e-005 | 2 |
| Optimization terminated: relative function value changing by less than OPTIONS.TolFun. |  |  |  |  |  |

Note that although the same number of iterations takes place, the number of PCG iterations has dropped, so less work is being done per iteration. See "Preconditioned Conjugate Gradients" on page 6-12.

Setting PrecondBandWidth to Inf (this is the default) means that the solver uses Cholesky factorization rather than PCG.

## Nonlinear Equations with Jacobian Sparsity Pattern

In the preceding example, the function nlsf1 computes the Jacobian $J$, a sparse matrix, along with the evaluation of $F$. What if the code to compute the Jacobian is not available? By default, if you do not indicate that the Jacobian can be computed in nlsf1 (by setting the Jacobian option in options to 'on'), fsolve, lsqnonlin, and lsqcurvefit instead uses finite differencing to approximate the Jacobian.

In order for this finite differencing to be as efficient as possible, you should supply the sparsity pattern of the Jacobian, by setting JacobPattern to 'on' in options. That is, supply a sparse matrix Jstr whose nonzero entries correspond to nonzeros of the Jacobian for all $x$. Indeed, the nonzeros of Jstr can correspond to a superset of the nonzero locations of $J$; however, in general the computational cost of the sparse finite-difference procedure will increase with the number of nonzeros of Jstr.

Providing the sparsity pattern can drastically reduce the time needed to compute the finite differencing on large problems. If the sparsity pattern
is not provided (and the Jacobian is not computed in the objective function either) then, in this problem nlsfs1, the finite-differencing code attempts to compute all 1000-by- 1000 entries in the Jacobian. But in this case there are only 2998 nonzeros, substantially less than the $1,000,000$ possible nonzeros the finite-differencing code attempts to compute. In other words, this problem is solvable if you provide the sparsity pattern. If not, most computers run out of memory when the full dense finite-differencing is attempted. On most small problems, it is not essential to provide the sparsity structure.

Suppose the sparse matrix Jstr, computed previously, has been saved in file nlsdat1.mat. The following driver calls fsolve applied to nlsf1a, which is the same as nlsf1 except that only the function values are returned; sparse finite-differencing is used to estimate the sparse Jacobian matrix as needed.

## Step 1: Write an M-file nlsfla.m that computes the objective function values.

```
function F = nlsf1a(x)
% Evaluate the vector function
n = length(x);
F = zeros(n,1);
i = 2:(n-1);
F(i) = (3-2*x(i)).*x(i)-x(i-1)-2*x(i+1) + 1;
F(n) = (3-2*x(n)).*x(n)-x(n-1) + 1;
F(1) = (3-2*x(1)).*x(1)-2*x(2) + 1;
```


## Step 2: Call the system of equations solve routine.

```
xstart = -ones(1000,1);
fun = @nlsf1a;
load nlsdat1 % Get Jstr
options = optimset('Display','iter','JacobPattern',Jstr,...
    'LargeScale','on','PrecondBandWidth',1);
[x,fval,exitflag,output] = fsolve(fun,xstart,options);
```

In this case, the output displayed is

|  |  | Norm of | First-order |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Iteration | Func-count | $f(x)$ | step | optimality | CG-iterations |
| 0 | 5 | 1011 |  | 19 |  |


| 1 | 10 | 16.0839 | 7.92496 | 1.92 |
| :---: | ---: | ---: | ---: | ---: |
| 2 | 15 | 0.0458179 | 1.3279 | 0.579 |
| 3 | 20 | 0.000101184 | 0.0631896 | 0.0203 |
| 4 | 25 | $3.16616 e-007$ | 0.00273698 | 0.00079 |
| 5 | 30 | $9.72483 e-010$ | 0.00018111 | $5.82 e-005$ |

Alternatively, it is possible to choose a sparse direct linear solver (i.e., a sparse QR factorization) by indicating a "complete" preconditioner. For example, if you set PrecondBandWidth to Inf, then a sparse direct linear solver is used instead of a preconditioned conjugate gradient iteration:

```
xstart = -ones(1000,1);
fun = @nlsf1a;
load nlsdat1 % Get Jstr
options = optimset('Display','iter','JacobPattern',Jstr,...
    'LargeScale','on','PrecondBandWidth',inf);
[x,fval,exitflag,output] = fsolve(fun,xstart,options);
```

and the resulting display is

|  |  |  | Norm of | First-order |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Iteration | Func-count | $f(x)$ | step | optimality | CG-iterations |
| 0 | 5 | 1011 |  | 19 |  |
| 1 | 10 | 15.9018 | 7.92421 | 1.89 | 0 |
| 2 | 15 | 0.0128161 | 1.32542 | 0.0746 | 0 |
| 3 | 20 | $1.73502 e-008$ | 0.0397923 | 0.000196 | 0 |
| 4 | 25 | $1.10732 e-018$ | $4.55495 e-005$ | $2.74 \mathrm{e}-009$ | 0 |
| Optimization terminated: first-order optimality less than OPTIONS.TolFun, |  |  |  |  |  |
| and no negative/zero curvature detected in trust region model. |  |  |  |  |  |

When the sparse direct solvers are used, the CG iteration is 0 for that (major) iteration, as shown in the output under CG-Iterations. Notice that the final optimality and $f(x)$ value (which for fsolve, $f(x)$, is the sum of the squares of the function values) are closer to zero than using the PCG method, which is often the case.

## Nonlinear Least-Squares with Full Jacobian Sparsity Pattern

The large-scale methods in lsqnonlin, lsqcurvefit, and fsolve can be used with small- to medium-scale problems without computing the Jacobian in fun or providing the Jacobian sparsity pattern. (This example also applies to the case of using fmincon or fminunc without computing the Hessian or supplying the Hessian sparsity pattern.) How small is small- to medium-scale? No absolute answer is available, as it depends on the amount of virtual memory available in your computer system configuration.

Suppose your problem has $m$ equations and $n$ unknowns. If the command $J=\operatorname{sparse}($ ones $(m, n))$ causes an Out of memory error on your machine, then this is certainly too large a problem. If it does not result in an error, the problem might still be too large, but you can only find out by running it and seeing if MATLAB is able to run within the amount of virtual memory available on your system.

Let's say you have a small problem with 10 equations and 2 unknowns, such as finding $x$ that minimizes

$$
\sum_{k=1}^{10}\left(2+2 k-e^{k x_{1}}-e^{k x_{2}}\right)^{2}
$$

starting at the point $\mathrm{x}=[0.3,0.4]$.
Because lsqnonlin assumes that the sum of squares is not explicitly formed in the user function, the function passed to lsqnonlin should instead compute the vector valued function

$$
F_{k}(x)=2+2 k-e^{k x_{1}}-e^{k x_{2}},
$$

for $k=1$ to 10 (that is, F should have 10 components).

## Step 1: Write an M-file myfun.m that computes the objective function values.

```
function F = myfun(x)
```

```
k = 1:10;
F = 2 + 2*k-exp(k*x(1))-\operatorname{exp}(k*x(2));
```


## Step 2: Call the nonlinear least-squares routine.

```
x0 = [0.3 0.4] % Starting guess
[x,resnorm] = lsqnonlin(@myfun,x0) % Invoke optimizer
```

Because the Jacobian is not computed in myfun.m, and no Jacobian sparsity pattern is provided by the JacobPattern option in options, lsqnonlin calls the large-scale method with JacobPattern set to Jstr = sparse(ones(10,2)). This is the default for lsqnonlin. Note that the Jacobian option in options is set to 'off' by default.

When the finite-differencing routine is called the first time, it detects that Jstr is actually a dense matrix, i.e., that no speed benefit is derived from storing it as a sparse matrix. From then on the finite-differencing routine uses Jstr $=$ ones $(10,2)$ (a full matrix) for the optimization computations.

After about 24 function evaluations, this example gives the solution

```
x =
    0.2578 0.2578
resnorm % Residual or sum of squares
resnorm =
    124.3622
```

Most computer systems can handle much larger full problems, say into the 100 s of equations and variables. But if there is some sparsity structure in the Jacobian (or Hessian) that can be taken advantage of, the large-scale methods will always run faster if this information is provided.

## Nonlinear Minimization with Gradient and Hessian

This example involves solving a nonlinear minimization problem with a tridiagonal Hessian matrix $H(x)$ first computed explicitly, and then by providing the Hessian's sparsity structure for the finite-differencing routine.

The problem is to find $x$ to minimize

$$
\begin{equation*}
f(x)=\sum_{i=1}^{n-1}\left(\left(x_{i}^{2}\right)^{\left(x_{i+1}^{2}+1\right)}+\left(x_{i+1}^{2}\right)^{\left(x_{i}^{2}+1\right)}\right) \tag{4-7}
\end{equation*}
$$

where $n=1000$.

## Step 1: Write an M-file brownfgh.m that computes the objective function, the gradient of the objective, and the sparse tridiagonal Hessian matrix.

The file is lengthy so is not included here. View the code with the command

## type brownfgh

Because brownfgh computes the gradient and Hessian values as well as the objective function, you need to use optimset to indicate that this information is available in brownfgh, using the GradObj and Hessian options.

## Step 2: Call a nonlinear minimization routine with a starting point xstart.

```
n = 1000;
xstart = -ones(n,1);
xstart(2:2:n,1) = 1;
options = optimset('GradObj','on','Hessian','on');
[x,fval,exitflag,output] = fminunc(@brownfgh,xstart,options);
```

This 1000 variable problem is solved in about 7 iterations and 7 conjugate gradient iterations with a positive exitflag indicating convergence. The final function value and measure of optimality at the solution $x$ are both close to zero. For fminunc, the first order optimality is the infinity norm of the gradient of the function, which is zero at a local minimum:

```
exitflag =
    1
fval =
    2.8709e-017
output =
            iterations: 7
            funcCount: 8
        cgiterations: 7
```

```
firstorderopt: 4.7948e-010
    algorithm: 'large-scale: trust-region Newton'
    message: [1\times137 char]
```


## Nonlinear Minimization with Gradient and Hessian Sparsity Pattern

Next, solve the same problem but the Hessian matrix is now approximated by sparse finite differences instead of explicit computation. To use the large-scale method in fminunc, you must compute the gradient in fun; it is not optional as in the medium-scale method.

The M-file function brownfg computes the objective function and gradient.

## Step 1: Write an M-file brownfg.m that computes the objective function and the gradient of the objective.

```
function [f,g] = brownfg(x)
% BROWNFG Nonlinear minimization test problem
%
% Evaluate the function
n=length(x); y=zeros(n,1);
i=1:(n-1);
y(i)=(x(i).^2).^(x(i+1).^2+1) + ...
            (x(i+1).^2).^(x(i).^2+1);
    f=sum(y);
% Evaluate the gradient if nargout > 1
    if nargout > 1
        i=1:(n-1); g = zeros(n,1);
        g(i) = 2*(x(i+1).^2+1).*x(i).* ...
                ((x(i).^2).^(x(i+1).^2))+...
                2*x(i).*((x(i+1).^2).^(x(i).^2+1)).* ...
                log(x(i+1).^2);
        g(i+1) = g(i+1) + ...
                        2*x(i+1).*((x(i).^2).^(x(i+1).^2+1)).* ...
                        log(x(i).^2) + ...
                        2*(x(i).^2+1).*x(i+1).* ...
                                ((x(i+1).^2).^(x(i).^2));
        end
```

To allow efficient computation of the sparse finite-difference approximation of the Hessian matrix $H(x)$, the sparsity structure of $H$ must be predetermined. In this case assume this structure, Hstr, a sparse matrix, is available in file brownhstr.mat. Using the spy command you can see that Hstr is indeed sparse (only 2998 nonzeros). Use optimset to set the HessPattern option to Hstr. When a problem as large as this has obvious sparsity structure, not setting the HessPattern option requires a huge amount of unnecessary memory and computation because fminunc attempts to use finite differencing on a full Hessian matrix of one million nonzero entries.

You must also set the GradObj option to 'on ' using optimset, since the gradient is computed in brownfg.m. Then execute fminunc as shown in Step 2.

## Step 2: Call a nonlinear minimization routine with a starting point xstart.

```
fun = @brownfg;
load brownhstr %Get Hstr, structure of the Hessian
spy(Hstr) % View the sparsity structure of Hstr
n = 1000;
xstart = -ones(n,1);
xstart(2:2:n,1) = 1;
options = optimset('GradObj','on','HessPattern',Hstr);
[x,fval,exitflag,output] = fminunc(fun,xstart,options);
```

This 1000 -variable problem is solved in eight iterations and seven conjugate gradient iterations with a positive exitflag indicating convergence. The final function value and measure of optimality at the solution $x$ are both close to zero (for fminunc, the first-order optimality is the infinity norm of the gradient of the function, which is zero at a local minimum):

```
exitflag =
    1
fval =
    7.4739e-017
output =
            iterations: 7
            funcCount: 8
        cgiterations: 7
        firstorderopt: 7.9822e-010
```

```
algorithm: 'large-scale: trust-region Newton'
    message: [1x137 char]
```


## Nonlinear Minimization with Bound Constraints and Banded Preconditioner

The goal in this problem is to minimize the nonlinear function

$$
f(x)=1+\sum_{i=1}^{n}\left|\left(3-2 x_{i}\right) x_{i}-x_{i-1}-x_{i+1}+1\right|^{p}+\sum_{i=1}^{n / 2}\left|x_{i}+x_{i+n / 2}\right|^{p}
$$

such that $-10.0 \leq x_{i} \leq 10.0$, where $n$ is 800 ( $n$ should be a multiple of 4 ), $p=7 / 3$, and $x_{0}=x_{n+1}=0$.

## Step 1: Write an M-file tbroyfg.m that computes the objective function and the gradient of the objective

The M-file function tbroyfg.m computes the function value and gradient. This file is long and is not included here. You can see the code for this function using the command

```
type tbroyfg
```

The sparsity pattern of the Hessian matrix has been predetermined and stored in the file tbroyhstr.mat. The sparsity structure for the Hessian of this problem is banded, as you can see in the following spy plot.

```
load tbroyhstr
spy(Hstr)
```



In this plot, the center stripe is itself a five-banded matrix. The following plot shows the matrix more clearly:

```
spy(Hstr(1:20,1:20))
```



Use optimset to set the HessPattern parameter to Hstr. When a problem as large as this has obvious sparsity structure, not setting the HessPattern parameter requires a huge amount of unnecessary memory and computation. This is because fmincon attempts to use finite differencing on a full Hessian matrix of 640,000 nonzero entries.

You must also set the GradObj parameter to ' on ' using optimset, since the gradient is computed in tbroyfg.m. Then execute fmincon as shown in Step 2.

## Step 2: Call a nonlinear minimization routine with a starting point xstart.

```
fun = @tbroyfg;
load tbroyhstr %Get Hstr, structure of the Hessian
n = 800;
xstart = -ones(n,1); xstart(2:2:n) = 1;
lb = -10*ones(n,1); ub = -lb;
options = optimset('GradObj','on','HessPattern',Hstr);
[x,fval,exitflag,output] = ...
    fmincon(fun,xstart,[],[],[],[],lb,ub,[],options);
```

After seven iterations, the exitflag, fval, and output values are

```
exitflag =
            3
fval =
    270.4790
output =
            iterations: 7
                    funcCount: 8
            cgiterations: 18
        firstorderopt: 0.0163
            algorithm: 'large-scale: trust-region reflective Newton'
                    message: [1x86 char]
```

For bound constrained problems, the first-order optimality is the infinity norm of $v . * \mathrm{~g}$, where v is defined as in "Box Constraints" on page $6-15$, and g is the gradient.

Because of the five-banded center stripe, you can improve the solution by using a five-banded preconditioner instead of the default diagonal preconditioner. Using the optimset function, reset the PrecondBandWidth parameter to 2 and solve the problem again. (The bandwidth is the number of upper (or lower) diagonals, not counting the main diagonal.)

```
fun = @tbroyfg;
load tbroyhstr %Get Hstr, structure of the Hessian
n = 800;
xstart = -ones(n,1); xstart(2:2:n,1) = 1;
lb = -10*ones(n,1); ub = -lb;
options = optimset('GradObj','on','HessPattern',Hstr, ...
    'PrecondBandWidth',2);
[x,fval,exitflag,output] = ...
    fmincon(fun,xstart,[],[],[],[],lb,ub,[],options);
```

The number of iterations actually goes up by two; however the total number of CG iterations drops from 18 to 15 . The first-order optimality measure is reduced by a factor of $1 \mathrm{e}-3$ :

```
exitflag =
    3
fval =
    270.4790
output =
    iterations: 9
        funcCount: 10
        cgiterations: 15
        firstorderopt: 7.5340e-005
            algorithm: 'large-scale: trust-region reflective Newton'
            message: [1x86 char]
```


## Nonlinear Minimization with Equality Constraints

The large-scale method for fmincon can handle equality constraints if no other constraints exist. Suppose you want to minimize the same objective as in Equation 4-7, which is coded in the function brownfgh.m, where $\mathrm{n}=1000$, such that Aeq $\cdot x=b e q$ for Aeq that has 100 equations (so Aeq is a 100 -by-1000 matrix).

## Step 1: Write an M-file brownfgh.m that computes the objective function, the gradient of the objective, and the sparse tridiagonal Hessian matrix.

The file is lengthy so is not included here. View the code with the command

## type brownfgh

Because brownfgh computes the gradient and Hessian values as well as the objective function, you need to use optimset to indicate that this information is available in brownfgh, using the GradObj and Hessian options.

The sparse matrix Aeq and vector beq are available in the file browneq.mat:

```
load browneq
```

The linear constraint system is 100 -by- 1000 , has unstructured sparsity (use spy (Aeq) to view the sparsity structure), and is not too badly ill-conditioned:

```
condest(Aeq*Aeq')
ans =
    2.9310e+006
```


## Step 2: Call a nonlinear minimization routine with a starting point xstart.

```
fun = @brownfgh;
load browneq %Get Aeq and beq, the linear equalities
n = 1000;
xstart = -ones(n,1); xstart(2:2:n) = 1;
options = optimset('GradObj','on','Hessian','on');
[x,fval,exitflag,output] = ...
    fmincon(fun,xstart,[],[],Aeq,beq,[],[],[],options);
```

The option PrecondBandWidth is inf by default. It means a sparse direct solver is used, instead of preconditioned conjugate gradients.

The exitflag value of 3 indicates that the algorithm terminated because the change in the objective function value was less than the specified tolerance TolFun. The final function value is given by fval.

```
exitflag =
    3
fval =
    205.9313
output =
        iterations: 16
            funcCount: 17
        cgiterations: 20
        firstorderopt: 7.3575e-005
            algorithm: 'large-scale: projected trust-region Newton'
            message: [1\times86 char]
```

The linear equalities are satisfied at $x$.

```
norm(Aeq*x-beq)
ans =
    1.1885e-012
```


## Nonlinear Minimization with a Dense but Structured Hessian and Equality Constraints

The fmincon and fminunc large-scale methods can solve problems where the Hessian is dense but structured. For these problems, fmincon and fminunc do not compute $H^{*} Y$ with the Hessian $H$ directly, as they do for medium-scale problems and for large-scale problems with sparse $H$, because forming $H$ would be memory-intensive. Instead, you must provide fmincon or fminunc with a function that, given a matrix $Y$ and information about $H$, computes $W=H^{*} Y$.

In this example, the objective function is nonlinear and linear equalities exist so fmincon is used. The objective function has the structure

$$
f(x)=f(x)-\frac{1}{2} x^{T} V V^{T} x,
$$

where $V$ is a 1000 -by- 2 matrix. The Hessian of $f$ is dense, but the Hessian of $\hat{f}$ is sparse. If the Hessian of $\hat{f}$ is $\hat{H}$, then $H$, the Hessian of $f$, is

$$
H=\hat{H}-V V^{T} .
$$

To avoid excessive memory usage that could happen by working with $H$ directly, the example provides a Hessian multiply function, hmfleq1. This function, when passed a matrix $Y$, uses sparse matrices Hinfo, which corresponds to $\hat{H}$, and V to compute the Hessian matrix product

$$
W=H * Y=\left(\text { Hinfo }-V * V^{\prime}\right) * Y
$$

In this example, the Hessian multiply function needs $\hat{H}$ and $\vee$ to compute the Hessian matrix product. V is a constant, so you can capture V in a function handle to an anonymous function.

However, $\hat{H}$ is not a constant and must be computed at the current x. You can do this by computing $\hat{H}$ in the objective function and returning $\hat{H}$ as Hinfo in the third output argument. By using optimset to set the 'Hessian' options to 'on', fmincon knows to get the Hinfo value from the objective function and pass it to the Hessian multiply function hmfleq1.

## Step 1: Write an M-file brownvv.m that computes the objective function, the gradient, and the sparse part of the Hessian.

The example passes brownvv to fmincon as the objective function. The brownvv.m file is long and is not included here. You can view the code with the command

## type brownvv

Because brownvv computes the gradient and part of the Hessian as well as the objective function, the example (Step 3) uses optimset to set the GradObj and Hessian options to 'on'.

## Step 2: Write a function to compute Hessian-matrix products for $\mathbf{H}$ given a matrix $\mathbf{Y}$.

Now, define a function hmfleq1 that uses Hinfo, which is computed in brownvv, and $V$, which you can capture in a function handle to an anonymous function, to compute the Hessian matrix product $W$ where $\mathrm{W}=\mathrm{H}^{*} \mathrm{Y}=\left(\right.$ Hinfo $\left.-\mathrm{V} * \mathrm{~V}^{\prime}\right)$ *Y. This function must have the form
W = hmfleq1 (Hinfo, Y)

The first argument must be the same as the third argument returned by the objective function brownvv. The second argument to the Hessian multiply function is the matrix $Y$ ( of $W=H^{*} Y$ ).

Because fmincon expects the second argument $Y$ to be used to form the Hessian matrix product, $Y$ is always a matrix with $n$ rows where $n$ is the number of dimensions in the problem. The number of columns in $Y$ can vary. Finally, you can use a function handle to an anonymous function to capture V , so V can be the third argument to 'hmfleqq'.

```
function W = hmfleq1(Hinfo,Y,V);
%HMFLEQ1 Hessian-matrix product function for BROWNVV objective.
% W = hmfleq1(Hinfo,Y,V) computes W = (Hinfo-V*V')*Y
% where Hinfo is a sparse matrix computed by BROWNVV
% and V is a 2 column matrix.
W = Hinfo*Y - V*(V'*Y);
```

Note The function hmfleq1 is available in the optimdemos directory as the M-file hmfleq1.m.

## Step 3: Call a nonlinear minimization routine with a starting point and linear equality constraints.

Load the problem parameter, V , and the sparse equality constraint matrices, Aeq and beq, from fleq1.mat, which is available in the optim directory. Use optimset to set the GradObj and Hessian options to 'on' and to set the HessMult option to a function handle that points to hmfleq1. Call fmincon with objective function brownvv and with V as an additional parameter:

```
function [fval, exitflag, output, x] = runfleq1
% RUNFLEQ1 demonstrates 'HessMult' option for
% FMINCON with linear equalities.
% Copyright 1984-2006 The MathWorks, Inc.
% $Revision: 1.1.4.73 $ $Date: 2008/01/21 23:43:48 $
problem = load('fleq1'); % Get V, Aeq, beq
```

```
V = problem.V; Aeq = problem.Aeq; beq = problem.beq;
n = 1000; % problem dimension
xstart = -ones(n,1); xstart(2:2:n,1) = ones(length(2:2:n),1);
% starting point
options = optimset('GradObj','on','Hessian','on','HessMult',...
@(Hinfo,Y)hmfleq1(Hinfo,Y,V) ,'Display','iter','TolFun',1e-9);
[x,fval,exitflag,output] = fmincon(@(x)brownvv(x,V),\ldots
xstart,[],[],Aeq,beq,[],[], [],options);
```

Note Type [fval, exitflag,output, x] = runfleq1; to run the preceding code. This command displays the values for fval, exitflag, and output, as well as the following iterative display.

Because the iterative display was set using optimset, the results displayed are

| Iteration | $f(x)$ | Norm of step | First-order optimality | CG-iterations |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1997.07 | 1 | 555 | 0 |
| 2 | 1072.56 | 6.31716 | 377 | 1 |
| 3 | 480.232 | 8.19554 | 159 | 2 |
| 4 | 136.861 | 10.3015 | 59.5 | 2 |
| 5 | 44.3708 | 9.04697 | 16.3 | 2 |
| 6 | 44.3708 | 100 | 16.3 | 2 |
| 7 | 44.3708 | 25 | 16.3 | 0 |
| 8 | -8.90967 | 6.25 | 28.5 | 0 |
| 9 | -318.486 | 12.5 | 107 | 1 |
| 10 | -318.486 | 12.5 | 107 | 1 |
| 11 | -415.445 | 3.125 | 73.9 | 0 |
| 12 | -561.688 | 3.125 | 47.4 | 2 |
| 13 | -785.326 | 6.25 | 126 | 3 |
| 14 | -785.326 | 4.30584 | 126 | 5 |
| 15 | -804.414 | 1.07646 | 26.9 | 0 |
| 16 | -822.399 | 2.16965 | 2.8 | 3 |
| 17 | -823.173 | 0.40754 | 1.34 | 3 |
| 18 | -823.241 | 0.154885 | 0.555 | 3 |
| 19 | -823.246 | 0.0518407 | 0.214 | 5 |
| 20 | -823.246 | 0.00977601 | 0.00724 | 6 |

```
Optimization terminated successfully:
Relative function value changing by less than OPTIONS.TolFun
```

Convergence is rapid for a problem of this size with the PCG iteration cost increasing modestly as the optimization progresses. Feasibility of the equality constraints is maintained at the solution

```
norm(Aeq*x-beq)
ans =
    1.9854e-013
```


## Preconditioning

In this example, fmincon cannot use $H$ to compute a preconditioner because $H$ only exists implicitly. Instead of $\mathrm{H}, \mathrm{fmincon}$ uses Hinfo, the third argument returned by brownvv, to compute a preconditioner. Hinfo is a good choice because it is the same size as H and approximates H to some degree. If Hinfo were not the same size as H , fmincon would compute a preconditioner based on some diagonal scaling matrices determined from the algorithm. Typically, this would not perform as well.

## Quadratic Minimization with Bound Constraints

To minimize a large-scale quadratic with upper and lower bounds, you can use the quadprog function.

The problem stored in the MAT-file qpbox1.mat is a positive definite quadratic, and the Hessian matrix $H$ is tridiagonal, subject to upper (ub) and lower (lb) bounds.

## Step 1: Load the Hessian and define $f, \mathrm{lb}$, and $\mathbf{u b}$.

```
load qpbox1 % Get H
lb = zeros(400,1); lb(400) = -inf;
ub = 0.9*ones(400,1); ub(400) = inf;
f = zeros(400,1); f([1 400]) = -2;
```


## Step 2: Call a quadratic minimization routine with a starting point xstart.

```
xstart = 0.5*ones(400,1);
[x,fval,exitflag,output] = ...
    quadprog(H,f,[],[],[],[],lb,ub,xstart);
```

Looking at the resulting values of exitflag and output,

```
exitflag =
    3
output =
            iterations: 19
            algorithm: 'large-scale: reflective trust-region'
    firstorderopt: 1.0761e-005
    cgiterations: 1640
            message: [1x206 char]
```

you can see that while convergence occurred in 19 iterations, the high number of CG iterations indicates that the cost of the linear system solve is high. In light of this cost, one strategy would be to limit the number of CG iterations per optimization iteration. The default number is the dimension of the problem divided by two, 200 for this problem. Suppose you limit it to 50 using the MaxPCGIter flag in options:

```
options = optimset('MaxPCGIter',50);
[x,fval,exitflag,output] = ...
    quadprog(H,f,[],[],[],[],lb,ub,xstart,options);
```

This time convergence still occurs and the total number of CG iterations (1547) has dropped:

```
exitflag =
    3
output =
            iterations: 36
            algorithm: 'large-scale: reflective trust-region'
            firstorderopt: 2.3821e-005
            cgiterations: 1547
            message: [1x206 char]
```

A second strategy would be to use a direct solver at each iteration by setting the PrecondBandWidth option to inf:

```
options = optimset('PrecondBandWidth',inf);
[x,fval,exitflag,output] = ...
    quadprog(H,f,[],[],[],[],lb,ub,xstart,options);
```

Now the number of iterations has dropped to 10:

```
exitflag =
    3
output =
    iterations: 10
        algorithm: 'large-scale: reflective trust-region'
    firstorderopt: 1.0366e-006
    cgiterations: 0
            message: [1x206 char]
```

Using a direct solver at each iteration usually causes the number of iterations to decrease, but often takes more time per iteration. For this problem, the tradeoff is beneficial, as the time for quadprog to solve the problem decreases by a factor of 10 .

## Quadratic Minimization with a Dense but Structured Hessian

The quadprog large-scale method can also solve large problems where the Hessian is dense but structured. For these problems, quadprog does not compute $H^{*} Y$ with the Hessian $H$ directly, as it does for medium-scale problems and for large-scale problems with sparse $H$, because forming $H$ would be memory-intensive. Instead, you must provide quadprog with a function that, given a matrix $Y$ and information about $H$, computes $W=H^{*} Y$.

In this example, the Hessian matrix $H$ has the structure $H=B+A * A^{\prime}$ where $B$ is a sparse 512 -by- 512 symmetric matrix, and $A$ is a 512 -by- 10 sparse matrix composed of a number of dense columns. To avoid excessive memory usage that could happen by working with $H$ directly because $H$ is dense, the example provides a Hessian multiply function, qpbox4mult. This function, when passed a matrix $Y$, uses sparse matrices $A$ and $B$ to compute the Hessian matrix product $W=H^{*} Y=\left(B+A^{*} A^{\prime}\right) * Y$.

In this example, the matrices A and B need to be provided to the Hessian multiply function qpbox4mult. You can pass one matrix as the first argument to quadprog, which is passed to the Hessian multiply function. You can use a nested function to provide the value of the second matrix.

## Step 1: Decide what part of $\mathbf{H}$ to pass to quadprog as the first argument.

Either A or B can be passed as the first argument to quadprog. The example chooses to pass B as the first argument because this results in a better preconditioner (see "Preconditioning" on page 4-72).

```
quadprog(B,f,[],[],[],[],l,u,xstart,options)
```


## Step 2: Write a function to compute Hessian-matrix products for $\mathbf{H}$.

Now, define a function runqpbox4 that

- Contains a nested function qpbox4mult that uses $A$ and $B$ to compute the Hessian matrix product $W$, where $W=H^{*} Y=\left(B+A^{*} A^{\prime}\right) * Y$. The nested function must have the form
W = qpbox4mult(Hinfo,Y, ...)

The first two arguments Hinfo and $Y$ are required.

- Loads the problem parameters from qpbox4.mat.
- Uses optimset to set the HessMult option to a function handle that points to qpbox4mult.
- Calls quadprog with B as the first argument.

The first argument to the nested function qpbox4mult must be the same as the first argument passed to quadprog, which in this case is the matrix B.

The second argument to qpbox4mult is the matrix $Y$ (of $\mathrm{W}=\mathrm{H}^{*} \mathrm{Y}$ ). Because quadprog expects Y to be used to form the Hessian matrix product, Y is always a matrix with $n$ rows, where $n$ is the number of dimensions in the problem. The number of columns in $Y$ can vary. The function qpbox4mult is nested so that the value of the matrix A comes from the outer function.

```
function [fval, exitflag, output, x] = runqpbox4
% RUNQPBOX4 demonstrates 'HessMult' option for QUADPROG with
% bounds.
problem = load('qpbox4'); % Get xstart, u, l, B, A, f
xstart = problem.xstart; u = problem.u; l = problem.l;
B = problem.B; A = problem.A; f = problem.f;
mtxmpy = @qpbox4mult; % function handle to qpbox4mult nested
% subfunction
% Choose the HessMult option
options = optimset('HessMult',mtxmpy);
% Pass B to qpbox4mult via the Hinfo argument. Also, B will be
% used in computing a preconditioner for PCG.
[x, fval, exitflag, output] = ...
quadprog(B,f,[],[],[],[],l,u,xstart,options);
    function W = qpbox4mult(B,Y);
        %QPBOX4MULT Hessian matrix product with dense
        %structured Hessian.
        % W = qpbox4mult (B,Y) computes W = (B + A*A')*Y where
        % INPUT:
        % B - sparse square matrix (512 by 512)
        % Y - vector (or matrix) to be multiplied by
                                B + A'*A.
        VARIABLES from outer function runqpbox4:
            A - sparse matrix with }512\mathrm{ rows and 10 columns.
        OUTPUT:
            W - The product (B + A*A')*Y.
            %
        % Order multiplies to avoid forming A*A',
        % which is large and dense
        W = B*Y + A*(A'*Y);
    end
end
```


## Step 3: Call a quadratic minimization routine with a starting point.

To call the quadratic minimizing routine contained in runqpbox4, enter

```
[fval,exitflag,output] = runqpbox4
```

to run the preceding code and display the values for fval, exitflag, and output. The results are

```
Optimization terminated: relative function value changing by
less than sqrt(OPTIONS.TolFun), no negative curvature detected
in current trust region model and the rate of progress (change
in f(x)) is slow.
fval =
    -1.0538e+003
exitflag =
    3
output =
    iterations: 18
            algorithm: 'large-scale: reflective trust-region'
    firstorderopt: 0.0028
    cgiterations: 50
            message: [1x206 char]
```

After 18 iterations with a total of 30 PCG iterations, the function value is reduced to

```
fval =
```

    \(-1.0538 \mathrm{e}+003\)
    and the first-order optimality is

```
output.firstorderopt =
    0.0043
```


## Preconditioning

In this example, quadprog cannot use $H$ to compute a preconditioner because H only exists implicitly. Instead, quadprog uses B, the argument passed in instead of H , to compute a preconditioner. B is a good choice because it is the same size as H and approximates H to some degree. If B were not the same size as H , quadprog would compute a preconditioner based on some diagonal scaling matrices determined from the algorithm. Typically, this would not perform as well.

Because the preconditioner is more approximate than when H is available explicitly, adjusting the TolPcg parameter to a somewhat smaller value might be required. This example is the same as the previous one, but reduces TolPcg from the default 0.1 to 0.01 .

```
function [fval, exitflag, output, x] = runqpbox4prec
% RUNQPBOX4PREC demonstrates 'HessMult' option for QUADPROG
% with bounds.
problem = load('qpbox4'); % Get xstart, u, l, B, A, f
xstart = problem.xstart; u = problem.u; l = problem.l;
B = problem.B; A = problem.A; f = problem.f;
mtxmpy = @qpbox4mult; % function handle to qpbox4mult nested
subfunction
% Choose the HessMult option
% Override the TolPCG option
options = optimset('HessMult',mtxmpy,'TolPcg',0.01);
% Pass B to qpbox4mult via the H argument. Also, B will be
% used in computing a preconditioner for PCG.
% A is passed as an additional argument after 'options'
[x, fval, exitflag, output] =
quadprog(B,f,[],[],[],[],l,u,xstart,options);
function W = qpbox4mult(B,Y);
    %QPBOX4MULT Hessian matrix product with dense
    %structured Hessian.
    % W = qpbox4mult(B,Y) computes W = (B + A*A')*Y where
    % INPUT:
    % B - sparse square matrix (512 by 512)
```

```
    Y - vector (or matrix) to be multiplied by B + A'*A.
        VARIABLES from outer function runqpbox4:
            A - sparse matrix with }512\mathrm{ rows and 10 columns.
            %
            % OUTPUT:
            W - The product (B + A*A')*Y.
                        % Order multiplies to avoid forming A*A',
                            % which is large and dense
                            W = B*Y + A*(A'*Y);
    end
end
Now, enter
```

```
[fval,exitflag,output] = runqpbox4prec
```

```
[fval,exitflag,output] = runqpbox4prec
```

to run the preceding code. After 18 iterations and 50 PCG iterations, the function value has the same value to five significant digits

```
fval =
-1.0538e+003
```

but the first-order optimality is further reduced.

```
output.firstorderopt =
0.0028
```

Note Decreasing TolPcg too much can substantially increase the number of PCG iterations.

## Linear Least-Squares with Bound Constraints

Many situations give rise to sparse linear least-squares problems, often with bounds on the variables. The next problem requires that the variables be nonnegative. This problem comes from fitting a function approximation to a piecewise linear spline. Specifically, particles are scattered on the unit square. The function to be approximated is evaluated at these points, and a piecewise
linear spline approximation is constructed under the condition that (linear) coefficients are not negative. There are 2000 equations to fit on 400 variables:

```
load particle % Get C, d
lb = zeros(400,1);
[x,resnorm,residual,exitflag,output] = ...
    lsqlin(C,d,[],[],[],[],lb);
```

The default diagonal preconditioning works fairly well:

```
exitflag =
    3
resnorm =
    22.5794
output =
            iterations: 10
            algorithm: 'large-scale: trust-region reflective Newton'
    firstorderopt: 2.7870e-005
    cgiterations: 42
            message: [1\times123 char]
```

For bound constrained problems, the first-order optimality is the infinity norm of $v . * \mathrm{~g}$, where v is defined as in "Box Constraints" on page $6-15$, and g is the gradient.

You can improve (decrease) the first-order optimality measure by using a sparse QR factorization in each iteration. To do this, set PrecondBandWidth to inf:

```
options = optimset('PrecondBandWidth',inf);
[x,resnorm,residual,exitflag,output] = ...
    lsqlin(C,d,[],[],[],[],lb,[],[],options);
```

The first-order optimality measure decreases:

```
exitflag =
    1
resnorm =
    22.5794
output =
    iterations: 12
```

```
    algorithm: 'large-scale: trust-region reflective Newton'
firstorderopt: 5.5907e-015
    cgiterations: 0
        message: [1x104 char]
```


## Linear Programming with Equalities and Inequalities

The problem is

$$
\min _{x} f^{T} x \text { such that }\left\{\begin{array}{c}
A \cdot x \leq b \\
A e q \cdot x=b e q \\
x \geq 0
\end{array}\right.
$$

You can load the matrices and vectors A, Aeq, b, beq, f, and the lower bounds lb into the MATLAB workspace with

```
load sc50b
```

This problem in sc50b.mat has 48 variables, 30 inequalities, and 20 equalities.
You can use linprog to solve the problem:

```
[x,fval,exitflag,output] = ...
    linprog(f,A,b,Aeq,beq,lb,[],[],optimset('Display','iter'));
```

Because the iterative display was set using optimset, the results displayed are


```
    Iter 8: 8.08e-014 5.67e-013 1.09e-011 3.82e-012
Optimization terminated.
```

For this problem, the large-scale linear programming algorithm quickly reduces the scaled residuals below the default tolerance of $1 \mathrm{e}-08$.

The exitflag value is positive, telling you linprog converged. You can also get the final function value in fval and the number of iterations in output.iterations:

```
exitflag =
    1
fval =
    -70.0000
output =
    iterations: 8
        algorithm: 'large-scale: interior point'
    cgiterations: 0
        message: 'Optimization terminated.
```


## Linear Programming with Dense Columns in the Equalities

The problem is

$$
\min _{x} f^{T} x \text { such that }\left\{\begin{array}{c}
A e q \cdot x=b e q \\
l b \leq x \leq u b
\end{array}\right.
$$

You can load the matrices and vectors Aeq, beq, $f, l b$, and ub into the MATLAB workspace with

## load densecolumns

The problem in densecolumns.mat has 1677 variables and 627 equalities with lower bounds on all the variables, and upper bounds on 399 of the variables. The equality matrix Aeq has dense columns among its first 25 columns, which is easy to see with a spy plot:

```
spy(Aeq)
```



You can use linprog to solve the problem:

```
[x,fval,exitflag,output] = ...
    linprog(f,[],[],Aeq,beq,lb,ub,[],optimset('Display','iter'));
```

Because the iterative display was set using optimset, the results displayed are

| Residua |  | Primal <br> Infeas $A * x-b$ | $\begin{gathered} \text { Dual } \\ \text { Infeas } \\ A^{\prime}{ }^{*} y+z-w-f \end{gathered}$ | Upper Bounds $\{x\}+s-u b$ | $\begin{aligned} & \text { Duality } \\ & \text { Gap } \\ & \text { ' }^{\prime *} \mathrm{z}+\mathrm{s}^{\prime *} \mathrm{w} \end{aligned}$ | Total <br> Rel <br> Error |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Iter | 0 | $1.67 \mathrm{e}+003$ | $8.11 \mathrm{e}+002$ | $1.35 \mathrm{e}+003$ | $5.30 \mathrm{e}+006$ | $2.92 \mathrm{e}+001$ |
| Iter | 1: | $1.37 \mathrm{e}+002$ | $1.33 \mathrm{e}+002$ | $1.11 \mathrm{e}+002$ | $1.27 \mathrm{e}+006$ | $2.48 \mathrm{e}+000$ |
| Iter | 2 | 3.56e+001 | $2.38 \mathrm{e}+001$ | 2.89e+001 | $3.42 \mathrm{e}+005$ | . $99 \mathrm{e}+000$ |
| Iter | $3:$ | $4.86 \mathrm{e}+000$ | $8.88 \mathrm{e}+000$ | $3.94 \mathrm{e}+000$ | $1.40 \mathrm{e}+005$ | . $89 \mathrm{e}+000$ |
| Iter | 4 | 4.24e-001 | 5.89e-001 | 3.44e-001 | $1.91 \mathrm{e}+004$ | 8.41e-001 |
| Iter | 5 | 1.23e-001 | 2.02e-001 | 9.97e-002 | $8.41 \mathrm{e}+003$ | 5.79e-001 |
| Iter | 6: | 3.98e-002 | 7.91e-002 | 3.23e-002 | $4.05 \mathrm{e}+003$ | 3.52e-001 |
| Iter | 7 | 7.25e-003 | 3.83e-002 | 5.88e-003 | $1.85 \mathrm{e}+003$ | 1.85e-001 |
| Iter | $8:$ | 1.47e-003 | 1.34e-002 | 1.19e-003 | $8.12 \mathrm{e}+002$ | 8.52e-002 |
| Iter | 9 9: | 2.52e-004 | 3.39e-003 | 2.04e-004 | $2.78 \mathrm{e}+002$ | 2.99e-002 |
| Iter | 10: | 3.46e-005 | 1.08e-003 | 2.81e-005 | $1.09 \mathrm{e}+002$ | 1.18e-002 |
| Iter | 11: | 6.96e-007 | 2.00e-012 | 5.64e-007 | $1.48 \mathrm{e}+001$ | $1.62 \mathrm{e}-003$ |
| Iter | 12: | 9.35e-007 | 6.98e-013 | 3.18e-008 | 8.32e-001 | 9.09e-005 |
| Iter | 13: | 1.14e-007 | 2.03e-012 | 3.86e-009 | 7.26e-002 | 7.94e-006 |
| ter | 4 | 1.92e-010 |  |  | 1.11e-003 |  |

```
    Iter 15: 1.05e-013 2.50e-012 3.71e-013 8.62e-008 9.42e-012
Optimization terminated.
```

You can see the returned values of exitflag, fval, and output:

```
exitflag =
    1
fval =
    9.1464e+003
output =
        iterations: 15
            algorithm: 'large-scale: interior point'
    cgiterations: 0
            message: 'Optimization terminated.
```

This time the algorithm detects dense columns in Aeq are detected. Therefore, instead of using a sparse Cholesky factorization, linprog tries to use the Sherman-Morrison formula to solve a linear system involving Aeq*Aeq'. If the Sherman-Morrison formula does not give a satisfactory residual, the algorithm uses a solution process based on LDL factorization. See "Main Algorithm" on page 6-20.

## Default Options Settings

In this section...<br>"Introduction" on page 4-79<br>"Changing the Default Settings" on page 4-79

## Introduction

The options structure contains options used in the optimization routines. If, on the first call to an optimization routine, the options structure is not provided, or is empty, a set of default options is generated. Some of the default options values are calculated using factors based on problem size, such as MaxFunEvals. Some options are dependent on the specific optimization routines and are documented on those function reference pages (See "Main Algorithm" on page 6-20).
"Optimization Options" on page 9-8 provides an overview of all the options in the options structure.

## Changing the Default Settings

The function optimset creates or updates an options structure to pass to the various optimization functions. The arguments to the optimset function are option name and option value pairs, such as TolX and 1e-4. Any unspecified properties have default values. You need to type only enough leading characters to define the option name uniquely. Case is ignored for option names. For option values that are strings, however, case and the exact string are necessary.
help optimset provides information that defines the different options and describes how to use them.

Here are some examples of the use of optimset.

## Returning All Options

optimset returns all the options that can be set with typical values and default values.

## Determining Options Used by a Function

The options structure defines the options that can be used by toolbox functions. Because functions do not use all the options, it can be useful to find which options are used by a particular function.

To determine which options structure fields are used by a function, pass the name of the function (in this example, fmincon) to optimset:

```
optimset('fmincon')
or
    optimset fmincon
or
optimset(@fmincon)
```

This statement returns a structure. Generally, fields not used by the function have empty values ([ ]); fields used by the function are set to their default values for the given function. However, some solvers have different default values depending on the algorithm used. For example, fmincon has a default MaxIter value of 400 for the trust-region-reflective and active-set algorithms, but a default value of 1000 for the interior-point algorithm. optimset fmincon returns [] for the MaxIter field.

You can also check the available options and their defaults in the Optimization Tool. These can change depending on problem and algorithm settings. These three pictures show how the available options for derivatives change as the type of supplied derivatives change:



## Displaying Output

To display output at each iteration, enter

```
options = optimset('Display','iter');
```

This command sets the value of the Display option to 'iter', which causes the solver to display output at each iteration. You can also turn off any output display ('off'), display output only at termination ('final'), or display output only if the problem fails to converge ('notify').

## Running Medium-Scale Optimization

For all functions that support medium- and large-scale optimization problems except fsolve, the default is for the function to use the large-scale algorithm. To use the medium-scale algorithm, enter

```
options = optimset('LargeScale','off');
```

For fsolve, the default is the medium-scale algorithm. To use the large-scale algorithm, enter

```
options = optimset('LargeScale','on');
```


## Setting More Than One Option

You can specify multiple options with one call to optimset. For example, to reset the output option and the tolerance on $x$, enter

```
options = optimset('Display','iter','TolX',1e-6);
```


## Updating an options Structure

To update an existing options structure, call optimset and pass options as the first argument:

```
options = optimset(options, 'Display','iter','TolX',1e-6);
```


## Retrieving Option Values

Use the optimget function to get option values from an options structure. For example, to get the current display option, enter the following:

```
verbosity = optimget(options,'Display');
```


## Displaying Iterative Output

In this section...<br>"Introduction" on page 4-84<br>"Most Common Output Headings" on page 4-84<br>"Function-Specific Output Headings" on page 4-85

Note An optimization function does not return all of the output headings, described in the following tables, each time you call it. Which output headings are returned depends on the algorithm the optimization function uses for a particular problem.

## Introduction

When you set 'Display' to 'iter' in options, the optimization functions display iterative output in the Command Window. This output, which provides information about the progress of the algorithm, is displayed in columns with descriptive headings. For example, if you run medium-scale fminunc with 'Display' set to 'iter', the output headings are

Iteration Func-count $f(x) \quad$ Step-size | First-order |
| :--- |
| optimality |

## Most Common Output Headings

The following table lists some common output headings of iterative output.

| Output Heading | Information Displayed |
| :--- | :--- |
| Iteration or Iter | Iteration number |
| Func-count or <br> F-count | Number of function evaluations |
| $x$ | Current point for the algorithm |
| $f(x)$ | Current function value |


| Output Heading | Information Displayed |
| :--- | :--- |
| Step-size | Step size in the current search direction |
| Norm of step | Norm of the current step |

## Function-Specific Output Headings

The following sections describe output headings of iterative output whose meaning is specific to the optimization function you are using.

- "bintprog" on page 4-85
- "fminsearch" on page 4-86
- "fzero and fminbnd" on page 4-87
- "fminunc" on page 4-87
- "fsolve" on page 4-88
- "fgoalattain, fmincon, fminimax, and fseminf" on page 4-88
- "linprog" on page 4-89
- "lsqnonlin and lsqcurvefit" on page 4-90


## bintprog

The following table describes the output headings specific to bintprog.

| bintprog <br> Output <br> Heading | Information Displayed |
| :--- | :--- | | Explored <br> nodes |
| :--- | Cumulative number of explored nodes $\left\lvert\,$| Obj of LP |
| :--- |
| relaxation | | Objective function value of the linear programming (LP) |
| :--- |
| relaxation problem |\right.


| bintprog <br> Output <br> Heading | Information Displayed |
| :--- | :--- |
| Unexplored <br> nodes | Number of nodes that have been set up but not yet <br> explored |
| Best lower <br> bound on obj | Objective function value of LP relaxation problem that <br> gives the best current lower bound on the final objective <br> function value |
| Relative <br> gap between <br> bounds | $\frac{100(b-a)}{\|b\|+1}$ <br> where |
| - $b$ is the objective function value of the best integer |  |
| point. |  |
| - $a$ is the best lower bound on the objective function |  |
| value. |  |

## fminsearch

The following table describes the output headings specific to fminsearch.

| fminsearch <br> Output <br> Heading | Information Displayed |
| :--- | :--- |
| min $f(x)$ | Minimum function value in the current simplex |
| Procedure | Simplex procedure at the current iteration. Procedures <br> include initial, expand, reflect, shrink, contract <br> inside, and contract outside. |

## fzero and fminbnd

The following table describes the output headings specific to fzero and fminbnd.

| fzero and fminbnd Output Heading | Information Displayed |
| :---: | :---: |
| Procedure | Procedure at the current operation. Procedures for fzero: <br> - initial (initial point) <br> - search (search for an interval containing a zero) <br> - bisection (bisection search) <br> - interpolation <br> Operations for fminbnd: <br> - initial <br> - golden (golden section search) <br> - parabolic (parabolic interpolation) |

## fminunc

The following table describes the output headings specific to fminunc.

| fminunc <br> Output <br> Heading | Information Displayed |
| :--- | :--- |
| First-order <br> optimality | First-order optimality measure (see "First-Order <br> Optimality Measure" on page 2-26) |
| CG-iterations | Number of conjugate gradient iterations taken by the <br> current (optimization) iteration (see "Preconditioned <br> Conjugate Gradients" on page 6-12) |

## fsolve

The following table describes the output headings specific to fsolve.

| fsolve Output <br> Heading | Information Displayed |
| :--- | :--- |
| First-order <br> optimality | First-order optimality measure (see "First-Order <br> Optimality Measure" on page 2-26) |
| Trust-region <br> radius | Current trust-region radius (change in the norm of the <br> trust-region radius) |
| Residual | Residual (sum of squares) of the function |
| Directional <br> derivative | Gradient of the function along the search direction |

## fgoalattain, fmincon, fminimax, and fseminf

The following table describes the output headings specific to fgoalattain, fmincon, fminimax, and fseminf.

| fgoalattain, <br> fmincon, <br> fminimax, fseminf <br> Output Heading | Information Displayed |
| :--- | :--- |
| Max constraint | Maximum violation among all constraints, both <br> internally constructed and user-provided |
| First-order <br> optimality | First-order optimality measure (see "First-Order <br> Optimality Measure" on page 2-26) |
| CG-iterations | Number of conjugate gradient iterations taken by the <br> current (optimization) iteration (see "Preconditioned <br> Conjugate Gradients" on page 6-12) |
| Trust-region <br> radius | Current trust-region radius |
| Residual | Residual (sum of squares) of the function |
| Attainment factor | Value of the attainment factor for fgoalattain |


| fgoalattain, <br> fmincon, <br> fminimax, fseminf <br> Output Heading | Information Displayed |
| :--- | :--- |
| Objective value | Objective function value of the nonlinear <br> programming reformulation of the minimax problem <br> for fminimax |
| Directional <br> derivative | Current gradient of the function along the search <br> direction |
| Procedure | Hessian update and QP subproblem. The Procedure <br> messages are discussed in "Updating the Hessian <br> Matrix" on page 5-32. |

## linprog

The following table describes the output headings specific to linprog.

| linprog Output <br> Heading | Information Displayed |
| :--- | :--- |
| Primal Infeas <br> $A^{*} x-b$ | Primal infeasibility |
| Dual Infeas <br> $A^{\prime} * y+z-w-f$ | Dual infeasibility |
| Duality Gap <br> $x^{\prime} * z+s^{\prime} * w$ | Duality gap (see "Large-Scale Linear Programming" on <br> page 6-20) between the primal objective and the dual <br> objective. s and w appear only in this equation if there <br> are finite upper bounds. |
| Total Rel <br> Error | Total relative error, described at the end of "Main <br> Algorithm" on page 6-20. |
| Objective f'*x | Current objective value |

## Isqnonlin and Isqcurvefit

The following table describes the output headings specific to lsqnonlin and lsqcurvefit.

| Isqnonlin and <br> Isqcurvefit <br> Output <br> Heading | Information Displayed |
| :--- | :--- |
| Resnorm | Value of the squared 2-norm of the residual at x |
| Residual | Residual vector of the function |
| First-order <br> optimality | First-order optimality measure (see "First-Order <br> Optimality Measure" on page 2-26) |
| CG-iterations | Number of conjugate gradient iterations taken by the <br> current (optimization) iteration (see "Preconditioned <br> Conjugate Gradients" on page 6-12) |
| Directional <br> derivative | Gradient of the function along the search direction |
| Lambda | $\lambda_{k}$ value defined in "Least-Squares Optimization" on <br> page 5-18. (This value is displayed when you use the <br> Levenberg-Marquardt method and omitted when you <br> use the Gauss-Newton method.) |

## Typical Problems and How to Deal with Them

Optimization problems can take many iterations to converge and can be sensitive to numerical problems such as truncation and round-off error in the calculation of finite-difference gradients. Most optimization problems benefit from good starting guesses. This improves the execution efficiency and can help locate the global minimum instead of a local minimum.

Advanced problems are best solved by an evolutionary approach, whereby a problem with a smaller number of independent variables is solved first. You can generally use solutions from lower order problems as starting points for higher order problems by using an appropriate mapping.

The use of simpler cost functions and less stringent termination criteria in the early stages of an optimization problem can also reduce computation time. Such an approach often produces superior results by avoiding local minima.

Optimization Toolbox ${ }^{\text {TM }}$ functions can be applied to a large variety of problems. Used with a little "conventional wisdom," you can overcome many of the limitations associated with optimization techniques. Additionally, you can handle problems that are not typically in the standard form by using an appropriate transformation. Below is a list of typical problems and recommendations for dealing with them.

## Troubleshooting

| Problem | Recommendation |
| :--- | :--- |
| fminunc produces | If you are not supplying analytically determined gradients and the |
| warning messages and |  |
| seems to exhibit slow |  |
| convergence near the |  |
| termination criteria are stringent, fminunc often exhibits slow |  |
| convergence near the solution due to truncation error in the gradient |  |
| calculation. Relaxing the termination criteria produces faster, |  |
| although less accurate, solutions. For the medium-scale algorithm, |  |
| another option is adjusting the finite-difference perturbation levels, |  |
| DiffMinChange and DiffMaxChange, which might increase the |  |
| accuracy of gradient calculations. |  |

## Troubleshooting (Continued)

| Problem | Recommendation |
| :--- | :--- |
| Sometimes an <br> optimization problem <br> has values of x for <br> which it is impossible to <br> evaluate the objective <br> function fun or the <br> nonlinear constraints <br> function nonlcon. | Place bounds on the independent variables or make a penalty <br> function to give a large positive value to f and g when infeasibility is <br> encountered. For gradient calculation, the penalty function should be <br> smooth and continuous. |
| The function that is <br> being minimized has <br> discontinuities. | The derivation of the underlying method is based upon functions <br> with continuous first and second derivatives. Some success might <br> be achieved for some classes of discontinuities when they do not <br> occur near solution points. One option is to smooth the function. <br> For example, the objective function might include a call to an <br> interpolation function to do the smoothing. |
| Or, for the medium-scale algorithms, you can adjust the <br> finite-difference parameters in order to jump over small <br> discontinuities. The variables DiffMinChange and DiffMaxChange <br> control the perturbation levels for x used in the calculation of <br> finite-difference gradients. The perturbation, $\Delta x$, is always in the <br> range DiffMinChange < Dx < DiffMaxChange. |  |
| Warning messages are <br> displayed. | This sometimes occurs when termination criteria are overly stringent, <br> or when the problem is particularly sensitive to changes in the <br> independent variables. This usually indicates truncation or round-off <br> errors in the finite-difference gradient calculation, or problems in <br> the polynomial interpolation routines. These warnings can usually <br> be ignored because the routines continue to make steps toward the <br> solution point; however, they are often an indication that convergence <br> will take longer than normal. Scaling can sometimes improve the <br> sensitivity of a problem. |

## Troubleshooting (Continued)

| Problem | Recommendation |
| :---: | :---: |
| The independent variables, $x$, can only take on discrete values, for example, integers. | This type of problem commonly occurs when, for example, the variables are the coefficients of a filter that are realized using finite-precision arithmetic or when the independent variables represent materials that are manufactured only in standard amounts. <br> Although Optimization Toolbox functions are not explicitly set up to solve discrete problems, you can solve some discrete problems by first solving an equivalent continuous problem. Do this by progressively eliminating discrete variables from the independent variables, which are free to vary. <br> Eliminate a discrete variable by rounding it up or down to the nearest best discrete value. After eliminating a discrete variable, solve a reduced order problem for the remaining free variables. Having found the solution to the reduced order problem, eliminate another discrete variable and repeat the cycle until all the discrete variables have been eliminated. <br> dfildemo is a demonstration routine that shows how filters with fixed-precision coefficients can be designed using this technique. (From the MATLAB ${ }^{\circledR}$ Help browser or the MathWorks ${ }^{\text {TM }}$ Web site documentation, you can click the demo name to display the demo.) |
| The minimization routine appears to enter an infinite loop or returns a solution that does not satisfy the problem constraints. | Your objective (fun), constraint (nonlcon, seminfcon), or gradient (computed by fun) functions might be returning Inf, NaN, or complex values. The minimization routines expect only real numbers to be returned. Any other values can cause unexpected results. Insert some checking code into the user-supplied functions to verify that only real numbers are returned (use the function isfinite). |
| You do not get the convergence you expect from the lsqnonlin routine. | You might be forming the sum of squares explicitly and returning a scalar value. lsqnonlin expects a vector (or matrix) of function values that are squared and summed internally. |

## Selected Bibliography

[1] Hairer, E., S. P. Norsett, and G. Wanner, Solving Ordinary Differential Equations I - Nonstiff Problems, Springer-Verlag, pp. 183-184.

## Standard Algorithms

Standard Algorithms describes the medium-scale (i.e., standard) algorithms used in toolbox functions. These algorithms have been chosen for their robustness and iterative efficiency. The choice of problem formulation (e.g., unconstrained, least-squares, constrained, minimax, multiobjective, or goal attainment) depends on the problem being considered and the required execution efficiency.
$\left.\begin{array}{ll}\begin{array}{l}\text { Optimization Theory Overview } \\ \text { (p. 5-4) }\end{array} & \begin{array}{l}\text { Introduces optimization as a way } \\ \text { of finding a set of parameters } \\ \text { that can be defined as optimal. } \\ \text { These parameters are obtained } \\ \text { by minimizing or maximizing an } \\ \text { objective function, subject to equality } \\ \text { or inequality constraints and/or } \\ \text { parameter bounds. }\end{array} \\ \text { Demos of Medium-Scale Methods } & \begin{array}{l}\text { Functions that demonstrate } \\ \text { medium-scale methods. }\end{array} \\ \text { (p. 5-5) } & \begin{array}{l}\text { Unconstrained Optimization (p. 5-6) }\end{array} \\ \begin{array}{l}\text { Discusses the use of quasi-Newton } \\ \text { and line search methods for }\end{array} \\ \text { unconstrained optimization. }\end{array}\right\}$
\(\left.$$
\begin{array}{ll}\text { Least-Squares Optimization (p. 5-18) } & \begin{array}{l}\text { Discusses the use of } \\
\text { the Gauss-Newton and }\end{array}
$$ <br>
\& Levenberg-Marquardt methods <br>
for nonlinear least-squares <br>

(LS) optimization. Also\end{array}\right]\)| provides implementation details |
| :--- |
| for the Gauss-Newton and |
|  |
| Levenberg-Marquardt methods |
| used in the nonlinear least-squares |
| optimization routines, lsqnonlin |
| and lsqcurvefit. |


| Multiobjective Optimization (p. 5-44) | Introduces multiobjective <br> optimization and discusses <br> strategies for dealing with competing <br> objectives. It discusses in detail the <br> use of the goal attainment method, <br> and suggests improvements to the |
| :--- | :--- |
| SQP method for use with the goal |  |
| attainment method. |  |

Note Medium-scale is not a standard term and is used here only to differentiate these algorithms from the large-scale algorithms described in Chapter 6, "Large-Scale Algorithms".

## Optimization Theory Overview

Optimization techniques are used to find a set of design parameters, $x=\left\{x_{1}, x_{1}, \ldots, x_{n}\right\}$, that can in some way be defined as optimal. In a simple case this might be the minimization or maximization of some system characteristic that is dependent on $x$. In a more advanced formulation the objective function, $f(x)$, to be minimized or maximized, might be subject to constraints in the form of equality constraints, $G_{i}(x)=0\left(i=1, \ldots, m_{e}\right)$; inequality constraints, $G_{i}(x) \leq 0$ ( $i=m_{e}+1, \ldots, m$ ); and/or parameter bounds, $x_{l}, x_{u}$.

A General Problem (GP) description is stated as

$$
\begin{equation*}
\min _{x} f(x), \tag{5-1}
\end{equation*}
$$

subject to

$$
\begin{array}{ll}
G_{i}(x)=0 & i=1, \ldots, m_{e}, \\
G_{i}(x) \leq 0 & i=m_{e}+1, \ldots, m,
\end{array}
$$

where $x$ is the vector of length $n$ design parameters, $f(x)$ is the objective function, which returns a scalar value, and the vector function $G(x)$ returns a vector of length $m$ containing the values of the equality and inequality constraints evaluated at $x$.

An efficient and accurate solution to this problem depends not only on the size of the problem in terms of the number of constraints and design variables but also on characteristics of the objective function and constraints. When both the objective function and the constraints are linear functions of the design variable, the problem is known as a Linear Programming (LP) problem. Quadratic Programming (QP) concerns the minimization or maximization of a quadratic objective function that is linearly constrained. For both the LP and QP problems, reliable solution procedures are readily available. More difficult to solve is the Nonlinear Programming (NP) problem in which the objective function and constraints can be nonlinear functions of the design variables. A solution of the NP problem generally requires an iterative procedure to establish a direction of search at each major iteration. This is usually achieved by the solution of an LP, a QP, or an unconstrained subproblem.

## Demos of Medium-Scale Methods

| From the MATLAB ${ }^{\circledR}$ Help browser or the MathWorks ${ }^{\mathrm{TM}}$ Web site |
| :--- |
| documentation, click the demo name to display the demo. |


| bandem | Minimization of banana function |
| :--- | :--- |
| datdemo | Fitting data to a curve |
| dfildemo | Finite-precision filter design (requires Signal <br> Processing Toolbox ${ }^{\mathrm{TM}}$ software) |
| goaldemo | Goal attainment example |
| officeassign | Binary integer programming to solve the office <br> assignment problem |
| tutdemo | Script for medium-scale algorithms, following <br> Chapter 4, "Tutorial" |

## Unconstrained Optimization

In this section...<br>"Introduction" on page 5-6<br>"Quasi-Newton Methods" on page 5-7<br>"Line Search" on page 5-9

## Introduction

Although a wide spectrum of methods exists for unconstrained optimization, methods can be broadly categorized in terms of the derivative information that is, or is not, used. Search methods that use only function evaluations (e.g., the simplex search of Nelder and Mead [30]) are most suitable for problems that are very nonlinear or have a number of discontinuities. Gradient methods are generally more efficient when the function to be minimized is continuous in its first derivative. Higher order methods, such as Newton's method, are only really suitable when the second-order information is readily and easily calculated, because calculation of second-order information, using numerical differentiation, is computationally expensive.

Gradient methods use information about the slope of the function to dictate a direction of search where the minimum is thought to lie. The simplest of these is the method of steepest descent in which a search is performed in a direction, $-\nabla f(x)$, where $\nabla f(x)$ is the gradient of the objective function. This method is very inefficient when the function to be minimized has long narrow valleys as, for example, is the case for Rosenbrock's function

$$
\begin{equation*}
f(x)=100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2} \tag{5-2}
\end{equation*}
$$

The minimum of this function is at $x=[1,1]$, where $f(x)=0$. A contour map of this function is shown in the figure below, along with the solution path to the minimum for a steepest descent implementation starting at the point [-1.9,2]. The optimization was terminated after 1000 iterations, still a considerable distance from the minimum. The black areas are where the method is continually zigzagging from one side of the valley to another. Note that toward the center of the plot, a number of larger steps are taken when a point lands exactly at the center of the valley.


Figure 5-1: Steepest Descent Method on Rosenbrock's Function (Eq. 3-2)
This function, also known as the banana function, is notorious in unconstrained examples because of the way the curvature bends around the origin. Rosenbrock's function is used throughout this section to illustrate the use of a variety of optimization techniques. The contours have been plotted in exponential increments because of the steepness of the slope surrounding the U-shaped valley.

## Quasi-Newton Methods

Of the methods that use gradient information, the most favored are the quasi-Newton methods. These methods build up curvature information at each iteration to formulate a quadratic model problem of the form

$$
\begin{equation*}
\min _{x} \frac{1}{2} x^{T} H x+c^{T} x+b \tag{5-3}
\end{equation*}
$$

where the Hessian matrix, $H$, is a positive definite symmetric matrix, $c$ is a constant vector, and $b$ is a constant. The optimal solution for this problem occurs when the partial derivatives of $x$ go to zero, i.e.,

$$
\begin{equation*}
\nabla f\left(x^{*}\right)=H x^{*}+c=0 . \tag{5-4}
\end{equation*}
$$

The optimal solution point, $x^{*}$, can be written as

$$
\begin{equation*}
x^{*}=-H^{-1} c . \tag{5-5}
\end{equation*}
$$

Newton-type methods (as opposed to quasi-Newton methods) calculate $H$ directly and proceed in a direction of descent to locate the minimum after a number of iterations. Calculating $H$ numerically involves a large amount of computation. Quasi-Newton methods avoid this by using the observed behavior of $f(x)$ and $\nabla f(x)$ to build up curvature information to make an approximation to $H$ using an appropriate updating technique.

A large number of Hessian updating methods have been developed. However, the formula of Broyden [3], Fletcher [12], Goldfarb [20], and Shanno [37] (BFGS) is thought to be the most effective for use in a General Purpose method.

The formula given by BFGS is

$$
\begin{equation*}
H_{k+1}=H_{k}+\frac{q_{k} q_{k}^{T}}{q_{k}^{T} s_{k}}-\frac{H_{k}^{T} s_{k}^{T} s_{k} H_{k}}{s_{k}^{T} H_{k} s_{k}}, \tag{5-6}
\end{equation*}
$$

where

$$
\begin{aligned}
s_{k} & =x_{k+1}-x_{k}, \\
q_{k} & =\nabla f\left(x_{k+1}\right)-\nabla f\left(x_{k}\right) .
\end{aligned}
$$

As a starting point, $H_{0}$ can be set to any symmetric positive definite matrix, for example, the identity matrix $I$. To avoid the inversion of the Hessian $H$, you can derive an updating method that avoids the direct inversion of $H$ by using a formula that makes an approximation of the inverse Hessian $H^{-1}$ at each update. A well-known procedure is the DFP formula of Davidon [7], Fletcher, and Powell [14]. This uses the same formula as the BFGS method (Equation 5-6) except that $q_{k}$ is substituted for $s_{k}$.

The gradient information is either supplied through analytically calculated gradients, or derived by partial derivatives using a numerical differentiation
method via finite differences. This involves perturbing each of the design variables, $x$, in turn and calculating the rate of change in the objective function.

At each major iteration, $k$, a line search is performed in the direction

$$
\begin{equation*}
d=-H_{k}^{-1} \cdot \nabla f\left(x_{k}\right) . \tag{5-7}
\end{equation*}
$$

The quasi-Newton method is illustrated by the solution path on Rosenbrock's function in Figure 5-2, BFGS Method on Rosenbrock's Function. The method is able to follow the shape of the valley and converges to the minimum after 140 function evaluations using only finite difference gradients.


Figure 5-2: BFGS Method on Rosenbrock's Function

## Line Search

Line search is a search method that is used as part of a larger optimization algorithm. At each step of the main algorithm, the line-search method searches along the line containing the current point, $x_{k}$, parallel to the search direction, which is a vector determined by the main algorithm. That is, the method finds the next iterate $x_{k+1}$ of the form

$$
\begin{equation*}
x_{k+1}=x_{k}+\alpha^{*} d_{k} \tag{5-8}
\end{equation*}
$$

where $x_{k}$ denotes the current iterate, $d_{k}$ is the search direction, and $\alpha^{*}$ is a scalar step length parameter.

The line search method attempts to decrease the objective function along the line $x_{k}+\alpha^{*} d_{k}$ by repeatedly minimizing polynomial interpolation models of the objective function. The line search procedure has two main steps:

- The bracketing phase determines the range of points on the line $x_{k+1}=x_{k}+\alpha^{*} d_{k}$ to be searched. The bracket corresponds to an interval specifying the range of values of $\alpha$.
- The sectioning step divides the bracket into subintervals, on which the minimum of the objective function is approximated by polynomial interpolation.

The resulting step length $\alpha$ satisfies the Wolfe conditions:

$$
\begin{align*}
& f\left(x_{k}+\alpha d_{k}\right) \leq f\left(x_{k}\right)+c_{1} \alpha \nabla f_{k}^{T} d_{k},  \tag{5-9}\\
& \nabla f\left(x_{k}+\alpha d_{k}\right)^{T} d_{k} \geq c_{2} \nabla f_{k}^{T} d_{k}, \tag{5-10}
\end{align*}
$$

where $c_{1}$ and $c_{2}$ are constants with $0<c_{1}<c_{2}<1$.
The first condition (Equation 5-9) requires that $\alpha_{k}$ sufficiently decreases the objective function. The second condition (Equation 5-10) ensures that the step length is not too small. Points that satisfy both conditions (Equation 5-9 and Equation 5-10) are called acceptable points.

The line search method is an implementation of the algorithm described in Section 2-6 of [13]. See also [31] for more information about line search.

## Quasi-Newton Implementation

In this section...<br>"Hessian Update" on page 5-11<br>"Line Search Procedures" on page 5-11

## Hessian Update

Many of the optimization functions determine the direction of search by updating the Hessian matrix at each iteration, using the BFGS method (Equation 5-6). The function fminunc also provides an option to use the DFP method given in "Quasi-Newton Methods" on page 5-7 (set HessUpdate to 'dfp' in options to select the DFP method). The Hessian, $H$, is always maintained to be positive definite so that the direction of search, $d$, is always in a descent direction. This means that for some arbitrarily small step $\alpha$ in the direction $d$, the objective function decreases in magnitude. You achieve positive definiteness of $H$ by ensuring that $H$ is initialized to be positive
definite and thereafter $q_{k}^{T} s_{k}$ (from Equation 5-11) is always positive. The term $q_{k}^{T} s_{k}$ is a product of the line search step length parameter $\alpha_{k}$ and a combination of the search direction $d$ with past and present gradient evaluations,

$$
\begin{equation*}
q_{k}^{T} s_{k}=\alpha_{k}\left(\nabla f\left(x_{k+1}\right)^{T} d-\nabla f\left(x_{k}\right)^{T} d\right) \tag{5-11}
\end{equation*}
$$

You always achieve the condition that $q_{k}^{T} s_{k}$ is positive by performing a sufficiently accurate line search. This is because the search direction, $d$, is a descent direction, so that $\alpha_{k}$ and the negative gradient $-\nabla f\left(x_{k}\right)^{T} d$ are always positive. Thus, the possible negative term $-\nabla f\left(x_{k+1}\right)^{T} d$ can be made as small in magnitude as required by increasing the accuracy of the line search.

## Line Search Procedures

After choosing the direction of the search, the optimization function uses a line search procedure to determine how far to move in the search direction.

This section describes the line search procedures used by the functions lsqnonlin, lsqcurvefit, and fsolve.

The functions use one of two line search strategies, depending on whether gradient information is readily available or whether it must be calculated using a finite difference method:

- When gradient information is available, the default is to use a cubic polynomial method.
- When gradient information is not available, the default is to use a mixed cubic and quadratic polynomial method.


## Cubic Polynomial Method

In the proposed cubic polynomial method, a gradient and a function evaluation are made at every iteration $k$. At each iteration an update is performed when a new point is found, $x_{k+1}$, that satisfies the condition

$$
\begin{equation*}
f\left(x_{k+1}\right)<f\left(x_{k}\right) . \tag{5-12}
\end{equation*}
$$

At each iteration a step, $\alpha_{k}$, is attempted to form a new iterate of the form

$$
\begin{equation*}
x_{k+1}=x_{k}+\alpha d_{k} \tag{5-13}
\end{equation*}
$$

If this step does not satisfy the condition (Equation 5-12), then $\alpha_{k}$ is reduced to form a new step, $\alpha_{k+1}$. The usual method for this reduction is to use bisection, i.e., to continually halve the step length until a reduction is achieved in $f(x)$. However, this procedure is slow when compared to an approach that involves using gradient and function evaluations together with cubic interpolation/extrapolation methods to identify estimates of step length.

When a point is found that satisfies the condition (Equation 5-12), an update is performed if $q_{k}^{T} s_{k}$ is positive. If it is not, then further cubic interpolations are performed until the univariate gradient term $\nabla f\left(x_{k+1}\right)^{T} d$ is sufficiently small so that $q_{k}^{T} s_{k}$ is positive.

It is usual practice to reset $\alpha_{k}$ to unity after every iteration. However, note that the quadratic model (Equation 5-3) is generally only a good one near
to the solution point. Therefore, $\alpha_{k}$ is modified at each major iteration to compensate for the case when the approximation to the Hessian is monotonically increasing or decreasing. To ensure that, as $x_{k}$ approaches the solution point, the procedure reverts to a value of $\alpha_{k}$ close to unity, the values of $q_{k}^{T} s_{k}-\nabla f\left(x_{k}\right)^{T} d$ and $\alpha_{k+1}$ are used to estimate the closeness to the solution point and thus to control the variation in $\alpha_{k}$.

Cubic Polynomial Line Search Procedures. After each update procedure, a step length $\alpha_{k}$ is attempted, following which a number of scenarios are possible. Consideration of all the possible cases is quite complicated and so they are represented pictorially below.

For each case:

- The left point on the graph represents the point $x_{k}$.
- The slope of the line bisecting each point represents the slope of the univariate gradient, $\nabla f\left(x_{k}\right)^{T} d$, which is always negative for the left point.
- The right point is the point $x_{k+1}$ after a step of $\alpha_{k}$ is taken in the direction $d$.

Case 1. $f\left(x_{k+1}\right)>f\left(x_{k}\right), \nabla f\left(x_{k+1}\right)^{T} d>0$



Case 2. $f\left(x_{k+1}\right) \leq f\left(x_{k}\right), \nabla f\left(x_{k+1}\right)^{T} d \geq 0$


Case 3. $f\left(x_{k+1}\right)<f\left(x_{k}\right), \nabla f\left(x_{k+1}\right)^{T} d<0$



Case 4. $f\left(x_{k+1}\right) \geq f\left(x_{k}\right), \nabla f\left(x_{k+1}\right)^{T} d \leq 0$, where

$$
p=1+q_{k}^{T} s_{k}-\nabla f\left(x_{k+1}\right)^{T} d+\min \left\{0, \alpha_{k+1}\right\} .
$$



Cases 1 and 2 show the procedures performed when the value $\nabla f\left(x_{k+1}\right)^{T} d$ is positive. Cases 3 and 4 show the procedures performed when the value
$\nabla f\left(x_{k+1}\right)^{T} d$ is negative. The notation $\min \{a, b, c\}$ refers to the smallest value of the set $\{a, b, c\}$.

At each iteration a cubically interpolated step length $\alpha_{c}$ is calculated and then used to adjust the step length parameter $\alpha_{k+1}$. Occasionally, for very nonlinear functions $\alpha_{c}$ can be negative, in which case $\alpha_{c}$ is given a value of $2 \alpha_{k}$.

Certain robustness measures have also been included so that, even in the case when false gradient information is supplied, you can achieve a reduction in $f(x)$ by taking a negative step. You do this by setting $\alpha_{k+1}=-\alpha_{k} / 2$ when $\alpha_{k}$ falls below a certain threshold value (e.g., 1e-8). This is important when extremely high precision is required, if only finite difference gradients are available.

## Mixed Cubic and Quadratic Polynomial Method

The cubic interpolation/extrapolation method has proved successful for a large number of optimization problems. However, when analytic derivatives are not available, evaluating finite difference gradients is computationally expensive. Therefore, another interpolation/extrapolation method is implemented so that gradients are not needed at every iteration. The approach in these circumstances, when gradients are not readily available, is to use a quadratic interpolation method. The minimum is generally bracketed using some form of bisection method. This method, however, has the disadvantage that all the available information about the function is not used. For instance, a gradient calculation is always performed at each major iteration for the Hessian update. Therefore, given three points that bracket the minimum, it is possible to use cubic interpolation, which is likely to be more accurate than using quadratic interpolation. Further efficiencies are possible if, instead of using bisection to bracket the minimum, extrapolation methods similar to those used in the cubic polynomial method are used.

Hence, the method that is used in lsqnonlin, lsqcurvefit, and fsolve is to find three points that bracket the minimum and to use cubic interpolation to estimate the minimum at each line search. The estimation of step length at each minor iteration, $j$, is shown in the following graphs for a number of point combinations. The leftmost point in each graph represents the function value $f\left(x_{1}\right)$ and univariate gradient $\nabla f\left(x_{k}\right)$ obtained at the last update. The remaining points represent the points accumulated in the minor iterations of the line search procedure.

The terms $\alpha_{q}$ and $\alpha_{c}$ refer to the minimum obtained from a respective quadratic and cubic interpolation or extrapolation. For highly nonlinear functions, $\alpha_{q}$ and $\alpha_{c}$ can be negative, in which case they are set to a value of $2 \alpha_{k}$
so that they are always maintained to be positive. Cases 1 and 2 use quadratic interpolation with two points and one gradient to estimate a third point that brackets the minimum. If this fails, cases 3 and 4 represent the possibilities for changing the step length when at least three points are available.

When the minimum is finally bracketed, cubic interpolation is achieved using one gradient and three function evaluations. If the interpolated point is greater than any of the three used for the interpolation, then it is replaced with the point with the smallest function value. Following the line search procedure, the Hessian update procedure is performed as for the cubic polynomial line search method.

The following graphs illustrate the line search procedures for Cases 1 through 4 , with a gradient only for the first point.

Case 1. $f\left(x_{j}\right) \geq f\left(x_{k}\right)$



Case 2. $f\left(x_{j}\right)<f\left(x_{k}\right)$



Case 3. $f\left(x_{j+1}\right)<f\left(x_{k}\right)$


Case 4. $f\left(x_{j+1}\right)>f\left(x_{k}\right)$



## Least-Squares Optimization

## In this section...

"Introduction" on page 5-18
"Gauss-Newton Method" on page 5-20
"Levenberg-Marquardt Method" on page 5-21
"Nonlinear Least-Squares Implementation" on page 5-22

## Introduction

The line search procedures used in conjunction with a quasi-Newton method are used as part of the nonlinear least-squares (LS) optimization routines, lsqnonlin and lsqcurvefit. In the least-squares problem a function $f(x)$ is minimized that is a sum of squares.

$$
\begin{equation*}
\min _{x} f(x)=\|F(x)\|_{2}^{2}=\sum_{i} F_{i}^{2}(x) \tag{5-14}
\end{equation*}
$$

Problems of this type occur in a large number of practical applications, especially when fitting model functions to data, i.e., nonlinear parameter estimation. They are also prevalent in control where you want the output, $y(x, t)$, to follow some continuous model trajectory, $\varphi(t)$, for vector $x$ and scalar $t$. This problem can be expressed as

$$
\begin{equation*}
\min _{x \in \mathfrak{R}^{n}} \int_{t_{1}}^{t_{2}}(y(x, t)-\varphi(t))^{2} d t \tag{5-15}
\end{equation*}
$$

where $y(x, t)$ and $\varphi(t)$ are scalar functions.
When the integral is discretized using a suitable quadrature formula, the above can be formulated as a least-squares problem:

$$
\begin{equation*}
\min _{x \in \Re^{n}} f(x)=\sum_{i=1}^{m}\left(\bar{y}\left(x, t_{i}\right)-\bar{\varphi}\left(t_{i}\right)\right)^{2}, \tag{5-16}
\end{equation*}
$$

where $\bar{y}$ and $\bar{\varphi}$ include the weights of the quadrature scheme. Note that in this problem the vector $F(x)$ is

$$
F(x)=\left[\begin{array}{c}
\bar{y}\left(x, t_{1}\right)-\bar{\varphi}\left(t_{1}\right) \\
\bar{y}\left(x, t_{2}\right)-\bar{\varphi}\left(t_{2}\right) \\
\ldots \\
\bar{y}\left(x, t_{m}\right)-\bar{\varphi}\left(t_{m}\right)
\end{array}\right] .
$$

In problems of this kind, the residual $||F(x)||$ is likely to be small at the optimum since it is general practice to set realistically achievable target trajectories. Although the function in LS can be minimized using a general unconstrained minimization technique, as described in "Unconstrained Optimization" on page 5-6, certain characteristics of the problem can often be exploited to improve the iterative efficiency of the solution procedure. The gradient and Hessian matrix of LS have a special structure.

Denoting the $m$-by- $n$ Jacobian matrix of $F(x)$ as $J(x)$, the gradient vector of $f(x)$ as $G(x)$, the Hessian matrix of $f(x)$ as $H(x)$, and the Hessian matrix of each $F_{i}(x)$ as $H_{i}(x)$, you have

$$
\begin{align*}
& G(x)=2 J(x)^{T} F(x) \\
& H(x)=2 J(x)^{T} J(x)+2 Q(x) \tag{5-17}
\end{align*}
$$

where

$$
Q(x)=\sum_{i=1}^{m} F_{i}(x) \cdot H_{i}(x) .
$$

The matrix $Q(x)$ has the property that when the residual $||F(x)||$ tends to zero as $x_{k}$ approaches the solution, then $Q(x)$ also tends to zero. Thus when $||F(x)||$ is small at the solution, a very effective method is to use the Gauss-Newton direction as a basis for an optimization procedure.

## Gauss-Newton Method

In the Gauss-Newton method, a search direction, $d_{k}$, is obtained at each major iteration, $k$, that is a solution of the linear least-squares problem:

$$
\begin{equation*}
\min _{x \in \mathfrak{R}^{n}}\left\|J\left(x_{k}\right)-F\left(x_{k}\right)\right\|_{2}^{2} . \tag{5-18}
\end{equation*}
$$

The direction derived from this method is equivalent to the Newton direction when the terms of $Q(x)$ can be ignored. The search direction $d_{k}$ can be used as part of a line search strategy to ensure that at each iteration the function $f(x)$ decreases.

Consider the efficiencies that are possible with the Gauss-Newton method. Gauss-Newton Method on Rosenbrock's Function on page 5-20 shows the path to the minimum on Rosenbrock's function when posed as a least-squares problem. The Gauss-Newton method converges after only 48 function evaluations using finite difference gradients, compared to 140 iterations using an unconstrained BFGS method.


Figure 5-3: Gauss-Newton Method on Rosenbrock's Function
The Gauss-Newton method often encounters problems when the second-order term $Q(x)$ is significant. A method that overcomes this problem is the Levenberg-Marquardt method.

## Levenberg-Marquardt Method

The Levenberg-Marquardt [25], and [27] method uses a search direction that is a solution of the linear set of equations

$$
\begin{equation*}
\left(J\left(x_{k}\right)^{T} J\left(x_{k}\right)+\lambda_{k} I\right) d_{k}=-J\left(x_{k}\right)^{T} F\left(x_{k}\right), \tag{5-19}
\end{equation*}
$$

where the scalar $\lambda_{k}$ controls both the magnitude and direction of $d_{k}$. When $\lambda_{k}$ is zero, the direction $d_{k}$ is identical to that of the Gauss-Newton method. As $\lambda_{k}$ tends to infinity, $d_{k}$ tends toward a vector of zeros and a steepest descent direction. This implies that for some sufficiently large $\lambda_{k}$, the term $F\left(x_{k}+d_{k}\right)<F\left(x_{k}\right)$ holds true. The term $\lambda_{k}$ can therefore be controlled to ensure descent even when second-order terms, which restrict the efficiency of the Gauss-Newton method, are encountered.

The Levenberg-Marquardt method therefore uses a search direction that is a cross between the Gauss-Newton direction and the steepest descent. This is illustrated in Figure 5-4, Levenberg-Marquardt Method on Rosenbrock's Function. The solution for Rosenbrock's function converges after 90 function evaluations compared to 48 for the Gauss-Newton method. The poorer efficiency is partly because the Gauss-Newton method is generally more effective when the residual is zero at the solution. However, such information is not always available beforehand, and the increased robustness of the Levenberg-Marquardt method compensates for its occasional poorer efficiency.


Figure 5-4: Levenberg-Marquardt Method on Rosenbrock's Function

## Nonlinear Least-Squares Implementation

For a general survey of nonlinear least-squares methods, see Dennis [8]. Specific details on the Levenberg-Marquardt method can be found in Moré [28]. Both the Gauss-Newton method and the Levenberg-Marquardt method are implemented in Optimization Toolbox ${ }^{\mathrm{TM}}$ solvers. Details of the implementations are discussed below:

- "Gauss-Newton Implementation" on page 5-22
- "Levenberg-Marquardt Implementation" on page 5-22


## Gauss-Newton Implementation

The Gauss-Newton method is implemented using polynomial line search strategies similar to those discussed for unconstrained optimization. In solving the linear least-squares problem, you can avoid exacerbation of the conditioning of the equations by using the QR decomposition of $J\left(x_{k}\right)$ and applying the decomposition to $F\left(x_{k}\right)$ (using the MATLAB ${ }^{\circledR} \backslash$ operator). This is in contrast to inverting the explicit matrix, $J\left(x_{k}\right)^{T} J\left(x_{k}\right)$, which can cause unnecessary errors to occur.

Robustness measures are included in the method. These measures consist of changing the algorithm to the Levenberg-Marquardt method when either the step length goes below a threshold value ( $1 \mathrm{e}-15$ in this implementation) or when the condition number of $J\left(x_{k}\right)$ is below $1 \mathrm{e}-10$. The condition number is a ratio of the largest singular value to the smallest.

## Levenberg-Marquardt Implementation

The main difficulty in the implementation of the Levenberg-Marquardt method is an effective strategy for controlling the size of $\lambda_{k}$ at each iteration so that it is efficient for a broad spectrum of problems. The method used in this implementation is to estimate the relative nonlinearity of $f(x)$ using a linear predicted sum of squares $f_{p}\left(x_{k}\right)$ and a cubically interpolated estimate of the minimum $f_{k}\left(x^{*}\right)$. In this way the size of $\lambda_{k}$ is determined at each iteration.

The linear predicted sum of squares is calculated as

$$
\begin{equation*}
f_{p}\left(x_{k}\right)=J\left(x_{k-1}\right) d_{k-1}+F\left(x_{k-1}\right) \tag{5-20}
\end{equation*}
$$

and the term $f_{k}\left(x^{*}\right)$ is obtained by cubically interpolating the points $f\left(x_{k}\right)$ and $f\left(x_{k-1}\right)$. A step length parameter $\alpha^{*}$ is also obtained from this interpolation, which is the estimated step to the minimum. If $f_{p}\left(x_{k}\right)$ is greater than $f_{k}\left(x^{*}\right)$, then $\lambda_{k}$ is reduced, otherwise it is increased. The justification for this is that the difference between $f_{p}\left(x_{k}\right)$ and $f_{k}\left(x^{*}\right)$ is a measure of the effectiveness of the Gauss-Newton method and the linearity of the problem. This determines whether to use a direction approaching the steepest descent direction or the Gauss-Newton direction.

The formulas for the reduction and increase in $\lambda_{k}$, which have been developed through consideration of a large number of test problems, are shown in the following figure.


Figure 5-5: Updating $\lambda_{k}$
Following the update of $\lambda_{k}$, a solution of Equation 5-19 is used to obtain a search direction, $d_{k}$. A step length of unity is then taken in the direction $d_{k}$, which is followed by a line search procedure similar to that discussed for the unconstrained implementation. The line search procedure ensures that $f\left(x_{k+1}\right)<f\left(x_{k}\right)$ at each major iteration and the method is therefore a descent method.

The implementation has been successfully tested on a large number of nonlinear problems. It has proved to be more robust than the Gauss-Newton method and iteratively more efficient than an unconstrained method. When
the option 'LargeScale' is 'off', the Levenberg-Marquardt algorithm is the default method used by lsqnonlin and lsqcurvefit. You can select the Gauss-Newton method by setting LevenbergMarquardt to 'off' in options.

## Nonlinear Systems of Equations

In this section...<br>"Introduction" on page 5-25<br>"Gauss-Newton Method" on page 5-25<br>"Trust-Region Dogleg Method" on page 5-26<br>"Nonlinear Equations Implementation" on page 5-27

## Introduction

Solving a nonlinear system of equations $F(x)$ involves finding a solution such that every equation in the nonlinear system is 0 . That is, there are $n$ equations and $n$ unknowns. The objective is to find $x$, an element of the $n$-dimensional real numbers, such that $F(x)=0$, where

$$
F(x)=\left[\begin{array}{c}
F_{1}(x) \\
F_{1}(x) \\
\vdots \\
F_{1}(x)
\end{array}\right] .
$$

The assumption is that a zero, or root, of the system exists. These equations may represent economic constraints, for example, that must all be satisfied.

## Gauss-Newton Method

One approach to solving this problem is to use a Nonlinear Least-Squares solver, such as those described in "Least-Squares Optimization" on page $5-18$. Since the assumption is the system has a root, it would have a small residual; therefore, using the Gauss-Newton Method is effective. In this case, each iteration solves a linear least-squares problem, as described in Equation $5-18$, to find the search direction. (See "Gauss-Newton Method" on page 5-20 for more information.)

## Trust-Region Dogleg Method

Another approach is to solve a linear system of equations to find the search direction, namely, Newton's method says to solve for the search direction $d_{k}$ such that

$$
\begin{aligned}
& J\left(x_{k}\right) d_{k}=-F\left(x_{k}\right) \\
& x_{k+1}=x_{k}+d_{k},
\end{aligned}
$$

where $J\left(x_{k}\right)$ is the $n$-by- $n$ Jacobian

$$
J\left(x_{k}\right)=\left[\begin{array}{c}
\nabla F_{1}\left(x_{k}\right)^{T} \\
\nabla F_{2}\left(x_{k}\right)^{T} \\
\vdots \\
\nabla F_{n}\left(x_{k}\right)^{T}
\end{array}\right] .
$$

Newton's method can run into difficulties. $J\left(x_{k}\right)$ may be singular, and so the Newton step $d_{k}$ is not even defined. Also, the exact Newton step $d_{k}$ may be expensive to compute. In addition, Newton's method may not converge if the starting point is far from the solution.

Using trust-region techniques (introduced in "Trust-Region Methods for Nonlinear Minimization" on page 6-3) improves robustness when starting far from the solution and handles the case when $J\left(x_{k}\right)$ is singular. To use a trust-region strategy, a merit function is needed to decide if $x_{k+1}$ is better or worse than $x_{k}$. A possible choice is

$$
\min _{d} f(d)=\frac{1}{2} F\left(x_{k}+d\right)^{T} F\left(x_{k}+d\right) .
$$

But a minimum of $f(d)$ is not necessarily a root of $F(x)$.
The Newton step $d_{k}$ is a root of

$$
M\left(x_{k}+d\right)=F\left(x_{k}\right)+J\left(x_{k}\right) d,
$$

and so it is also a minimum of $m(d)$, where

$$
\begin{align*}
\min _{d} m(d) & =\frac{1}{2}\left\|M\left(x_{k}+d\right)\right\|_{2}^{2}=\frac{1}{2}\left\|F\left(x_{k}\right)+J\left(x_{k}\right) d\right\|_{2}^{2} \\
& =\frac{1}{2} F\left(x_{k}\right)^{T} F\left(x_{k}\right)+d^{T} J\left(x_{k}\right)^{T} F\left(x_{k}\right)+\frac{1}{2} d^{T} J\left(x_{k}\right)^{T} J\left(x_{k}\right) d . \tag{5-21}
\end{align*}
$$

Then $m(d)$ is a better choice of merit function than $f(d)$, and so the trust-region subproblem is

$$
\begin{equation*}
\min _{d}\left[\frac{1}{2} F\left(x_{k}\right)^{T} F\left(x_{k}\right)+d^{T} J\left(x_{k}\right)^{T} F\left(x_{k}\right)+\frac{1}{2} d^{T} J\left(x_{k}\right)^{T} J\left(x_{k}\right) d\right], \tag{5-22}
\end{equation*}
$$

such that $||D \cdot d|| \leq \Delta$. This subproblem can be efficiently solved using a dogleg strategy.

For an overview of trust-region methods, see Conn [4], and Nocedal [31].

## Nonlinear Equations Implementation

Both the Gauss-Newton and trust-region dogleg methods are implemented in Optimization Toolbox ${ }^{\mathrm{TM}}$ solvers. Details of their implementations are discussed below.

## Gauss-Newton Implementation

The Gauss-Newton implementation is the same as that for least-squares optimization. It is described in "Gauss-Newton Implementation" on page 5-22.

## Trust-Region Dogleg Implementation

The key feature of this algorithm is the use of the Powell dogleg procedure for computing the step $d$, which minimizes Equation 5-22. For a detailed description, see Powell [34].

The step $d$ is constructed from a convex combination of a Cauchy step (a step along the steepest descent direction) and a Gauss-Newton step for $f(x)$. The Cauchy step is calculated as

$$
d_{C}=-\mathrm{a} J\left(x_{k}\right)^{T} F\left(x_{k}\right),
$$

where $\alpha$ is chosen to minimize Equation 5-21.

The Gauss-Newton step is calculated by solving

$$
J\left(x_{k}\right) \cdot d_{G N}=-F\left(x_{k}\right),
$$

using the MATLAB ${ }^{\circledR} \backslash$ (matrix left division) operator.
The step $d$ is chosen so that

$$
d=d_{C}+\lambda\left(d_{G N}-d_{C}\right)
$$

where $\lambda$ is the largest value in the interval $[0,1]$ such that $||d|| \leq \Delta$. If $J_{k}$ is (nearly) singular, $d$ is just the Cauchy direction.

The dogleg algorithm is efficient since it requires only one linear solve per iteration (for the computation of the Gauss-Newton step). Additionally, it can be more robust than using the Gauss-Newton method with a line search.

## Constrained Optimization

In this section...<br>"Introduction" on page 5-29<br>"Sequential Quadratic Programming (SQP)" on page 5-30<br>"Quadratic Programming (QP) Subproblem" on page 5-31<br>"SQP Implementation" on page 5-32<br>"Simplex Algorithm" on page 5-39

## Introduction

In constrained optimization, the general aim is to transform the problem into an easier subproblem that can then be solved and used as the basis of an iterative process. A characteristic of a large class of early methods is the translation of the constrained problem to a basic unconstrained problem by using a penalty function for constraints that are near or beyond the constraint boundary. In this way the constrained problem is solved using a sequence of parameterized unconstrained optimizations, which in the limit (of the sequence) converge to the constrained problem. These methods are now considered relatively inefficient and have been replaced by methods that have focused on the solution of the Karush-Kuhn-Tucker (KKT) equations. The KKT equations are necessary conditions for optimality for a constrained optimization problem. If the problem is a so-called convex programming problem, that is, $f(x)$ and $G_{i}(x), i=1, \ldots, m$, are convex functions, then the KKT equations are both necessary and sufficient for a global solution point.

Referring to GP (Equation 5-1), the Kuhn-Tucker equations can be stated as

$$
\begin{align*}
\nabla f\left(x^{*}\right)+\sum_{i=1}^{m} \lambda_{i} \cdot \nabla G_{i}\left(x^{*}\right) & =0 \\
\lambda_{i} \cdot G_{i}\left(x^{*}\right) & =0, \quad i=1, \ldots, m_{e} \\
\lambda_{i} & \geq 0, \quad i=m_{e}+1, \ldots, m, \tag{5-23}
\end{align*}
$$

in addition to the original constraints in Equation 5-1.

The first equation describes a canceling of the gradients between the objective function and the active constraints at the solution point. For the gradients to be canceled, Lagrange multipliers ( $\lambda_{i}, i=1, \ldots, m$ ) are necessary to balance the deviations in magnitude of the objective function and constraint gradients. Because only active constraints are included in this canceling operation, constraints that are not active must not be included in this operation and so are given Lagrange multipliers equal to 0 . This is stated implicitly in the last two Kuhn-Tucker equations.

The solution of the KKT equations forms the basis to many nonlinear programming algorithms. These algorithms attempt to compute the Lagrange multipliers directly. Constrained quasi-Newton methods guarantee superlinear convergence by accumulating second-order information regarding the KKT equations using a quasi-Newton updating procedure. These methods are commonly referred to as Sequential Quadratic Programming (SQP) methods, since a QP subproblem is solved at each major iteration (also known as Iterative Quadratic Programming, Recursive Quadratic Programming, and Constrained Variable Metric methods).

## Sequential Quadratic Programming (SQP)

SQP methods represent the state of the art in nonlinear programming methods. Schittkowski [36], for example, has implemented and tested a version that outperforms every other tested method in terms of efficiency, accuracy, and percentage of successful solutions, over a large number of test problems.

Based on the work of Biggs [1], Han [22], and Powell ([32] and [33]), the method allows you to closely mimic Newton's method for constrained optimization just as is done for unconstrained optimization. At each major iteration, an approximation is made of the Hessian of the Lagrangian function using a quasi-Newton updating method. This is then used to generate a QP subproblem whose solution is used to form a search direction for a line search procedure. An overview of SQP is found in Fletcher [13], Gill et. al. [19], Powell [35], and Schittkowski [23]. The general method, however, is stated here.

Given the problem description in GP (Equation 5-1) the principal idea is the formulation of a QP subproblem based on a quadratic approximation of the Lagrangian function.

$$
\begin{equation*}
L(x, \lambda)=f(x)+\sum_{i=1}^{m} \lambda_{i} \cdot g_{i}(x) . \tag{5-24}
\end{equation*}
$$

Here you simplify Equation $5-1$ by assuming that bound constraints have been expressed as inequality constraints. You obtain the QP subproblem by linearizing the nonlinear constraints.

## Quadratic Programming (QP) Subproblem

$$
\begin{align*}
& \min _{d \in \mathfrak{R}^{n}} \frac{1}{2} d^{T} H_{k} d+\nabla f\left(x_{k}\right)^{T} d \\
& \nabla g_{i}\left(x_{k}\right)^{T} d+g_{i}\left(x_{k}\right)=0, \quad i=1, \ldots, m_{e} \\
& \nabla g_{i}\left(x_{k}\right)^{T} d+g_{i}\left(x_{k}\right) \leq 0, \quad i=m_{e}+1, \ldots, m \tag{5-25}
\end{align*}
$$

This subproblem can be solved using any QP algorithm (see, for instance, "Quadratic Programming Solution" on page 5-34). The solution is used to form a new iterate

$$
x_{k+1}=x_{k}+\alpha_{k} d_{k} .
$$

The step length parameter $\alpha_{k}$ is determined by an appropriate line search procedure so that a sufficient decrease in a merit function is obtained (see "Updating the Hessian Matrix" on page 5-32). The matrix $H_{k}$ is a positive definite approximation of the Hessian matrix of the Lagrangian function (Equation 5-24). $H_{k}$ can be updated by any of the quasi-Newton methods, although the BFGS method (see "Updating the Hessian Matrix" on page 5-32) appears to be the most popular.

A nonlinearly constrained problem can often be solved in fewer iterations than an unconstrained problem using SQP. One of the reasons for this is that, because of limits on the feasible area, the optimizer can make informed decisions regarding directions of search and step length.

Consider Rosenbrock's function with an additional nonlinear inequality constraint, $g(x)$,

$$
\begin{equation*}
x_{1}^{2}+x_{2}^{2}-1.5 \leq 0 . \tag{5-26}
\end{equation*}
$$

This was solved by an SQP implementation in 96 iterations compared to 140 for the unconstrained case. SQP Method on Nonlinear Linearly Constrained Rosenbrock's Function (Eq. 3-2) on page 5-32 shows the path to the solution point $x=[0.9072,0.8228]$ starting at $x=[-1.9,2.0]$.


Figure 5-6: SQP Method on Nonlinear Linearly Constrained Rosenbrock's Function (Eq. 3-2)

## SQP Implementation

The SQP implementation consists of three main stages, which are discussed briefly in the following subsections:

- "Updating the Hessian Matrix" on page 5-32
- "Quadratic Programming Solution" on page 5-34
- "Line Search and Merit Function" on page 5-38


## Updating the Hessian Marrix

At each major iteration a positive definite quasi-Newton approximation of the Hessian of the Lagrangian function, $H$, is calculated using the BFGS method, where $\lambda_{i}, i=1, \ldots, m$, is an estimate of the Lagrange multipliers.

$$
\begin{equation*}
H_{k+1}=H_{k}+\frac{q_{k} q_{k}^{T}}{q_{k}^{T} s_{k}}-\frac{H_{k}^{T} s_{k}^{T} s_{k} H_{k}}{s_{k}^{T} H_{k} s_{k}}, \tag{5-27}
\end{equation*}
$$

where

$$
\begin{aligned}
& s_{k}=x_{k+1}-x_{k} \\
& q_{k}=\left(\nabla f\left(x_{k+1}\right)+\sum_{i=1}^{m} \lambda_{i} \cdot \nabla g_{i}\left(x_{k+1}\right)\right)-\left(\nabla f\left(x_{k}\right)+\sum_{i=1}^{m} \lambda_{i} \cdot \nabla g_{i}\left(x_{k}\right)\right) .
\end{aligned}
$$

Powell [33] recommends keeping the Hessian positive definite even though it might be positive indefinite at the solution point. A positive definite
Hessian is maintained providing $q_{k}^{T} s_{k}$ is positive at each update and that $H$ is initialized with a positive definite matrix. When $q_{k}^{T} s_{k}$ is not positive, $q_{k}$ is modified on an element-by-element basis so that $q_{k}^{T} s_{k}>0$. The general aim of this modification is to distort the elements of $q_{k}$, which contribute to a positive definite update, as little as possible. Therefore, in the initial phase of the modification, the most negative element of $q_{k}{ }^{*} s_{k}$ is repeatedly halved.

This procedure is continued until $q_{k}^{T} s_{k}$ is greater than or equal to a small
negative tolerance. If, after this procedure, $q_{k}^{T} s_{k}$ is still not positive, modify $q_{k}$ by adding a vector $v$ multiplied by a constant scalar $w$, that is,

$$
\begin{equation*}
q_{k}=q_{k}+w v, \tag{5-28}
\end{equation*}
$$

where

$$
\begin{aligned}
& v_{i}=\nabla g_{i}\left(x_{k+1}\right) \cdot g_{i}\left(x_{k+1}\right)-\nabla g_{i}\left(x_{k}\right) \cdot g_{i}\left(x_{k}\right) \\
& \quad \text { if }\left(q_{k}\right)_{i} \cdot w<0 \text { and }\left(q_{k}\right)_{i} \cdot\left(s_{k}\right)_{i}<0, i=1, \ldots, m \\
& v_{i}=0 \text { otherwise, }
\end{aligned}
$$

and increase $w$ systematically until $q_{k}^{T} s_{k}$ becomes positive.
The functions fmincon, fminimax, fgoalattain, and fseminf all use SQP. If Display is set to 'iter' in options, then various information is given
such as function values and the maximum constraint violation. When the Hessian has to be modified using the first phase of the preceding procedure to keep it positive definite, then Hessian modified is displayed. If the Hessian has to be modified again using the second phase of the approach described above, then Hessian modified twice is displayed. When the QP subproblem is infeasible, then infeasible is displayed. Such displays are usually not a cause for concern but indicate that the problem is highly nonlinear and that convergence might take longer than usual. Sometimes the message no update is displayed, indicating that $q_{k}^{T} s_{k}$ is nearly zero. This can be an indication that the problem setup is wrong or you are trying to minimize a noncontinuous function.

## Quadratic Programming Solution

At each major iteration of the SQP method, a QP problem of the following form is solved, where $A_{i}$ refers to the ith row of the $m$-by- $n$ matrix $A$.

$$
\begin{align*}
\min _{d \in \mathfrak{R}^{n}} q(d) & =\frac{1}{2} d^{T} H d+c^{T} d \\
A_{i} d & =b_{i}, \quad i=1, \ldots, m_{e} \\
A_{i} d & \leq b_{i}, \quad i=m_{e}+1, \ldots, m \tag{5-29}
\end{align*}
$$

The method used in Optimization Toolbox ${ }^{\mathrm{TM}}$ functions is an active set strategy (also known as a projection method) similar to that of Gill et. al., described in [18] and [17]. It has been modified for both Linear Programming (LP) and Quadratic Programming (QP) problems.

The solution procedure involves two phases. The first phase involves the calculation of a feasible point (if one exists). The second phase involves the generation of an iterative sequence of feasible points that converge to the
solution. In this method an active set, $\bar{A}_{k}$, is maintained that is an estimate of the active constraints (i.e., those that are on the constraint boundaries) at the solution point. Virtually all QP algorithms are active set methods. This point is emphasized because there exist many different methods that are very similar in structure but that are described in widely different terms.
$\bar{A}_{k}$ is updated at each iteration $k$, and this is used to form a basis for a search direction $\hat{d}_{k}$. Equality constraints always remain in the active set $\bar{A}_{k}$. The notation for the variable $\hat{d}_{k}$ is used here to distinguish it from $d_{k}$ in the major iterations of the SQP method. The search direction $\hat{d}_{k}$ is calculated and minimizes the objective function while remaining on any active constraint boundaries. The feasible subspace for $\hat{d}_{k}$ is formed from a basis $Z_{k}$ whose columns are orthogonal to the estimate of the active set $\bar{A}_{k}$ (i.e., $\bar{A}_{k} Z_{k}=0$ ). Thus a search direction, which is formed from a linear summation of any combination of the columns of $Z_{k}$, is guaranteed to remain on the boundaries of the active constraints.

The matrix $Z_{k}$ is formed from the last $m-l$ columns of the QR decomposition of the matrix $\bar{A}_{k}^{T}$, where $l$ is the number of active constraints and $l<m$. That is, $Z_{k}$ is given by

$$
\begin{equation*}
Z_{k}=Q[:, l+1: m], \tag{5-30}
\end{equation*}
$$

where

$$
Q^{T} \bar{A}_{k}^{T}=\left[\begin{array}{c}
R \\
0
\end{array}\right] .
$$

Once $Z_{k}$ is found, a new search direction $\hat{d}_{k}$ is sought that minimizes $q(d)$ where $\hat{d}_{k}$ is in the null space of the active constraints. That is, $\hat{d}_{k}$ is a linear combination of the columns of $Z_{k}: \hat{d}_{k}=Z_{k} p$ for some vector $p$.

Then if you view the quadratic as a function of $p$, by substituting for $\hat{d}_{k}$, you have

$$
\begin{equation*}
q(p)=\frac{1}{2} p^{T} Z_{k}^{T} H Z_{k} p+c^{T} Z_{k} p \tag{5-31}
\end{equation*}
$$

Differentiating this with respect to $p$ yields

$$
\begin{equation*}
\nabla q(p)=Z_{k}^{T} H Z_{k} p+Z_{k}^{T} c \tag{5-32}
\end{equation*}
$$

$\nabla q(p)$ is referred to as the projected gradient of the quadratic function because it is the gradient projected in the subspace defined by $Z_{k}$. The term $Z_{k}^{T} H Z_{k}$ is called the projected Hessian. Assuming the Hessian matrix $H$ is positive definite (which is the case in this implementation of SQP), then the minimum of the function $q(p)$ in the subspace defined by $Z_{k}$ occurs when $\nabla q(p)=0$, which is the solution of the system of linear equations

$$
\begin{equation*}
Z_{k}^{T} H Z_{k} p=-Z_{k}^{T} c . \tag{5-33}
\end{equation*}
$$

A step is then taken of the form

$$
\begin{equation*}
x_{k+1}=x_{k}+\alpha \hat{d}_{k}, \text { where } \hat{d}_{k}=Z_{k}^{T} p \tag{5-34}
\end{equation*}
$$

At each iteration, because of the quadratic nature of the objective function, there are only two choices of step length $\alpha$. A step of unity along $\hat{d}_{k}$ is the exact step to the minimum of the function restricted to the null space of $\bar{A}_{k}$. If such a step can be taken, without violation of the constraints, then this
is the solution to QP (Equation 5-30). Otherwise, the step along $\hat{d}_{k}$ to the nearest constraint is less than unity and a new constraint is included in the active set at the next iteration. The distance to the constraint boundaries in any direction $\hat{d}_{k}$ is given by

$$
\begin{equation*}
\alpha=\min _{i \in\{1, \ldots, m\}}\left\{\frac{-\left(A_{i} x_{k}-b_{i}\right)}{A_{i} d_{k}}\right\}, \tag{5-35}
\end{equation*}
$$

which is defined for constraints not in the active set, and where the direction $\hat{d}_{k}$ is towards the constraint boundary, i.e., $A_{i} \hat{d}_{k}>0, i=1, \ldots, m$.

When $n$ independent constraints are included in the active set, without location of the minimum, Lagrange multipliers, $\lambda_{k}$, are calculated that satisfy the nonsingular set of linear equations

$$
\begin{equation*}
\bar{A}_{k}^{T} \lambda_{k}=c . \tag{5-36}
\end{equation*}
$$

If all elements of $\lambda_{k}$ are positive, $x_{k}$ is the optimal solution of QP (Equation $5-30$ ). However, if any component of $\lambda_{k}$ is negative, and the component does not correspond to an equality constraint, then the corresponding element is deleted from the active set and a new iterate is sought.

Initialization. The algorithm requires a feasible point to start. If the current point from the SQP method is not feasible, then you can find a point by solving the linear programming problem

$$
\begin{align*}
& \min _{\gamma \in \mathfrak{R}, x \in \mathfrak{R}^{n}} \gamma \text { such that } \\
& A_{i} x=b_{i}, \quad i=1, \ldots, m_{e} \\
& A_{i} x-\gamma \leq b_{i}, \quad i=m_{e}+1, \ldots, m . \tag{5-37}
\end{align*}
$$

The notation $A_{i}$ indicates the $i$ th row of the matrix $A$. You can find a feasible point (if one exists) to Equation $5-37$ by setting $x$ to a value that satisfies the equality constraints. You can determine this value by solving an underor overdetermined set of linear equations formed from the set of equality constraints. If there is a solution to this problem, then the slack variable $\gamma$ is set to the maximum inequality constraint at this point.

You can modify the preceding QP algorithm for LP problems by setting the search direction to the steepest descent direction at each iteration, where $g_{k}$ is the gradient of the objective function (equal to the coefficients of the linear objective function).

$$
\begin{equation*}
\hat{d}_{k}=-Z_{k} Z_{k}^{T} g_{k} . \tag{5-38}
\end{equation*}
$$

If a feasible point is found using the preceding LP method, the main QP phase is entered. The search direction $\hat{d}_{k}$ is initialized with a search direction $\hat{d}_{1}$ found from solving the set of linear equations

$$
\begin{equation*}
H \hat{d}_{1}=-g_{k}, \tag{5-39}
\end{equation*}
$$

where $g_{k}$ is the gradient of the objective function at the current iterate $x_{k}$ (i.e., $H x_{k}+c$ ).

If a feasible solution is not found for the QP problem, the direction of search for the main SQP routine $\hat{d}_{k}$ is taken as one that minimizes $\gamma$.

## Line Search and Merit Function

The solution to the QP subproblem produces a vector $d_{k}$, which is used to form a new iterate

$$
\begin{equation*}
x_{k+1}=x_{k}+\alpha d_{k} . \tag{5-40}
\end{equation*}
$$

The step length parameter $\alpha_{k}$ is determined in order to produce a sufficient decrease in a merit function. The merit function used by Han [22] and Powell [33] of the following form is used in this implementation.

$$
\begin{equation*}
\Psi(x)=f(x)+\sum_{i=1}^{m_{e}} r_{i} \cdot g_{i}(x)+\sum_{i=m_{e}+1}^{m} r_{i} \cdot \max \left[0, g_{i}(x)\right] . \tag{5-41}
\end{equation*}
$$

Powell recommends setting the penalty parameter

$$
\begin{equation*}
r_{i}=\left(r_{k+1}\right)_{i}=\max _{i}\left\{\lambda_{i}, \frac{\left(r_{k}\right)_{i}+\lambda_{i}}{2}\right\}, i=1, \ldots, m . \tag{5-42}
\end{equation*}
$$

This allows positive contribution from constraints that are inactive in the QP solution but were recently active. In this implementation, the penalty parameter $r_{i}$ is initially set to

$$
\begin{equation*}
r_{i}=\frac{\|\nabla f(x)\|}{\left\|\nabla g_{i}(x)\right\|}, \tag{5-43}
\end{equation*}
$$

where || || represents the Euclidean norm.

This ensures larger contributions to the penalty parameter from constraints with smaller gradients, which would be the case for active constraints at the solution point.

## Simplex Algorithm

The simplex algorithm, invented by George Dantzig in 1947, is one of the earliest and best known optimization algorithms. The algorithm solves the linear programming problem

$$
\min _{x} f^{T} x \text { such that }\left\{\begin{array}{c}
A \cdot x \leq b \\
A e q \cdot x=b e q \\
l b \leq x \leq u b
\end{array}\right.
$$

The algorithm moves along the edges of the polyhedron defined by the constraints, from one vertex to another, while decreasing the value of the objective function, $f^{T} x$, at each step. This section describes an improved version of the original simplex algorithm that returns a vertex optimal solution.

This section covers the following topics:

- "Main Algorithm" on page 5-39
- "Preprocessing" on page 5-41
- "Using the Simplex Algorithm" on page 5-41
- "Basic and Nonbasic Variables" on page 5-42
- "References" on page 5-42


## Main Algorithm

The simplex algorithm has two phases:

- Phase 1 - Compute an initial basic feasible point.
- Phase 2 - Compute the optimal solution to the original problem.

Note You cannot supply an initial point $x 0$ for linprog with the simplex algorithm. If you pass in $x 0$ as an input argument, linprog ignores $x 0$ and computes its own initial point for the algorithm.

Phase 1. In phase 1, the algorithm finds an initial basic feasible solution (see "Basic and Nonbasic Variables" on page 5-42 for a definition) by solving an auxiliary piecewise linear programming problem. The objective function of
the auxiliary problem is the linear penalty function $P=\sum_{j} P_{j}\left(x_{j}\right)$,
where $P_{j}\left(x_{j}\right)$ is defined by

$$
P_{j}\left(x_{j}\right)= \begin{cases}x_{j}-u_{j} & \text { if } x_{j}>u_{j} \\ 0 & \text { if } l_{j} \leq x_{j} \leq u_{j} \\ l_{j}-x_{j} & \text { if } l_{j}>x_{j}\end{cases}
$$

$P(x)$ measures how much a point $x$ violates the lower and upper bound conditions. The auxiliary problem is

$$
\min _{x} \sum_{j} P_{j} \text { subject to }\left\{\begin{array}{c}
A \cdot x \leq b \\
\text { Aeq } \cdot x=b e q .
\end{array}\right.
$$

The original problem has a feasible basis point if and only if the auxiliary problem has minimum value 0 .

The algorithm finds an initial point for the auxiliary problem by a heuristic method that adds slack and artificial variables as necessary. The algorithm then uses this initial point together with the simplex algorithm to solve the auxiliary problem. The optimal solution is the initial point for phase 2 of the main algorithm.

Phase 2. In phase 2, the algorithm applies the simplex algorithm, starting at the initial point from phase 1, to solve the original problem. At each iteration, the algorithm tests the optimality condition and stops if the current solution is optimal. If the current solution is not optimal, the algorithm

1 Chooses one variable, called the entering variable, from the nonbasic variables and adds the corresponding column of the nonbasis to the basis (see "Basic and Nonbasic Variables" on page 5-42 for definitions).

2 Chooses a variable, called the leaving variable, from the basic variables and removes the corresponding column from the basis.

3 Updates the current solution and the current objective value.
The algorithm chooses the entering and the leaving variables by solving two linear systems while maintaining the feasibility of the solution.

## Preprocessing

The simplex algorithm uses the same preprocessing steps as the large-scale linear programming solver, which are described in "Preprocessing" on page $6-23$. In addition, the algorithm uses two other steps:

1 Eliminates columns that have only one nonzero element and eliminates their corresponding rows.

2 For each constraint equation $a \cdot x=b$, where $a$ is a row of $A e q$, the algorithm computes the lower and upper bounds of the linear combination $a \cdot x$ as $r l b$ and rub if the lower and upper bounds are finite. If either rlb or rub equals $b$, the constraint is called a forcing constraint. The algorithm sets each variable corresponding to a nonzero coefficient of $a \cdot x$ equal to its upper or lower bound, depending on the forcing constraint. The algorithm then deletes the columns corresponding to these variables and deletes the rows corresponding to the forcing constraints.

## Using the Simplex Algorithm

To use the simplex method, set 'LargeScale' to 'off' and 'Simplex' to 'on' in options.

```
options = optimset('LargeScale','off','Simplex','on')
```

Then call the function linprog with the options input argument. See the reference page for linprog for more information.
linprog returns empty output arguments for x and fval if it detects infeasibility or unboundedness in the preprocessing procedure. linprog returns the current point when it

- Exceeds the maximum number of iterations
- Detects that the problem is infeasible or unbounded in phases 1 or 2

When the problem is unbounded, linprog returns $x$ and fval in the unbounded direction.

## Basic and Nonbasic Variables

This section defines the terms basis, nonbasis, and basic feasible solutions for a linear programming problem. The definition assumes that the problem is given in the following standard form:

$$
\min _{x} f^{T} x \text { such that }\left\{\begin{array}{c}
A \cdot x=b \\
l b \leq x \leq u b
\end{array}\right.
$$

(Note that $A$ and $b$ are not the matrix and vector defining the inequalities in the original problem.) Assume that $A$ is an $m$-by- $n$ matrix, of $\operatorname{rank} m<n$,
whose columns are $\left\{a_{1}, a_{2}, \ldots, a_{\mathrm{n}}\right\}$. Suppose that $\left\{a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{m}}\right\}$ is a basis for the column space of $A$, with index set $B=\left\{i_{1}, i_{2}, \ldots, i_{m}\right\}$, and that $N=$ $\{1,2, \ldots, \mathrm{n}\} \backslash B$ is the complement of $B$. The submatrix $A_{\mathrm{B}}$ is called a basis and the complementary submatrix $A_{\mathrm{N}}$ is called a nonbasis. The vector of basic variables is $x_{\mathrm{B}}$ and the vector of nonbasic variables is $x_{\mathrm{N}}$. At each iteration in phase 2, the algorithm replaces one column of the current basis with a column of the nonbasis and updates the variables $x_{\mathrm{B}}$ and $x_{\mathrm{N}}$ accordingly.

If $x$ is a solution to $A \cdot x=b$ and all the nonbasic variables in $x_{\mathrm{N}}$ are equal to either their lower or upper bounds, $x$ is called a basic solution. If, in addition, the basic variables in $x_{\mathrm{B}}$ satisfy their lower and upper bounds, so that $x$ is a feasible point, $x$ is called a basic feasible solution.

## References

[1] Chvatal, Vasek, Linear Programming, W. H. Freeman and Company, 1983.
[2] Bixby, Robert E., "Implementing the Simplex Method: The Initial Basis," ORSA Journal on Computing, Vol. 4, No. 3, 1992.
[3] Andersen, Erling D. and Knud D. Andersen, "Presolving in Linear Programming," Mathematical Programming, Vol. 71, pp. 221-245, 1995.

## Multiobjective Optimization

In this section...<br>"Multiobjective Optimization Toolbox ${ }^{\mathrm{TM}}$ Solvers" on page 5-44<br>"Goal Attainment Method" on page 5-44<br>"Algorithm Improvements for the Goal Attainment Method" on page 5-46<br>"Minimizing the Maximum Objective" on page 5-47

## Multiobjective Optimization Toolbox ${ }^{\text {TM }}$ Solvers

There are two Optimization Toolbox ${ }^{\mathrm{TM}}$ solvers that address problems with multiple objective functions: fgoalattain and fminimax. Both solvers use the same method of problem formulation and use the same underlying algorithms. The problem formulation is to convert the multiple objective functions into multiple constraints, and then to use an auxiliary function to minimize. The details of the formulation are given below.

## Goal Attainment Method

The method described here is the goal attainment method of Gembicki [16].
This involves expressing a set of design goals, $F^{*}=\left\{F_{1}^{*}, F_{2}^{*}, \ldots, F_{m}^{*}\right\}$, which is associated with a set of objectives, $F(x)=\left\{F_{1}(x), F_{2}(x), \ldots, F_{m}(x)\right\}$. The problem formulation allows the objectives to be under- or overachieved, enabling the designer to be relatively imprecise about initial design goals. The relative degree of under- or overachievement of the goals is controlled by a vector of weighting coefficients, $w=\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}$, and is expressed as a standard optimization problem using the following formulation.

$$
\begin{equation*}
\underset{\gamma \in \mathfrak{R}, x \in \Omega}{\operatorname{minimize}} \gamma \tag{5-44}
\end{equation*}
$$

such that $F_{i}(x)-w_{i} \gamma \leq F_{i}^{*}, i=1, \ldots, m$.
The term $w_{i} \bigvee$ introduces an element of slackness into the problem, which otherwise imposes that the goals be rigidly met. The weighting vector, $w$, enables the designer to express a measure of the relative tradeoffs between
the objectives. For instance, setting the weighting vector $w$ equal to the initial goals indicates that the same percentage under- or overachievement of the goals, $F^{*}$, is achieved. You can incorporate hard constraints into the design by setting a particular weighting factor to zero (i.e., $w_{i}=0$ ). The goal attainment method provides a convenient intuitive interpretation of the design problem, which is solvable using standard optimization procedures. Illustrative examples of the use of the goal attainment method in control system design can be found in Fleming ([10] and [11]).

The goal attainment method is represented geometrically in the figure below in two dimensions.

$$
\begin{aligned}
\underset{\gamma, x \in \Omega}{\operatorname{minimize} \gamma} \text { subject to } & F_{1}(x)-w_{1} \gamma \leq F_{1}^{*} \\
& F_{2}(x)-w_{2} \gamma \leq F_{2}^{*}
\end{aligned}
$$



Figure 5-7: Geometrical Representation of the Goal Attainment Method

Specification of the goals, $\left\{F_{1}^{*}, F_{2}^{*}\right\}$, defines the goal point, $P$. The weighting vector defines the direction of search from $P$ to the feasible function space, $\Lambda(\gamma)$. During the optimization $\gamma$ is varied, which changes the size of the feasible region. The constraint boundaries converge to the unique solution point $F_{1 s}, F_{2 s}$.

## Algorithm Improvements for the Goal Attainment Method

The goal attainment method has the advantage that it can be posed as a nonlinear programming problem. Characteristics of the problem can also be exploited in a nonlinear programming algorithm. In sequential quadratic programming (SQP), the choice of merit function for the line search is not easy because, in many cases, it is difficult to "define" the relative importance between improving the objective function and reducing constraint violations. This has resulted in a number of different schemes for constructing the merit function (see, for example, Schittkowski [36]). In goal attainment programming there might be a more appropriate merit function, which you can achieve by posing Equation 5-44 as the minimax problem

$$
\begin{equation*}
\underset{x \in \mathfrak{R}^{n}}{\operatorname{minimize}} \max _{i}\left\{\Lambda_{i}\right\}, \tag{5-45}
\end{equation*}
$$

where $\Lambda_{i}=\frac{F_{i}(x)-F_{i}^{*}}{w_{i}}, i=1, \ldots, m$.

Following the argument of Brayton et. al. [2] for minimax optimization using SQP, using the merit function of Equation 5-41 for the goal attainment problem of Equation 5-45 gives

$$
\begin{equation*}
\psi(x, \gamma)=\gamma+\sum_{i=1}^{m} r_{i} \cdot \max \left\{0, F_{i}(x)-w_{i} \gamma-F_{i}^{*}\right\} . \tag{5-46}
\end{equation*}
$$

When the merit function of Equation 5-46 is used as the basis of a line search procedure, then, although $\psi(x, \gamma)$ might decrease for a step in a given search direction, the function $\max \wedge_{i}$ might paradoxically increase. This is accepting a degradation in the worst case objective. Since the worst case objective is responsible for the value of the objective function $\gamma$, this is accepting a step that ultimately increases the objective function to be minimized. Conversely, $\psi(x, \gamma)$ might increase when $\max \wedge_{i}$ decreases, implying a rejection of a step that improves the worst case objective.

Following the lines of Brayton et. al. [2], a solution is therefore to set $\psi(x)$ equal to the worst case objective, i.e.,

$$
\begin{equation*}
\psi(x)=\max _{i} \Lambda_{i} . \tag{5-47}
\end{equation*}
$$

A problem in the goal attainment method is that it is common to use a weighting coefficient equal to 0 to incorporate hard constraints. The merit function of Equation 5-47 then becomes infinite for arbitrary violations of the constraints.

To overcome this problem while still retaining the features of Equation $5-47$, the merit function is combined with that of Equation 5-42, giving the following:

$$
\psi(x)=\sum_{i=1}^{m} \begin{cases}r_{i} \cdot \max \left\{0, F_{i}(x)-w_{i} \gamma-F_{i}^{*}\right\} & \text { if } w_{i}=0  \tag{5-48}\\ \max _{i} \Lambda_{i}, i=1, \ldots, m & \text { otherwise }\end{cases}
$$

Another feature that can be exploited in SQP is the objective function $\gamma$. From the KKT equations it can be shown that the approximation to the Hessian of the Lagrangian, $H$, should have zeros in the rows and columns associated with the variable $\gamma$. However, this property does not appear if $H$ is initialized as the identity matrix. $H$ is therefore initialized and maintained to have zeros in the rows and columns associated with $\gamma$.

These changes make the Hessian, $H$, indefinite. Therefore $H$ is set to have zeros in the rows and columns associated with $\gamma$, except for the diagonal element, which is set to a small positive number (e.g., 1e-10). This allows use of the fast converging positive definite QP method described in "Quadratic Programming Solution" on page 5-34.

The preceding modifications have been implemented in fgoalattain and have been found to make the method more robust. However, because of the rapid convergence of the SQP method, the requirement that the merit function strictly decrease sometimes requires more function evaluations than an implementation of SQP using the merit function of Equation 5-41.

## Minimizing the Maximum Objective

fminimax uses a goal attainment method. It takes goals of 0 , and weights of 1 . With this formulation, the goal attainment problem becomes

$$
\min _{i} \max _{x}\left(\frac{f_{i}(x)-\text { goal }_{i}}{\text { weight }_{i}}\right)=\min _{i} \max _{x} f_{i}(x)
$$

which is the minimax problem.
Parenthetically, you might expect fminimax to turn the multiobjective function into a single objective. The function

$$
f(x)=\max \left(F_{1}(x), \ldots F_{j}(x)\right)
$$

is a single objective function to minimize. However, it is not differentiable, and Optimization Toolbox objectives are required to be smooth. Therefore the minimax problem is formulated as a smooth goal attainment problem.

## Selected Bibliography

[1] Biggs, M.C., "Constrained Minimization Using Recursive Quadratic Programming," Towards Global Optimization (L.C.W. Dixon and G.P. Szergo, eds.), North-Holland, pp 341-349, 1975.
[2] Brayton, R.K., S.W. Director, G.D. Hachtel, and L. Vidigal, "A New Algorithm for Statistical Circuit Design Based on Quasi-Newton Methods and Function Splitting," IEEE Transactions on Circuits and Systems, Vol. CAS-26, pp 784-794, Sept. 1979.
[3] Broyden, C.G., "The Convergence of a Class of Double-rank Minimization Algorithms,"; J. Inst. Maths. Applics., Vol. 6, pp 76-90, 1970.
[4] Conn, N.R., N.I.M. Gould, and Ph.L. Toint, Trust-Region Methods, MPS/SIAM Series on Optimization, SIAM and MPS, 2000.
[5] Dantzig, G., Linear Programming and Extensions, Princeton University Press, Princeton, 1963.
[6] Dantzig, G., A. Orden, and P. Wolfe, "Generalized Simplex Method for Minimizing a Linear from Under Linear Inequality Constraints," Pacific J. Math. Vol. 5, pp 183-195.
[7] Davidon, W.C., "Variable Metric Method for Minimization," A.E.C. Research and Development Report, ANL-5990, 1959.
[8] Dennis, J.E., Jr., "Nonlinear least-squares," State of the Art in Numerical Analysis ed. D. Jacobs, Academic Press, pp 269-312, 1977.
[9] Dennis, J.E., Jr. and R.B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice-Hall Series in Computational Mathematics, Prentice-Hall, 1983.
[10] Fleming, P.J., "Application of Multiobjective Optimization to Compensator Design for SISO Control Systems," Electronics Letters, Vol. 22, No. 5, pp 258-259, 1986.
[11] Fleming, P.J., "Computer-Aided Control System Design of Regulators using a Multiobjective Optimization Approach," Proc. IFAC Control Applications of Nonlinear Prog. and Optim., Capri, Italy, pp 47-52, 1985.
[12] Fletcher, R., "A New Approach to Variable Metric Algorithms," Computer Journal, Vol. 13, pp 317-322, 1970.
[13] Fletcher, R., "Practical Methods of Optimization," John Wiley and Sons, 1987.
[14] Fletcher, R. and M.J.D. Powell, "A Rapidly Convergent Descent Method for Minimization," Computer Journal, Vol. 6, pp 163-168, 1963.
[15] Forsythe, G.F., M.A. Malcolm, and C.B. Moler, Computer Methods for Mathematical Computations, Prentice Hall, 1976.
[16] Gembicki, F.W., "Vector Optimization for Control with Performance and Parameter Sensitivity Indices," Ph.D. Thesis, Case Western Reserve Univ., Cleveland, Ohio, 1974.
[17] Gill, P.E., W. Murray, M.A. Saunders, and M.H. Wright, "Procedures for Optimization Problems with a Mixture of Bounds and General Linear Constraints," ACM Trans. Math. Software, Vol. 10, pp 282-298, 1984.
[18] Gill, P.E., W. Murray, and M.H. Wright, Numerical Linear Algebra and Optimization, Vol. 1, Addison Wesley, 1991.
[19] Gill, P.E., W. Murray, and M.H.Wright, Practical Optimization, London, Academic Press, 1981.
[20] Goldfarb, D., "A Family of Variable Metric Updates Derived by Variational Means," Mathematics of Computing, Vol. 24, pp 23-26, 1970.
[21] Grace, A.C.W., "Computer-Aided Control System Design Using Optimization Techniques," Ph.D. Thesis, University of Wales, Bangor, Gwynedd, UK, 1989.
[22] Han, S.P., "A Globally Convergent Method for Nonlinear Programming," J. Optimization Theory and Applications, Vol. 22, p. 297, 1977.
[23] Hock, W. and K. Schittkowski, "A Comparative Performance Evaluation of 27 Nonlinear Programming Codes," Computing, Vol. 30, p. 335, 1983.
[24] Hollingdale, S.H., Methods of Operational Analysis in Newer Uses of Mathematics (James Lighthill, ed.), Penguin Books, 1978.
[25] Levenberg, K., "A Method for the Solution of Certain Problems in Least Squares," Quart. Appl. Math. Vol. 2, pp 164-168, 1944.
[26] Madsen, K. and H. Schjaer-Jacobsen, "Algorithms for Worst Case Tolerance Optimization," IEEE Transactions of Circuits and Systems, Vol. CAS-26, Sept. 1979.
[27] Marquardt, D., "An Algorithm for Least-Squares Estimation of Nonlinear Parameters," SIAM J. Appl. Math. Vol. 11, pp 431-441, 1963.
[28] Moré, J.J., "The Levenberg-Marquardt Algorithm: Implementation and Theory," Numerical Analysis, ed. G. A. Watson, Lecture Notes in Mathematics 630, Springer Verlag, pp 105-116, 1977.
[29] NAG Fortran Library Manual, Mark 12, Vol. 4, E04UAF, p. 16.
[30] Nelder, J.A. and R. Mead, "A Simplex Method for Function Minimization," Computer J., Vol.7, pp 308-313, 1965.
[31] Nocedal, J. and S.J. Wright, Numerical Optimization, Springer Series in Operations Research, Springer Verlag, 1999.
[32] Powell, M.J.D., "The Convergence of Variable Metric Methods for Nonlinearly Constrained Optimization Calculations," Nonlinear Programming 3, (O.L. Mangasarian, R.R. Meyer and S.M. Robinson, eds.), Academic Press, 1978.
[33] Powell, M.J.D., "A Fast Algorithm for Nonlinearly Constrained Optimization Calculations," Numerical Analysis, G.A.Watson ed., Lecture Notes in Mathematics, Springer Verlag, Vol. 630, 1978.
[34] Powell, M.J.D., "A Fortran Subroutine for Solving Systems of Nonlinear Algebraic Equations," Numerical Methods for Nonlinear Algebraic Equations, (P. Rabinowitz, ed.), Ch.7, 1970.
[35] Powell, M.J.D., "Variable Metric Methods for Constrained Optimization," Mathematical Programming: The State of the Art, (A. Bachem, M. Grotschel and B. Korte, eds.) Springer Verlag, pp 288-311, 1983.
[36] Schittkowski, K., "NLQPL: A FORTRAN-Subroutine Solving Constrained Nonlinear Programming Problems," Annals of Operations Research, Vol. 5, pp 485-500, 1985.
[37] Shanno, D.F., "Conditioning of Quasi-Newton Methods for Function Minimization," Mathematics of Computing, Vol. 24, pp 647-656, 1970.
[38] Waltz, F.M., "An Engineering Approach: Hierarchical Optimization Criteria," IEEE Trans., Vol. AC-12, pp 179-180, April, 1967.

## Large-Scale Algorithms

$\left.\begin{array}{ll}\text { Trust-Region Methods for Nonlinear } & \begin{array}{l}\text { Introduces trust regions and } \\ \text { describes their use for unconstrained } \\ \text { nonlinear minimization. }\end{array} \\ \text { Minimization (p. 6-3) }\end{array} \quad \begin{array}{l}\text { Describes the interior-point approach } \\ \text { to constrained minimization, and the } \\ \text { effect of certain options. }\end{array}\right\}$

Large-Scale Linear Programming (p. 6-20)

Describes the use of LIPSOL (Linear Interior Point Solver) for the solution of large-scale linear programming problems.

Lists published materials that support concepts implemented in the large-scale algorithms.

## Trust-Region Methods for Nonlinear Minimization

Many of the methods used in Optimization Toolbox ${ }^{\mathrm{TM}}$ solvers are based on trust regions, a simple yet powerful concept in optimization.

To understand the trust-region approach to optimization, consider the unconstrained minimization problem, minimize $f(x)$, where the function takes vector arguments and returns scalars. Suppose you are at a point $x$ in $n$-space and you want to improve, i.e., move to a point with a lower function value. The basic idea is to approximate $f$ with a simpler function $q$, which reasonably reflects the behavior of function $f$ in a neighborhood $N$ around the point $x$. This neighborhood is the trust region. A trial step $s$ is computed by minimizing (or approximately minimizing) over $N$. This is the trust-region subproblem,

$$
\begin{equation*}
\min _{s}\{q(s), s \in N\} . \tag{6-1}
\end{equation*}
$$

The current point is updated to be $x+s$ if $f(x+s)<f(x)$; otherwise, the current point remains unchanged and $N$, the region of trust, is shrunk and the trial step computation is repeated.

The key questions in defining a specific trust-region approach to minimizing $f(x)$ are how to choose and compute the approximation $q$ (defined at the current point $x$ ), how to choose and modify the trust region $N$, and how accurately to solve the trust-region subproblem. This section focuses on the unconstrained problem. Later sections discuss additional complications due to the presence of constraints on the variables.

In the standard trust-region method ([10]), the quadratic approximation $q$ is defined by the first two terms of the Taylor approximation to $F$ at $x$; the neighborhood $N$ is usually spherical or ellipsoidal in shape. Mathematically the trust-region subproblem is typically stated

$$
\begin{equation*}
\min \left\{\frac{1}{2} s^{T} H s+s^{T} g \text { such that }\|D s\| \leq \Delta\right\} \tag{6-2}
\end{equation*}
$$

where $g$ is the gradient of $f$ at the current point $x, H$ is the Hessian matrix (the symmetric matrix of second derivatives), $D$ is a diagonal scaling matrix, $\Delta$ is a positive scalar, and \|\| \| is the 2-norm. Good algorithms exist for solving

Equation 6-2 (see [10]); such algorithms typically involve the computation of a full eigensystem and a Newton process applied to the secular equation

$$
\frac{1}{\Delta}-\frac{1}{\|s\|}=0 .
$$

Such algorithms provide an accurate solution to Equation 6-2. However, they require time proportional to several factorizations of $H$. Therefore, for large-scale problems a different approach is needed. Several approximation and heuristic strategies, based on Equation 6-2, have been proposed in the literature ([4] and [12]). The approximation approach followed in Optimization Toolbox solvers is to restrict the trust-region subproblem to a two-dimensional subspace $S$ ([1] and [4]). Once the subspace $S$ has been computed, the work to solve Equation 6-2 is trivial even if full eigenvalue/eigenvector information is needed (since in the subspace, the problem is only two-dimensional). The dominant work has now shifted to the determination of the subspace.

The two-dimensional subspace $S$ is determined with the aid of a preconditioned conjugate gradient process described below. The solver assigns $S=\left\langle s_{1}, s_{2}\right\rangle$, where $s_{1}$ is in the direction of the gradient $g$, and $s_{2}$ is either an approximate Newton direction, i.e., a solution to

$$
\begin{equation*}
H \cdot s_{2}=-g, \tag{6-3}
\end{equation*}
$$

or a direction of negative curvature,

$$
\begin{equation*}
s_{2}^{T} \cdot H \cdot s_{2}<0 . \tag{6-4}
\end{equation*}
$$

The philosophy behind this choice of $S$ is to force global convergence (via the steepest descent direction or negative curvature direction) and achieve fast local convergence (via the Newton step, when it exists).

A sketch of unconstrained minimization using trust-region ideas is now easy to give:

1 Formulate the two-dimensional trust-region subproblem.
2 Solve Equation 6-2 to determine the trial step $s$.

3 If $f(x+s)<f(x)$, then $x=x+s$.
4 Adjust $\Delta$.
These four steps are repeated until convergence. The trust-region dimension $\Delta$ is adjusted according to standard rules. In particular, it is decreased if the trial step is not accepted, i.e., $f(x+s) \geq f(x)$ See [8] and [11] for a discussion of this aspect.

Optimization Toolbox solvers treat a few important special cases of $f$ with specialized functions: nonlinear least-squares, quadratic functions, and linear least-squares. However, the underlying algorithmic ideas are the same as for the general case. These special cases are discussed in later sections.

## Interior-Point Method

## In this section...

"Barrier Function" on page 6-6
"Direct Step" on page 6-7
"Conjugate Gradient Step" on page 6-8
"Interior-Point Algorithm Options" on page 6-9

## Barrier Function

The interior-point approach to constrained minimization is to solve a sequence of approximate minimization problems. The original problem is

$$
\begin{equation*}
\min _{x} f(x), \text { subject to } h(x)=0 \text { and } g(x) \leq 0 . \tag{6-5}
\end{equation*}
$$

For each $\mu>0$, the approximate problem is

$$
\begin{equation*}
\min _{x, s} f_{\mu}(x, s)=\min _{x, s} f(x)-\mu \sum_{i} \ln \left(s_{i}\right), \text { subject to } h(x)=0 \text { and } g(x)+s=0 . \tag{6-6}
\end{equation*}
$$

There are as many slack variables $s_{i}$ as there are inequality constraints $g$. The $s_{i}$ are restricted to be positive to keep $\ln \left(s_{i}\right)$ bounded. As $\mu$ decreases to zero, the minimum of $f_{\mu}$ should approach the minimum of $f$. The added logarithmic term is called a barrier function. This method is described in [2], [3], and [13].

The approximate problem Equation 6-6 is a sequence of equality constrained problems. These are easier to solve than the original inequality-constrained problem Equation 6-5.

To solve the approximate problem, the algorithm uses one of two main types of steps at each iteration:

- A direct step in $(x, s)$. This step attempts to solve the KKT equations, Equation 2-3 and Equation 2-4, for the approximate problem via a linear approximation. This is also called a Newton step.
- A $C G$ (conjugate gradient) step, using a trust region.

By default, the algorithm first attempts to take a direct step. If it cannot, it attempts a CG step. One case where it does not take a direct step is when the approximate problem is not locally convex near the current iterate.

At each iteration the algorithm decreases a merit function, such as

$$
f_{\mu}(x, s)+v\|(h(x), g(x)+s)\| .
$$

The parameter $v$ may increase with iteration number in order to force the solution towards feasibility. If an attempted step does not decrease the merit function, the algorithm rejects the attempted step, and attempts a new step.

## Direct Step

The following variables are used in defining the direct step:

- $H$ denotes the Hessian of the Lagrangian of $f_{\mu}$ :

$$
\begin{equation*}
H=\nabla^{2} f(x)+\sum_{i} \lambda_{i} \nabla^{2} g_{i}(x)+\sum_{j} \lambda_{j} \nabla^{2} h_{j}(x) . \tag{6-7}
\end{equation*}
$$

- $J_{g}$ denotes the Jacobian of the constraint function $g$.
- $J_{h}$ denotes the Jacobian of the constraint function $h$.
- $S=\operatorname{diag}(s)$.
- $\lambda$ denotes the Lagrange multiplier vector associated with constraints $g$
- $\Lambda=\operatorname{diag}(\lambda)$.
- $y$ denotes the Lagrange multiplier vector associated with $h$.
- $e$ denote the vector of ones the same size as $g$.

Equation 6-8 defines the direct step $(\Delta x, \Delta s)$ :

$$
\left[\begin{array}{cccc}
H & 0 & J_{h}^{T} & J_{g}^{T}  \tag{6-8}\\
0 & S \Lambda & 0 & -S \\
J_{h} & 0 & I & 0 \\
J_{g} & -S & 0 & I
\end{array}\right]\left[\begin{array}{c}
\Delta x \\
\Delta s \\
-\Delta y \\
-\Delta \lambda
\end{array}\right]=-\left[\begin{array}{c}
\nabla f-J_{h}^{T} y-J_{g}^{T} \lambda \\
S \lambda-\mu e \\
h \\
g+s
\end{array}\right] .
$$

This equation comes directly from attempting to solve Equation 2-3 and Equation 2-4 using a linearized Lagrangian.

In order to solve this equation for $(\Delta x, \Delta s)$, the algorithm makes an LDL factorization of the matrix. (See Example 4 - The Structure of D in the MATLAB ${ }^{\circledR}$ ldl function reference page.) This is the most computationally expensive step. One result of this factorization is a determination of whether the projected Hessian is positive definite or not; if not, the algorithm uses a conjugate gradient step, described in the next section.

## Conjugate Gradient Step

The conjugate gradient approach to solving the approximate problem Equation 6-6 is similar to other conjugate gradient calculations. In this case, the algorithm adjusts both $x$ and $s$, keeping the slacks $s$ positive. The approach is to minimize a quadratic approximation to the approximate problem in a trust region, subject to linearized constraints.

Specifically, let $R$ denote the radius of the trust region, and let other variables be defined as in "Direct Step" on page 6-7. The algorithm obtains Lagrange multipliers by approximately solving the KKT equations

$$
\nabla_{x} L=\nabla_{x} f(x)+\sum_{i} \lambda_{i} \nabla g_{i}(x)+\sum_{j} y_{j} \nabla h_{j}(x)=0,
$$

in the least-squares sense, subject to $\lambda$ being positive. Then it takes a step ( $\Delta x, \Delta s$ ) to approximately solve

$$
\begin{equation*}
\min _{\Delta x, \Delta s} \nabla f^{T} \Delta x+\frac{1}{2} \Delta x^{T} \nabla_{x x}^{2} L \Delta x+\mu e^{T} S^{-1} \Delta s+\frac{1}{2} \Delta s^{T} S^{-1} \Lambda \Delta s \tag{6-9}
\end{equation*}
$$

subject to the linearized constraints

$$
\begin{equation*}
g(x)+J_{g} \Delta x+\Delta s=0, \quad h(x)+J_{h} \Delta x=0 . \tag{6-10}
\end{equation*}
$$

To solve Equation 6-10, the algorithm tries to minimize a norm of the linearized constraints inside a region with radius scaled by $R$. Then Equation 6-9 is solved with the constraints being to match the residual from solving Equation 6-10, staying within the trust region of radius $R$, and keeping $s$ strictly positive. For details of the algorithm and the derivation, see [2], [3], and [13]. For another description of conjugate gradients, see "Preconditioned Conjugate Gradients" on page 6-12.

## Interior-Point Algorithm Options

Here are the meanings and effects of several options in the interior-point algorithm.

- AlwaysHonorConstraints - When set to 'bounds ', every iterate satisfies the bound constraints you have set. When set to 'none ', the algorithm may violate bounds during intermediate iterations.
- Hessian - When set to:
- 'user-supplied ', pass the Hessian of the Lagrangian in a user-supplied function, whose function handle must be given in the option HessFcn.
- 'bfgs', fmincon calculates the Hessian by a dense quasi-Newton approximation.
- 'lbfgs', fmincon calculates the Hessian by a limited-memory, large-scale quasi-Newton approximation.
- 'fin-diff-grads', fmincon calculates a Hessian-times-vector product by finite differences of the gradient(s); other options need to be set appropriately.

You can also give a separate function for Hessian-times-vector. See "Hessian" on page 11-42 for more details on these options.

- InitBarrierParameter - The starting value for $\mu$. By default, this is 0.1 .
- ScaleProblem - When set to 'obj-and-constr', the algorithm works with scaled versions of the objective function and constraints. It carefully scales them by their initial values. Disable scaling by setting ScaleProblem to 'none'.
- SubproblemAlgorithm - Determines whether or not to attempt the direct Newton step. The default setting 'ldl-factorization' allows this type of step to be attempted. The setting ' cg ' allows only conjugate gradient steps.

For a complete list of options see "Interior-Point Algorithm" on page 11-50.

## Demos of Large-Scale Methods

From the MATLAB ${ }^{\circledR}$ Help browser or the MathWorks ${ }^{\text {TM }}$ Web site documentation, you can click the demo name to display the demo.

| circustent | Quadratic programming to find the shape of a circus <br> tent |
| :--- | :--- |
| molecule | Molecule conformation solution using unconstrained <br> nonlinear minimization |
| optdeblur | Image deblurring using bounded linear least squares |

## Preconditioned Conjugate Gradients

## In this section...

"Introduction" on page 6-12
"Algorithm" on page 6-12

## Introduction

A popular way to solve large symmetric positive definite systems of linear equations $H p=-g$ is the method of Preconditioned Conjugate Gradients (PCG). This iterative approach requires the ability to calculate matrix-vector products of the form $H \cdot v$ where $v$ is an arbitrary vector. The symmetric positive definite matrix $M$ is a preconditioner for $H$. That is, $M=C^{2}$, where $C^{-1} H C^{-1}$ is a well-conditioned matrix or a matrix with clustered eigenvalues.

## Algorithm

Optimization Toolbox ${ }^{\text {TM }}$ solvers use this PCG algorithm, which it refers to as Algorithm PCG.

```
% Initializations
r = -g; p = zeros(n,1);
% Precondition
z = M\r; inner1 = r'*z; inner2 = 0; d = z;
% Conjugate gradient iteration
for k = 1:kmax
    if k > 1
        beta = inner1/inner2;
        d = z + beta*d;
    end
    w = H*d; denom = d'*w;
    if denom <= 0
        p = d/norm(d); % Direction of negative/zero curvature
        break % Exit if zero/negative curvature detected
    else
            alpha = inner1/denom;
            p = p + alpha*d;
            r = r - alpha*w;
```

```
    end
    z = M\r;
    if norm(z) <= tol % Exit if Hp=-g solved within tolerance
    break
    end
    inner2 = inner1;
    inner1 = r'*z;
end
```

In a minimization context, you can assume that the Hessian matrix $H$ is symmetric. However, $H$ is guaranteed to be positive definite only in the neighborhood of a strong minimizer. Algorithm PCG exits when a direction of negative (or zero) curvature is encountered, i.e., $d^{T} H d \leq 0$. The PCG output direction, $p$, is either a direction of negative curvature or an approximate (tol controls how approximate) solution to the Newton system $H p=-\mathrm{g}$. In either case $p$ is used to help define the two-dimensional subspace used in the trust-region approach discussed in "Trust-Region Methods for Nonlinear Minimization" on page 6-3.

## Linearly Constrained Problems

## In this section...

"Linear Equality Constraints" on page 6-14
"Box Constraints" on page 6-15

## Linear Equality Constraints

Linear constraints complicate the situation described for unconstrained minimization. However, the underlying ideas described previously can be carried through in a clean and efficient way. The large-scale methods in Optimization Toolbox ${ }^{\mathrm{TM}}$ solvers generate strictly feasible iterates.

The general linear equality constrained minimization problem can be written

$$
\begin{equation*}
\min \{f(x) \text { such that } A x=b\} \tag{6-11}
\end{equation*}
$$

where $A$ is an $m$-by- $n$ matrix ( $m \leq n$ ). Optimization Toolbox solvers preprocess $A$ to remove strict linear dependencies using a technique based on the LU-factorization of $A^{T}$ [8]. Here $A$ is assumed to be of rank $m$.

The method used to solve Equation 6-11 differs from the unconstrained approach in two significant ways. First, an initial feasible point $x_{0}$ is computed, using a sparse least-squares step, so that $A x_{0}=b$. Second, Algorithm PCG is replaced with Reduced Preconditioned Conjugate Gradients (RPCG), see [8], in order to compute an approximate reduced Newton step (or a direction of negative curvature in the null space of $A$ ). The key linear algebra step involves solving systems of the form

$$
\left[\begin{array}{cc}
C & \tilde{A}^{T}  \tag{6-12}\\
\tilde{A} & 0
\end{array}\right]\left[\begin{array}{l}
s \\
t
\end{array}\right]=\left[\begin{array}{l}
r \\
0
\end{array}\right],
$$

where $\tilde{A}$ approximates $A$ (small nonzeros of $A$ are set to zero provided rank is not lost) and $C$ is a sparse symmetric positive-definite approximation to $H$, i.e., $C=H$. See [8] for more details.

## Box Constraints

The box constrained problem is of the form

$$
\begin{equation*}
\min \{f(x) \text { such that } l \leq x \leq u\} \text {, } \tag{6-13}
\end{equation*}
$$

where $l$ is a vector of lower bounds, and $u$ is a vector of upper bounds. Some (or all) of the components of $l$ can be equal to $-\infty$ and some (or all) of the components of $u$ can be equal to $\infty$. The method generates a sequence of strictly feasible points. Two techniques are used to maintain feasibility while achieving robust convergence behavior. First, a scaled modified Newton step replaces the unconstrained Newton step (to define the two-dimensional subspace $S$ ). Second, reflections are used to increase the stepsize.

The scaled modified Newton step arises from examining the Kuhn-Tucker necessary conditions for Equation 6-13,

$$
\begin{equation*}
(D(x))^{-2} g=0 \tag{6-14}
\end{equation*}
$$

where

$$
D(x)=\operatorname{diag}\left(\left|v_{k}\right|^{-1 / 2}\right),
$$

and the vector $v(x)$ is defined below, for each $1 \leq i \leq n$ :

- If $g_{i}<0$ and $u_{i}<\infty$ then $v_{i}=x_{i}-u_{i}$
- If $g_{i} \geq 0$ and $l_{i}>-\infty$ then $v_{i}=x_{i}-l_{i}$
- If $g_{i}<0$ and $u_{i}=\infty$ then $v_{i}=-1$
- If $g_{i} \geq 0$ and $l_{i}=-\infty$ then $v_{i}=1$

The nonlinear system Equation 6-14 is not differentiable everywhere. Nondifferentiability occurs when $v_{i}=0$. You can avoid such points by maintaining strict feasibility, i.e., restricting $l<x<u$.

The scaled modified Newton step $s_{k}$ for the nonlinear system of equations given by Equation 6-14 is defined as the solution to the linear system

$$
\begin{equation*}
\hat{M} D s^{N}=-\hat{g} \tag{6-15}
\end{equation*}
$$

at the $k$ th iteration, where

$$
\begin{equation*}
\hat{g}=D^{-1} g=\operatorname{diag}\left(|v|^{1 / 2}\right) g \tag{6-16}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{M}=D^{-1} H D^{-1}+\operatorname{diag}(g) J^{v} . \tag{6-17}
\end{equation*}
$$

Here $J^{v}$ plays the role of the Jacobian of $|v|$. Each diagonal component of the diagonal matrix $J^{v}$ equals $0,-1$, or 1 . If all the components of $l$ and $u$ are finite, $J^{v}=\operatorname{diag}(\operatorname{sign}(g))$. At a point where $g_{i}=0, v_{i}$ might not be differentiable.
$J_{i i}^{U}=0$ is defined at such a point. Nondifferentiability of this type is not a cause for concern because, for such a component, it is not significant which value $v_{i}$ takes. Further, $\left|v_{i}\right|$ will still be discontinuous at this point, but the function $\left|v_{i}\right| \cdot g_{i}$ is continuous.

Second, reflections are used to increase the stepsize. A (single) reflection step is defined as follows. Given a step $p$ that intersects a bound constraint, consider the first bound constraint crossed by $p$; assume it is the $i$ th bound constraint (either the $i$ th upper or $i$ th lower bound). Then the reflection step $p^{R}=p$ except in the $i$ th component, where $p^{R}{ }_{i}=-p_{i}$.

## Nonlinear Least-Squares

An important special case for $f(x)$ is the nonlinear least-squares problem

$$
\begin{equation*}
\min _{x} \sum_{i} f_{i}^{2}(x)=\min _{x}\|F(x)\|_{2}^{2}, \tag{6-18}
\end{equation*}
$$

where $F(x)$ is a vector-valued function with component $i$ of $F(x)$ equal to $f_{i}(x)$. The basic method used to solve this problem is the same as in the general case described in "Trust-Region Methods for Nonlinear Minimization" on page 6-3. However, the structure of the nonlinear least-squares problem is exploited to enhance efficiency. In particular, an approximate Gauss-Newton direction, i.e., a solution $s$ to

$$
\begin{equation*}
\min \|J s+F\|_{2}^{2}, \tag{6-19}
\end{equation*}
$$

(where $J$ is the Jacobian of $F(x)$ ) is used to help define the two-dimensional subspace $S$. Second derivatives of the component function $f_{i}(x)$ are not used.

In each iteration the method of preconditioned conjugate gradients is used to approximately solve the normal equations, i.e.,

$$
J^{T} J s=-J^{T} F,
$$

although the normal equations are not explicitly formed.

## Quadratic Programming

In this case the function $f(x)$ is the quadratic equation

$$
q(x)=\frac{1}{2} x^{T} H x+f^{T} x .
$$

The subspace trust-region method is used to determine a search direction. However, instead of restricting the step to (possibly) one reflection step, as in the nonlinear minimization case, a piecewise reflective line search is conducted at each iteration. See [7] for details of the line search.

## Linear Least-Squares

In this case the function $f(x)$ to be solved is

$$
f(x)=\|C x+d\|_{2}^{2} .
$$

The algorithm generates strictly feasible iterates converging, in the limit, to a local solution. Each iteration involves the approximate solution of a large linear system (of order $n$, where $n$ is the length of $x$ ). The iteration matrices have the structure of the matrix $C$. In particular, the method of preconditioned conjugate gradients is used to approximately solve the normal equations, i.e.,

$$
C^{T} C x=-C^{T} d
$$

although the normal equations are not explicitly formed.
The subspace trust-region method is used to determine a search direction. However, instead of restricting the step to (possibly) one reflection step, as in the nonlinear minimization case, a piecewise reflective line search is conducted at each iteration, as in the quadratic case. See [7] for details of the line search. Ultimately, the linear systems represent a Newton approach capturing the first-order optimality conditions at the solution, resulting in strong local convergence rates.

## Large-Scale Linear Programming

## In this section...

"Introduction" on page 6-20
"Main Algorithm" on page 6-20
"Preprocessing" on page 6-23

## Introduction

Linear programming is defined as

$$
\min _{x} f^{T} x \text { such that }\left\{\begin{array}{c}
A \cdot x \leq b  \tag{6-20}\\
A e q \cdot x=b e q \\
l b \leq x \leq u b
\end{array}\right.
$$

The large-scale method is based on LIPSOL ([14]), which is a variant of Mehrotra's predictor-corrector algorithm ([9]), a primal-dual interior-point method.

## Main Algorithm

The algorithm begins by applying a series of preprocessing steps (see "Preprocessing" on page 6-23). After preprocessing, the problem has the form

$$
\min _{x} f^{T} x \text { such that }\left\{\begin{array}{c}
A \cdot x=b  \tag{6-21}\\
0 \leq x \leq u
\end{array}\right.
$$

The upper bounds constraints are implicitly included in the constraint matrix A. With the addition of primal slack variables $s$, Equation 6-21 becomes

$$
\min _{x} f^{T} x \text { such that }\left\{\begin{array}{c}
A \cdot x=b  \tag{6-22}\\
x+s=u \\
x \geq 0, s \geq 0
\end{array}\right.
$$

which is referred to as the primal problem: $x$ consists of the primal variables and $s$ consists of the primal slack variables. The dual problem is

$$
\max b^{T} y-u^{T} w \text { such that }\left\{\begin{array}{c}
A^{T} \cdot y-w+z=f  \tag{6-23}\\
z \geq 0, w \geq 0
\end{array}\right.
$$

where $y$ and $w$ consist of the dual variables and $z$ consists of the dual slacks. The optimality conditions for this linear program, i.e., the primal Equation 6-22 and the dual Equation 6-23, are

$$
\begin{gather*}
F(x, y, z, s, w)=\left(\begin{array}{c}
A \cdot x-b \\
x+s-u \\
A^{T} \cdot y-w+z-f \\
x_{i} z_{i} \\
s_{i} w_{i}
\end{array}\right)=0, \\
x \geq 0, z \geq 0, s \geq 0, w \geq 0, \tag{6-24}
\end{gather*}
$$

where $x_{i} z_{i}$ and $s_{i} w_{i}$ denote component-wise multiplication.
The quadratic equations $x_{i} z_{i}=0$ and $s_{i} w_{i}=0$ are called the complementarity conditions for the linear program; the other (linear) equations are called the feasibility conditions. The quantity

$$
x^{T} z+s^{T} w
$$

is the duality gap, which measures the residual of the complementarity portion of $F$ when $(x, z, s, w) \geq 0$.

The algorithm is a primal-dual algorithm, meaning that both the primal and the dual programs are solved simultaneously. It can be considered a Newton-like method, applied to the linear-quadratic system $F(x, y, z, s, w)=0$ in Equation 6-24, while at the same time keeping the iterates $x, z, w$, and $s$ positive, thus the name interior-point method. (The iterates are in the strictly interior region represented by the inequality constraints in Equation 6-22.)

The algorithm is a variant of the predictor-corrector algorithm proposed by Mehrotra. Consider an iterate $v=[x ; y ; z ; s ; w]$, where $[x ; z ; s ; w]>0$ First compute the so-called prediction direction

$$
\Delta v_{p}=-\left(F^{T}(v)\right)^{-1} F(v)
$$

which is the Newton direction; then the so-called corrector direction

$$
\Delta v_{c}=-\left(F^{T}(v)\right)^{-1} F\left(v+\Delta v_{p}\right)-\mu e
$$

where $\mu>0$ is called the centering parameter and must be chosen carefully. $\hat{e}$ is a zero-one vector with the ones corresponding to the quadratic equations in $F(v)$,i.e., the perturbations are only applied to the complementarity conditions, which are all quadratic, but not to the feasibility conditions, which are all linear. The two directions are combined with a step length parameter $\alpha>0$ and update $v$ to obtain the new iterate $v^{+}$:

$$
v^{+}=v+\alpha\left(\Delta v_{p}+\Delta v_{c}\right)
$$

where the step length parameter $\alpha$ is chosen so that

$$
v^{+}=\left[x^{+} ; y^{+} ; z^{+} ; s^{+} ; w^{+}\right]
$$

satisfies

$$
\left[x^{+} ; z^{+} ; s^{+} ; w^{+}\right]>0 .
$$

In solving for the preceding steps, the algorithm computes a (sparse) direct factorization on a modification of the Cholesky factors of $A \cdot A^{T}$. If $A$ has dense columns, it instead uses the Sherman-Morrison formula. If that solution is not adequate (the residual is too large), it performs an LDL factorization of an augmented form of the step equations to find a solution. (See Example 4 The Structure of $D$ in the MATLAB ${ }^{\circledR}$ ldl function reference page.)

The algorithm then repeats these steps until the iterates converge. The main stopping criteria is a standard one:

$$
\frac{\left\|r_{b}\right\|}{\max (1,\|b\|)}+\frac{\left\|r_{f}\right\|}{\max (1,\|f\|)}+\frac{\left\|r_{u}\right\|}{\max (1,\|u\|)}+\frac{\left|f^{T} x-b^{T} y+u^{T} w\right|}{\max \left(1,\left|f^{T} x\right|,\left|b^{T} y-u^{T} w\right|\right)} \leq t o l,
$$

where

$$
\begin{aligned}
r_{b} & =A x-b \\
r_{f} & =A^{T} y-w+z-f \\
r_{u} & =x+s-u
\end{aligned}
$$

are the primal residual, dual residual, and upper-bound feasibility respectively, and

$$
f^{T} x-b^{T} y+u^{T} w
$$

is the difference between the primal and dual objective values, and tol is some tolerance. The sum in the stopping criteria measures the total relative errors in the optimality conditions in Equation 6-24.

## Preprocessing

A number of preprocessing steps occur before the actual iterative algorithm begins. The resulting transformed problem is one where

- All variables are bounded below by zero.
- All constraints are equalities.
- Fixed variables, those with equal upper and lower bounds, are removed.
- Rows of all zeros in the constraint matrix are removed.
- The constraint matrix has full structural rank.
- Columns of all zeros in the constraint matrix are removed.
- When a significant number of singleton rows exist in the constraint matrix, the associated variables are solved for and the rows removed.

While these preprocessing steps can do much to speed up the iterative part of the algorithm, if the Lagrange multipliers are required, the preprocessing steps must be undone since the multipliers calculated during the algorithm are for the transformed problem, and not the original. Thus, if the multipliers are not requested, this transformation back is not computed, and might save some time computationally.

## Selected Bibliography

[1] Branch, M.A., T.F. Coleman, and Y. Li, "A Subspace, Interior, and Conjugate Gradient Method for Large-Scale Bound-Constrained Minimization Problems," SIAM Journal on Scientific Computing, Vol. 21, Number 1, pp 1-23, 1999.
[2] Byrd, R.H., J. C. Gilbert, and J. Nocedal, "A Trust Region Method Based on Interior Point Techniques for Nonlinear Programming," Mathematical Programming, Vol 89, No. 1, pp. 149-185, 2000.
[3] Byrd, R.H., Mary E. Hribar, and Jorge Nocedal, "An Interior Point Algorithm for Large-Scale Nonlinear Programming, SIAM Journal on Optimization," SIAM Journal on Optimization, Vol 9, No. 4, pp. 877-900, 1999.
[4] Byrd, R.H., R.B. Schnabel, and G.A. Shultz, "Approximate Solution of the Trust Region Problem by Minimization over Two-Dimensional Subspaces," Mathematical Programming, Vol. 40, pp 247-263, 1988.
[5] Coleman, T.F. and Y. Li, "On the Convergence of Reflective Newton Methods for Large-Scale Nonlinear Minimization Subject to Bounds," Mathematical Programming, Vol. 67, Number 2, pp 189-224, 1994.
[6] Coleman, T.F. and Y. Li, "An Interior, Trust Region Approach for Nonlinear Minimization Subject to Bounds," SIAM Journal on Optimization, Vol. 6, pp 418-445, 1996.
[7] Coleman, T.F. and Y. Li, "A Reflective Newton Method for Minimizing a Quadratic Function Subject to Bounds on some of the Variables," SIAM Journal on Optimization, Vol. 6, Number 4, pp 1040-1058, 1996.
[8] Coleman, T.F. and A. Verma, "A Preconditioned Conjugate Gradient Approach to Linear Equality Constrained Minimization," submitted to Computational Optimization and Applications.
[9] Mehrotra, S., "On the Implementation of a Primal-Dual Interior Point Method," SIAM Journal on Optimization, Vol. 2, pp 575-601, 1992.
[10] Moré, J.J. and D.C. Sorensen, "Computing a Trust Region Step," SIAM Journal on Scientific and Statistical Computing, Vol. 3, pp 553-572, 1983.
[11] Sorensen, D.C., "Minimization of a Large Scale Quadratic Function Subject to an Ellipsoidal Constraint," Department of Computational and Applied Mathematics, Rice University, Technical Report TR94-27, 1994.
[12] Steihaug, T., "The Conjugate Gradient Method and Trust Regions in Large Scale Optimization," SIAM Journal on Numerical Analysis, Vol. 20, pp 626-637, 1983.
[13] Waltz, R. A. , J. L. Morales, J. Nocedal, and D. Orban, "An interior algorithm for nonlinear optimization that combines line search and trust region steps," Mathematical Programming, Vol 107, No. 3, pp. 391-408, 2006.
[14] Zhang, Y., "Solving Large-Scale Linear Programs by Interior-Point Methods Under the MATLAB Environment," Department of Mathematics and Statistics, University of Maryland, Baltimore County, Baltimore, MD, Technical Report TR96-01, July, 1995.

# Parallel Computing for Optimization 

Parallel Computing in Optimization Toolbox ${ }^{\text {TM }}$ Functions (p. 7-2)<br>Using Parallel Computing with fmincon, fgoalattain, and fminimax (p. 7-5)<br>Improving Performance with Parallel Computing (p. 7-8)

Using multiple processors for optimization

Automatic gradient estimation in parallel

Considerations for speeding optimizations

# Parallel Computing in Optimization Toolbox ${ }^{\text {TM }}$ Functions 

## In this section...

"Parallel Optimization Functionality" on page 7-2
"Parallel Estimation of Gradients" on page 7-2
"Nested Parallel Functions" on page 7-3

## Parallel Optimization Functionality

Parallel computing is the technique of using multiple processors on a single problem. The reason to use parallel computing is to speed computations.

The Optimization Toolbox ${ }^{\text {TM }}$ solvers fmincon, fgoalattain, and fminimax can automatically distribute the numerical estimation of gradients of objective functions and nonlinear constraint functions to multiple processors. These solvers use parallel gradient estimation under the following conditions:

- You have a license for Parallel Computing Toolbox ${ }^{\mathrm{TM}}$ software.
- The option GradObj is set to 'off', or, if there is a nonlinear constraint function, the option GradConstr is set to 'off'. Since 'off' is the default value of these options, you don't have to set them with optimset; just don't set them both to 'on'.
- Parallel computing is enabled with matlabpool, a Parallel Computing Toolbox function.
- The option UseParallel is set to 'always'. The default value of this option is 'never'.

When these conditions hold, the solvers compute estimated gradients in parallel.

Currently, UseParallel cannot be accessed using the Optimization Tool GUI.

## Parallel Estimation of Gradients

One subroutine was made parallel in the functions fmincon, fgoalattain, and fminimax: the subroutine that estimates the gradient of the objective
function and constraint functions. This calculation involves computing function values at points near the current location $x$. Essentially, the calculation is

$$
\nabla f(x) \approx\left[\left(f\left(x+\Delta_{1} e_{1}\right)-f(x)\right) / \Delta_{1},\left(f\left(x+\Delta_{2} e_{2}\right)-f(x)\right) / \Delta_{2}, \ldots,\left(f\left(x+\Delta_{n} e_{n}\right)-f(x)\right) / \Delta_{n}\right],
$$

where

- $f$ represents objective or constraint functions
- $e_{i}$ are the unit direction vectors
- $\Delta_{i}$ is the size of a step in the $e_{i}$ direction

To estimate $\nabla f(x)$ in parallel, Optimization Toolbox solvers distribute the evaluation of $\left(f\left(x+\Delta_{i} e_{i}\right)-f(x)\right) / \Delta_{i}$ to extra processors.
fmincon uses the parallel subroutine only with the active-set algorithm. fgoalattain and fminimax always use the parallel subroutine.

## Nested Parallel Functions

Solvers employ the Parallel Computing Toolbox function parfor to perform parallel estimation of gradients. parfor does not work in parallel when called from within another parfor loop. Therefore, you cannot simultaneously use parallel gradient estimation and parallel functionality within your objective or constraint functions.

Suppose, for example, your objective function userfon calls parfor, and you wish to call fmincon in a loop. Suppose also that the conditions for parallel gradient evaluation of fmincon, as given in "Parallel Optimization Functionality" on page 7-2, are satisfied. Figure When parfor Runs In Parallel on page 7-4 shows three cases:

1 The outermost loop is parfor. Only that loop runs in parallel.
2 The outermost parfor loop is in fmincon. Only fmincon runs in parallel.
3 The outermost parfor loop is in userfon. userfon can use parfor in parallel.

Bold indicates the function that runs in parallel

```
(1)
\(\ldots\) Only the outermost parfor loop
\(\begin{aligned} & \text { parfor }(\mathrm{i}=1: 10) \\ & \text { runs in parallel }\end{aligned}\)
(i) \(=\) fmincon(@userfcn,...)
end
(2) \(\boldsymbol{f o r}(i=1: 10)\)
                                    If UseParallel = 'always'
                                    fmincon runs in parallel
    \(x(i)=\) fmincon(@userfcn,...)
    end
(3) for \((i=1: 10)\)
        \(x(i)=\) fmincon (@userfon,...)
    end
When parfor Runs In Parallel
```


## Using Parallel Computing with fmincon, fgoalattain, and fminimax

In this section...<br>"Using Parallel Computing with Multicore Processors" on page 7-5<br>"Using Parallel Computing with a Multiprocessor Network" on page 7-6<br>"Testing Parallel Computations" on page 7-7

## Using Parallel Computing with Multicore Processors

If you have a multicore processor, you might see speedup using parallel processing. You can establish a matlabpool of up to 4 parallel workers with a basic Parallel Computing Toolbox ${ }^{\text {TM }}$ license.

Suppose you have a dual-core processor, and wish to use parallel computing:

- Enter
matlabpool open 2
at the command line. The 2 specifies the number of processors to use.
- Enter

```
options = optimset('UseParallel','always');
```

When you run an applicable solver with options, applicable solvers automatically use parallel computing.

To stop computing optimizations in parallel, set UseParallel to 'never'. To halt all parallel computation, enter

```
matlabpool close
```


## Using Parallel Computing with a Multiprocessor Network

If you have multiple processors on a network, use Parallel Computing Toolbox functions and MATLAB ${ }^{\circledR}$ Distributed Computing Server ${ }^{\text {TM }}$ software to establish parallel computation. Here are the steps to take:

1 Obtain a license for Parallel Computing Toolbox functions and MATLAB Distributed Computing Server software.

2 Configure your system for parallel processing. See the Parallel Computing Toolbox documentation, or MATLAB Distributed Computing Server System Administrator's Guide.

In particular, if network_file_path is the network path to your objective or constraint functions, enter

```
pctRunOnAll('addpath network_file_path')
```

so the worker processors can access your objective or constraint M-files.
Check whether an M-file is on the path of every worker by entering

```
pctRunOnAll('which filename')
```

If any worker does not have a path to the M-file, it reports filename not found.

3 At the command line enter matlabpool open conf
or
matlabpool open conf $n$
where conf is your configuration, and $n$ is the number of processors you wish to use.

4 Enter

```
options = optimset('UseParallel','always');
```

Once your parallel computing environment is established, applicable solvers automatically use parallel computing whenever called with options.

To stop computing optimizations in parallel, set UseParallel to 'never'. To halt all parallel computation, enter

```
matlabpool close
```


## Testing Parallel Computations

To test see if a problem runs correctly in parallel,
1 Try your problem without parallel computation to ensure that it runs properly serially. Make sure this is successful (gives correct results) before going to the next test.

2 Set UseParallel to 'always', and ensure matlabpool is closed. Your problem runs parfor serially, with loop iterations in reverse order from a for loop. Make sure this is successful (gives correct results) before going to the next test.

3 Set UseParallel to 'always', and open matlabpool. Unless you have a multicore processor or a network set up, you won't see any speedup. This testing is simply to verify the correctness of the computations.

Remember to call your solver using an options structure to test or use parallel functionality.

# Improving Performance with Parallel Computing 

In this section...<br>"Factors That Affect Speed" on page 7-8<br>"Factors That Affect Results" on page 7-8<br>"Searching for Global Optima" on page 7-9

## Factors That Affect Speed

Some factors may affect the speed of execution of parallel processing:

- parfor overhead. There is overhead in calling parfor instead of for. If function evaluations are fast, this overhead could become appreciable.
- No nested parfor loops. This is described in "Nested Parallel Functions" on page 7-3. parfor does not work in parallel when called from within another parfor loop. If you have programmed your objective or constraint functions to take advantage of parallel processing, the limitation of no nested parfor loops may cause a solver to run more slowly than you expect. In particular, the parallel computation of finite differences takes precedence, since that is an outer loop. This causes any parallel code within the objective or constraint functions to execute serially.
- Passing parameters. Parameters are automatically passed to worker machines during the execution of parallel computations. If there are a large number of parameters, or they take a large amount of memory, passing them may slow the execution of your computation.
- Contention for resources: network and computing. If the network of worker machines has low bandwidth or high latency, computation could be slowed.


## Factors That Affect Results

Some factors may affect numerical results when using parallel processing. There are more caveats related to parfor listed in the "Limitations" section of the Parallel Computing Toolbox ${ }^{\text {TM }}$ documentation.

- Persistent or global variables. If your objective or constraint functions use persistent or global variables, these variables may take different values on
different worker processors. Furthermore, they may not be cleared properly on the worker processors.
- Accessing external files. External files may be accessed in an unpredictable fashion during a parallel computation. The order of computations is not guaranteed during parallel processing, so external files may be accessed in unpredictable order, leading to unpredictable results.
- Accessing external files. If two or more processors try to read an external file simultaneously, the file may become locked, leading to a read error, and halting the execution of the optimization.
- If your objective function calls Simulink ${ }^{\circledR}$, results may be unreliable with parallel gradient estimation.
- Noncomputational functions, such as input, plot, and keyboard, might behave badly when used in objective or constraint functions. When called in a parfor loop, these functions are executed on worker machines. This can cause a worker to become nonresponsive, since it is waiting for input.
- parfor does not allow break or return statements.


## Searching for Global Optima

To search for global optima, one approach is to evaluate a solver from a variety of initial points. If you distribute those evaluations over a number of processors using the parfor function, you disable parallel gradient estimation, since parfor loops cannot be nested. Your optimization usually runs more quickly if you distribute the evaluations over all the processors, rather than running them serially with parallel gradient estimation, so disabling parallel estimation probably won't slow your computation. If you have more processors than initial points, though, it is not clear whether it is better to distribute initial points or to enable parallel gradient estimation.

## External Interface

ktrlink: An Interface to KNITRO® ${ }^{\circledR}$ Libraries (p. 8-2)

Describes how to use an interface to KNITRO ${ }^{\circledR}$ libraries to perform optimizations

## ktrlink: An Interface to KNITRO ${ }^{\text {® }}$ Libraries

In this section...<br>"What Is ktrlink?" on page 8-2<br>"Installation and Configuration" on page 8-2<br>"Example Using ktrlink" on page 8-4<br>"Setting Options" on page 8-7<br>"Sparse Matrix Considerations" on page 8-9

## What Is ktrlink?

ktrlink calls Ziena Optimization's KNITRO ${ }^{\circledR}$ libraries in order to perform an optimization. ktrlink can address constrained and unconstrained problems. To use ktrlink, you must purchase a copy of KNITRO libraries from Ziena Optimization, Inc. (http://www.ziena.com/).

Use ktrlink the same as any other Optimization Toolbox ${ }^{\text {TM }}$ function.
ktrlink's syntax is similar to fmincon's. The main differences are:

- ktrlink has additional options input for KNITRO libraries so you can access its options.
- ktrlink has no provision for obtaining a returned Hessian or gradient, since KNITRO software doesn't return them.
- Sparse matrix representations differ between KNITRO software and MATLAB ${ }^{\circledR}$.

Furthermore, many returned flags and messages differ from fmincon's, because they are returned directly from KNITRO libraries.

## Installation and Configuration

The system requirements for MATLAB and KNITRO software may differ. Check the system requirements for both products before attempting to use ktrlink. For recent and planned MATLAB platform support, see
http://www.mathworks.com/support/sysreq/roadmap.html

Note ktrlink is not compatible with the Solaris ${ }^{\text {TM }} 64$-bit architecture.

Perform the following steps to configure your system to use ktrlink:
1 Install MATLAB and the KNITRO libraries on your system.
2 Set the system path to include the KNITRO libraries (see "Setting the System Path to Include KNITRO ${ }^{\circledR}$ Libraries" on page 8-3). Make sure to perform this step before starting MATLAB.

## 3 Start MATLAB.

## Setting the System Path to Include KNITRO ${ }^{\text {® }}$ Libraries

In order to use ktrlink, you need to tell MATLAB where the KNITRO binary file (libknitro.so, libknitro.dylib, knitro520.dll, or a similar file) resides. You do this by setting a system-wide environment variable. Enter the following system-level commands. Replace <file_absolute_path> with the full path to your KNITRO libraries:

- Linux:

```
setenv LD_LIBRARY_PATH <file_absolute_path>:$LD_LIBRARY_PATH
```

- Macintosh:
a In Terminal (available in the Utilities folder of the Applications folder) enter the following:

```
edit /etc/profile
```

b Add the following line to the end of the file:
export
DYLD_LIBRARY_PATH=<file_absolute_path>:\$DYLD_LIBRARY_PATH

- Windows:
a At the Windows desktop, right-click My Computer (Windows XP) or Computer (Vista).
b Select Properties.
c Click the Advanced tab (Windows XP) or Advanced System Settings (Vista).


## d Click Environment Variables.

e Under System variables, edit the Path variable to add the KNITRO library directory.

Check if the installation was successful by starting MATLAB and running the following command:

```
[x fval] = ktrlink(@(x)cos(x),1)
```

If you receive an error message, check your system path, and make sure the KNITRO libraries are on the path. When installed correctly, ktrlink returns $x=3.1416$, fval $=-1$.

## Example Using ktrlink

1 This example uses the same constraint function as the example in "Nonlinear Constraints" on page 2-17. The constraint function is the intersection of the interior of an ellipse with the region above a parabola:

```
function [c ceq gradc gradceq]=ellipseparabola(x)
% Inside the ellipse bounded by (-3<x<3),(-2<y<2)
% Above the line y=x^2-1
c(1) = x(1)^2/9 + x(2)^2/4 - 1;% ellipse
c(2) = x(1)^2 - x(2) - 1;% parabola
ceq = [];
if nargout > 2
    gradc = [2*x(1)/9, 2*x(1);...
    x(2)/2, -1];
    gradceq = [];
end
```

2 The objective function is a tilted sinh:

```
function [f gradf]=sinhtilt(x)
A=[2,1;1,2];
m=[1,1];
f=sinh(x'*A*x/100) + sinh(m*A*x/10);
if nargout > 1
    gradf=cosh(x'*A*x/100)*(A*x)/50;
    gradf=gradf+cosh(m*A*x/10)*[3;3]/10;
end
```

3 Set the options so that ktrlink has iterative display and uses the gradients included in the objective and constraint functions:

```
ktropts = optimset('Display','iter',...
    'GradConstr','on','GradObj','on');
```

4 Run the optimization starting at [0;0], using the structure ktropts:
[x fval flag] = ktrlink(@sinhtilt, [0;0],...
[], [], [], [], [], [], @ellipseparabola, ktropts)
KNITRO software returns the following output:

```
=======================================
KNITRO 5.2
Ziena Optimization, Inc.
website: www.ziena.com
email: info@ziena.com
algorithm: 1
hessopt: 2
honorbnds: 1
outlev: 4
KNITRO changing bar_murule from AUTO to 1.
KNITRO changing bar_initpt from AUTO to 2.
KNITRO changing honorbnds to O (because there are no bounds).
Problem Characteristics
```

| Objective goal: Minimize |  |
| :--- | :--- |
| Number of variables: | 2 |
| bounded below: | 0 |
| bounded above: | 0 |
| bounded below and above: | 0 |
| fixed: | 0 |
| free: | 2 |
| Number of constraints: | 2 |
| linear equalities: | 0 |
| nonlinear equalities: | 0 |
| linear inequalities: | 0 |
| nonlinear inequalities: | 2 |
| range: | 0 |
| Number of nonzeros in Jacobian: | 4 |
| Number of nonzeros in Hessian: | 3 |



EXIT: LOCALLY OPTIMAL SOLUTION FOUND.

Final Statistics

| Final objective value | $=-3.60119556291455 \mathrm{e}-001$ |  |
| :--- | :--- | :---: | :---: |
| Final feasibility error (abs / rel) | $=0.00 \mathrm{e}+000 / 0.00 \mathrm{e}+000$ |  |
| Final optimality error (abs / rel) | $=2.00 \mathrm{e}-008 / 2.00 \mathrm{e}-008$ |  |
| \# of iterations (major / minor) | $=$ | $11 / \mathrm{11}$ |
| \# of function evaluations | $=$ | 13 |

```
# of gradient evaluations 
x =
    -0.5083
    -0.7416
fval =
    -0.3601
flag =
0
```

Note Exit flags have different meanings for ktrlink and fmincon. Flag 0 for KNITRO libraries means the first-order optimality condition was satisfied; for fmincon, the corresponding flag is 1 . For more information about the output, see the KNITRO documentation at http: //www.ziena.com/.

## Setting Options

ktrlink takes up to two options inputs: one in fmincon format, and another in KNITRO format. You can use either or both types of options. If you use both types of options, MATLAB reads only four fmincon-format options: HessFcn, HessMult, HessPattern, and JacobPattern. KNITRO options override fmincon-format options.

To use KNITRO options, create an options text file, whose format can be found in the KNITRO documentation. For example, if you have a KNITRO options file named knitropts, and an fmincon-format options structure named ktropts, you can pass them both by calling ktrlink like this:

```
[x fval] = ktrlink(@bigtoleft,[-1,-1,-1],...
    [],[],[],[],[],[],@twocone,ktropts,'knitropts')
```

If knitropts resides in a different directory, pass the path to the file. For example:

```
[x fval] = ktrlink(@bigtoleft,[-1,-1,-1],...
    [],[],[],[],[],[],@twocone,ktropts,...
    'C:\Documents\Knitro\knitropts')
```

The following shows how fmincon-format options are mapped to KNITRO options.

| fmincon Option | KNITRO Option | Default Value |
| :--- | :--- | :--- |
| Algorithm | algorithm | 'interior-point' |
| AlwaysHonorConstraints | honorbounds | 'bounds ' |
| Display | outlev | 'none' |
| FinDiffType | gradopt | 'forward' |
| GradConstr | gradopt | 'off' |
| GradObj | gradopt | 'off' |
| HessFcn | hessopt | [ ] |
| MaxIter | maxit | 10000 |
| TolFun | opttol | $1.00 \mathrm{E}-06$ |
| TolX | xtol | $1.00 \mathrm{E}-15$ |
| Hessian, LBFGS pairs | hessopt, lmsize | 'bfgs ' |
| HessMult | hessopt | [ ] |
| HessPattern |  | [ ] |
| InitBarrierParam | bar_initmu | 0.1 |
| InitTrustRegionRadius | delta | sqrt(numberOfVariables) |
| JacobPattern |  | $[$ ] |
| MaxProjCGIter | maxcgit | $2^{*}($ numberOfVariables-numberOfEqualities) |
| ObjectiveLimit | objrange | -1.0 E 20 |
| ScaleProblem | scale | 'obj-and-constr' |
| SubProblemAlgorithm | algorithm | 'ldl-factorization' |
| TolCon | feastol | $1.00 \mathrm{E}-06$ |
|  |  |  |
|  |  |  |

Note KNITRO libraries allow you to pass simultaneously either the gradients of the objective function and all nonlinear constraints, or no gradients. Therefore, setting GradObj = 'on' and GradConstr = 'off' is inconsistent. If you attempt to pass inconsistent options, ktrlink warns you, and treats all gradients as if they had not been passed.

## Sparse Matrix Considerations

When the Hessian of the Lagrangian is sparse, or the Jacobian of the nonlinear constraints is sparse, ktrlink makes use of the sparsity structure to speed the optimization and use less memory doing so.
ktrlink handles sparse matrices differently than other MATLAB functions. If you choose to use sparse matrices, ktrlink requires a sparsity pattern for nonlinear constraint Jacobians and for Hessians. The next two sections give the details of the sparsity patterns for nonlinear constraint Jacobians and for Hessians.

## Sparsity Pattern for Nonlinear Constraints

The sparsity pattern for constraint Jacobians is a matrix. You pass the matrix as the JacobPattern option. The structure of the matrix follows.

Let $c$ denote the vector of $m$ nonlinear inequality constraints, and let ceq denote the vector of $m_{2}$ nonlinear equality constraints. If there are $n$ dimensions, the Jacobian is an ( $m+m_{2}$ )-by- $n$ matrix. The Jacobian pattern $J$ is

$$
\begin{gathered}
J_{i, j}=\left\{\begin{array}{l}
1 \text { if } \frac{\partial c_{i}(x)}{\partial x_{j}} \neq 0 \\
0 \text { if } \frac{\partial c_{i}(x)}{\partial x_{j}} \equiv 0
\end{array}, 1 \leq i \leq m,\right. \\
J_{i+m, j}=\left\{\begin{array}{l}
1 \text { if } \frac{\partial c e q_{i}(x)}{\partial x_{j}} \neq 0 \\
0 \text { if } \frac{\partial c e q_{i}(x)}{\partial x_{j}} \equiv 0
\end{array}, 1 \leq i \leq m_{2} .\right.
\end{gathered}
$$

In other words, the $i$ th row of the Jacobian pattern corresponds to the gradient of $c_{i}$. Inequality gradients lie above equality gradients (they have lower row numbers).

All that matters for the Jacobian pattern is whether or not the entries are zero. You can pass single-precision numbers, doubles, or logical true or false. You can pass the sparsity pattern as a MATLAB sparse matrix. If you have a large sparse matrix of constraints, it is more efficient to pass the pattern as a sparse matrix. Linear constraint matrices are automatically passed as sparse matrices.

The gradient of the constraints, calculated in the constraint function, has the transpose of the Jacobian pattern. For more information about the form of constraint gradients, see "Nonlinear Constraints" on page 2-17.

## Sparsity Pattern for Hessians

The Hessian is the matrix of second derivatives of the Lagrangian:

$$
H_{i, j}=\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}+\sum_{k} \lambda_{k} \frac{\partial^{2} c_{k}}{\partial x_{i} \partial x_{j}}+\sum_{m} \lambda_{m} \frac{\partial^{2} c e q_{m}}{\partial x_{i} \partial x_{j}} .
$$

Give the matrix $H$ as a full or sparse matrix of zero and nonzero elements. The elements can be single-precision numbers, doubles, or logical true or false.

The Hessian is a symmetric matrix. You can pass just the upper triangular pattern, or pass the whole matrix pattern.

# Argument and Options Reference 

Function Arguments (p. 9-2)<br>Optimization Options (p. 9-8)<br>Describes the input and output arguments of the toolbox functions.<br>Describes optimization options.

## Function Arguments

## In this section...

"Input Arguments" on page 9-2
"Output Arguments" on page 9-5

## Input Arguments

## Input Arguments

| Argument | Description | Used by Functions |
| :--- | :--- | :--- |
| A, b | The matrix A and vector b are, <br> respectively, the coefficients of the <br> linear inequality constraints and <br> the corresponding right-side vector: <br> $A^{*} x \leq$ b. | bintprog, fgoalattain, fmincon, <br> fminimax, fseminf, linprog, <br> lsqlin, quadprog |
| Aeq, beq | The matrix Aeq and vector beq are, <br> respectively, the coefficients of the <br> linear equality constraints and the <br> corresponding right-side vector: <br> Aeq*x = beq. | bintprog, fgoalattain, fmincon, <br> fminimax, fseminf, linprog, <br> lsqlin, quadprog |
| C, d | The matrix C and vector d are, <br> respectively, the coefficients of the <br> over or underdetermined linear <br> system and the right-side vector to <br> be solved. | lsqlin, lsqnonneg |
| $f$ | The vector of coefficients for the <br> linear term in the linear equation <br> $f^{\prime *} x$ or the quadratic equation <br> x'*H*x+f'*x. | bintprog, linprog, quadprog |

## Input Arguments (Continued)

| Argument | Description | Used by Functions |
| :---: | :---: | :---: |
| fun | The function to be optimized. fun is a function handle for an M-file function or a function handle for an anonymous function. See the individual function reference pages for more information on fun. | fgoalattain, fminbnd, fmincon, fminimax, fminsearch, fminunc, fseminf, fsolve, fzero, lsqcurvefit, lsqnonlin |
| goal | Vector of values that the objectives attempt to attain. The vector is the same length as the number of objectives. | fgoalattain |
| H | The matrix of coefficients for the quadratic terms in the quadratic equation x '* $\mathrm{H}^{*} \mathrm{x}+\mathrm{f}$ '*x. H must be symmetric. | quadprog |
| lb, ub | Lower and upper bound vectors (or matrices). The arguments are normally the same size as $x$. However, if $1 b$ has fewer elements than $x$, say only $m$, then only the first $m$ elements in $x$ are bounded below; upper bounds in ub can be defined in the same manner. You can also specify unbounded variables using - Inf (for lower bounds) or Inf (for upper bounds). For example, if $\mathrm{lb}(\mathrm{i})=-\mathrm{Inf}$, the variable $x(i)$ is unbounded below. | fgoalattain, fmincon, fminimax, fseminf, linprog, lsqcurvefit, lsqlin, lsqnonlin, quadprog |

## Input Arguments (Continued)

| Argument | Description | Used by Functions |
| :--- | :--- | :--- |
| nonlcon | The function that computes the <br> nonlinear inequality and equality <br> constraints. "Passing Extra <br> Parameters" on page 2-10 explains <br> how to parameterize the function <br> nonlcon, if necessary. <br> See the individual reference pages <br> for more information on nonlcon. | fgoalattain, fmincon, fminimax |
| ntheta | The number of semi-infinite <br> constraints. | fseminf |
| options | An structure that defines options <br> used by the optimization functions. <br> For information about the options, <br> see "Optimization Options" on <br> page 9-8 or the individual function <br> reference pages. | All functions |
| seminfcon | The function that computes the <br> nonlinear inequality and equality <br> constraints and the semi-infinite <br> constraints. seminfcon is the name <br> of an M-file or MEX-file. "Passing <br> Extra Parameters" on page 2-10 <br> explains how to parameterize <br> seminfcon, if necessary. <br> See the function reference pages <br> for fseminf for more information <br> on seminfcon. | fseminf |
| weight | A weighting vector to control <br> the relative underattainment or <br> overattainment of the objectives. | fgoalattain |

## Input Arguments (Continued)

| Argument | Description | Used by Functions |
| :--- | :--- | :--- |
| xdata, ydata | The input data xdata and the <br> observed output data ydata that <br> are to be fitted to an equation. | lsqcurvefit |
| $x 0$ | Starting point (a scalar, vector or <br> matrix). <br> (For fzero, x0 can also be a <br> two-element vector representing an <br> interval that is known to contain <br> a zero.) | All functions except fminbnd |
| $x 1, x 2$ | The interval over which the <br> function is minimized. | fminbnd |

## Output Arguments

## Output Arguments

| Argument | Description | Used by Functions |
| :--- | :--- | :--- |
| attainfactor | The attainment factor at the <br> solution x. | fgoalattain |
| exitflag | An integer identifying the reason <br> the optimization algorithm <br> terminated. See the function <br> reference pages for descriptions of <br> exitflag specific to each function. <br> You can also return a message <br> stating why an optimization <br> terminated by calling the <br> optimization function with <br> the output argument output and <br> then displaying output.message. | All functions |

## Output Arguments (Continued)

| Argument | Description | Used by Functions |
| :--- | :--- | :--- |
| fval | The value of the objective function <br> fun at the solution $x$. | bintprog, fgoalattain, fminbnd, <br> fmincon, fminimax, fminsearch, <br> fminunc, fseminf, fsolve, fzero, <br> linprog, quadprog |
| grad | The value of the gradient of fun <br> at the solution x. If fun does not <br> compute the gradient, grad is a <br> finite-differencing approximation <br> of the gradient. | fmincon, fminunc |
| hessian | The value of the Hessian of fun <br> at the solution x. For large-scale <br> methods, if fun does not compute <br> the Hessian, hessian is a <br> finite-differencing approximation <br> of the Hessian. For medium-scale <br> methods, hessian is the value of <br> the Quasi-Newton approximation <br> to the Hessian at the solution x. | fmincon, fminunc |
| jacobian | The value of the Jacobian of fun <br> at the solution x. If fun does not <br> compute the Jacobian, jacobian is <br> a finite-differencing approximation <br> of the Jacobian. | lsqcurvefit, lsqnonlin, fsolve |
| lambda | The Lagrange multipliers at the <br> solution x. lambda is a structure <br> where each field is for a different <br> constraint type. For structure field <br> names, see individual function <br> descriptions. (For lsqnonneg, <br> lambda is simply a vector, as <br> lsqnonneg only handles one kind <br> of constraint.) | fgoalattain, fmincon, fminimax, <br> fseminf, linprog, lsqcurvefit, <br> quadprog |
| maxfval | max\{fun (x)\} at the solution x. | fminimax |

## Output Arguments (Continued)

| Argument | Description | Used by Functions |
| :--- | :--- | :--- |
| output | An output structure that contains <br> information about the results of <br> the optimization. For structure <br> field names, see individual function <br> descriptions. | All functions |
| residual | The value of the residual at the <br> solution x. | lsqcurvefit, lsqlin, lsqnonlin, <br> lsqnonneg |
| resnorm | The value of the squared 2-norm of <br> the residual at the solution x. | lsqcurvefit, lsqlin, lsqnonlin, <br> lsqnonneg |
| x | The solution found by the <br> optimization function. If exitflag <br> $>$ 0, then x is a solution; otherwise, <br> x is the value of the optimization <br> routine when it terminated <br> prematurely. | All functions |

## Optimization Options

In this section...<br>"Options Structure" on page 9-8<br>"Output Function" on page 9-18<br>"Plot Functions" on page 9-27

## Options Structure

The following table describes fields in the optimization options structure options. You can set values of these fields using the function optimset. The column labeled L, M, B indicates whether the option applies to large-scale methods, medium scale methods, or both:

- L - Large-scale methods only
- M - Medium-scale methods only
- B - Both large- and medium-scale methods
- I — Interior-point method only

See the optimset reference page and the individual function reference pages for information about option values and defaults.

The default values for the options vary depending on which optimization function you call with options as an input argument. You can determine the default option values for any of the optimization functions by entering optimset followed by the name of the function. For example,

```
optimset fmincon
```

returns a list of the options and the default values for fmincon. Options whose default values listed as [] are not used by the function.

## Optimization Options

| Option Name | Description | L, M, B, | Used by Functions |
| :---: | :---: | :---: | :---: |
| Algorithm | Chooses the algorithm used by the solver. | B, I | fmincon |
| AlwaysHonorConstraints | The default 'bounds ' ensures that bound constraints are satisfied at every iteration. Turn off by setting to 'none'. | I | fmincon |
| BranchStrategy | Strategy bintprog uses to select branch variable. | M | bintprog |
| DerivativeCheck | Compare user-supplied analytic derivatives (gradients or Jacobian, depending on the selected solver) to finite differencing derivatives. | B | fgoalattain, fmincon, fminimax, fminunc, fseminf, fsolve, lsqcurvefit, lsqnonlin |
| Diagnostics | Display diagnostic information about the function to be minimized or solved. | B | All but fminbnd, fminsearch, fzero, and lsqnonneg |
| DiffmaxChange | Maximum change in variables for finite differencing. | M | fgoalattain, fmincon, fminimax, fminunc, fseminf, fsolve, lsqcurvefit, lsqnonlin |
| DiffMinChange | Minimum change in variables for finite differencing. | M | fgoalattain, fmincon, fminimax, fminunc, fseminf, fsolve, lsqcurvefit, lsqnonlin |

## Optimization Options (Continued)

| Option Name | Description | L, M, B, | Used by Functions |
| :---: | :---: | :---: | :---: |
| Display | Level of display. ' off' displays no output; 'iter' displays output at each iteration; 'final' displays just the final output; 'notify' displays output only if function does not converge. | B | All. See the individual function reference pages for the values that apply. |
| FinDifftype | Finite differences, used to estimate gradients, are either the default 'forward', or else are 'central (centered), which take twice as many function evaluations but should be more accurate. 'central' differences might violate bounds during their evaluation. | I | fmincon |
| FunValCheck | Check whether objective function and constraints values are valid. ' on ' displays an error when the objective function or constraints return a value that is complex, NaN , or Inf. <br> Note FunValCheck does not return an error for Inf when used with fminbnd, fminsearch, or fzero, which handle Inf appropriately. <br> 'off' displays no error. | B | ```fgoalattain, fminbnd, fmincon, fminimax, fminsearch, fminunc, fseminf, fsolve, fzero, lsqcurvefit, lsqnonlin``` |

## Optimization Options (Continued)

| Option Name | Description | L, M, B, <br> I | Used by Functions |
| :--- | :--- | :--- | :--- |
| GoalsExactAchieve | Specify the number of objectives <br> required for the objective fun to <br> equal the goal goal. Objectives <br> should be partitioned into the first <br> few elements of F. | M | fgoalattain |
| GradConstr | User-defined gradients for the <br> nonlinear constraints. | M | fgoalattain, <br> fmincon, fminimax |
| GradObj | User-defined gradients for the <br> objective functions. | B | fgoalattain, <br> fmincon, fminimax, <br> fminunc, fseminf |
| HessFcn | Function handle to a user-supplied <br> Hessian (see "Hessian" on page <br> 11-42). | I | fmincon |
| Hessian | If 'user-supplied ', function <br> uses user-defined Hessian or <br> Hessian information (when using <br> HessMult), for the objective <br> function. If 'off', function <br> approximates the Hessian using <br> finite differences. | L, I | fmincon, fminunc |
| HessMult | Handle to a user-supplied Hessian <br> multiply function. Ignored unless <br> Hessian is 'user-supplied' or <br> 'on'. | L, I | fmincon, fminunc, <br> quadprog |
| HessUpdate | Sparsity pattern of the Hessian <br> for finite differencing. The size of <br> the matrix is n-by-n, where n is <br> the number of elements in x0, the <br> starting point. | L | fmincon, fminunc |
| InitBarrierParameter | Quasi-Newton updating scheme. | M | fminunc |
| HessPattern | Initial barrier value. | fmincon |  |
|  |  | I |  |

## Optimization Options (Continued)

| Option Name | Description | L, M, B, |  |
| :--- | :--- | :--- | :--- |
| I | Used by Functions |  |  |
| InitialHessMatrix | Initial quasi-Newton matrix. | M | fminunc |
| InitialHessType | Initial quasi-Newton matrix type. | M | fminunc |
| InitTrustRegionRadius | Initial radius of the trust region. | I | fmincon |
| Jacobian | If 'on', function uses user-defined <br> Jacobian or Jacobian information <br> (when using JacobMult), for <br> the objective function. If 'off', <br> function approximates the <br> Jacobian using finite differences. | B | fsolve, <br> lsqcurvefit, |
| JacobMult | User-defined Jacobian multiply <br> function. Ignored unless Jacobian <br> is 'on' for fsolve, lsqcurvefit, <br> and lsqnonlin. | L | lsqnonlin |
|  | fsqucurvefit, <br> Sparsity pattern of the Jacobian <br> for finite differencing. The size <br> of the matrix is m-by-n, where <br> m is the number of values in the <br> first argument returned by the <br> user-specified function fun, and n <br> is the number of elements in x0, <br> the starting point. | L | fsolve, <br> lsqcurvefit, |
| JacobPattern | Usqnonlin |  |  |
| Use large-scale algorithm if <br> possible. | B | fminunc, fsolve, <br> linprog, |  |
|  | lsqcurvefit, |  |  |
| lsqlin, lsqnonlin, |  |  |  |
| quadprog |  |  |  |,

## Optimization Options (Continued)

| Option Name | Description | L, M, B, | Used by Functions |
| :--- | :--- | :--- | :--- |
| LineSearchType | Line search algorithm choice. | M | fsolve, <br> lsqcurvefit, <br> lsqnonlin |
| MaxFunEvals | Maximum number of function <br> evaluations allowed. | B | fgoalattain, <br> fminbnd, fmincon, <br> fminimax, <br> fminsearch, <br> fminunc, <br> fseminf, fsolve, <br> lsqcurvefit, <br> lsqnonlin |
| MaxIter | Maximum number of iterations <br> allowed. | B | All but fzero and <br> lsqnonneg |
| MaxNodes | Maximum number of possible <br> solutions, or nodes, the binary <br> integer programming function <br> bintprog searches. | M | bintprog |
| MaxPCGIter | Maximum number of iterations of <br> preconditioned conjugate gradients <br> method allowed. | L | fmincon, <br> fminunc, fsolve, |
|  | lsqcurvefit, <br> lsqlin, lsqnonlin, <br> quadprog |  |  |
| MaxProjPCGIter | A tolerance for the number of <br> projected conjugate gradient <br> iterations; this is an inner <br> iteration, not the number of <br> iterations of the algorithm. | I | fmincon |
| MaxRLPIter | Maximum number of iterations <br> of linear programming relaxation <br> method allowed. | M | bintprog |
|  |  |  |  |

## Optimization Options (Continued)

| Option Name | Description | $\begin{aligned} & \text { L, M, B, } \\ & \text { I } \end{aligned}$ | Used by Functions |
| :---: | :---: | :---: | :---: |
| MaxSQPIter | Maximum number of iterations of sequential quadratic programming method allowed. | M | fgoalattain, fmincon, fminimax |
| MaxTime | Maximum amount of time in seconds allowed for the algorithm. | M | bintprog |
| MeritFunction | Use goal attainment/minimax merit function (multiobjective) vs. fmincon (single objective). | M | fgoalattain, fminimax |
| MinAbsMax | Number of $F(x)$ to minimize the worst case absolute values. | M | fminimax |
| NodeDisplay Interval | Node display interval for bintprog. | M | bintprog |
| NodeSearchStrategy | Search strategy that bintprog uses. | M | bintprog |
| NonlEqnAlgorithm | Specify one of the following algorithms for solving nonlinear equations: <br> - 'dogleg' - Trust-region dogleg algorithm (default) <br> - 'lm' - Levenberg-Marquardt <br> - 'gn' - Gauss-Newton | M | fsolve |
| ObjectiveLimit | If the objective function value goes below ObjectiveLimit and the iterate is feasible, then the iterations halt. | I | fmincon |

## Optimization Options (Continued)

| Option Name | Description | $L, M, B,$ | Used by Functions |
| :---: | :---: | :---: | :---: |
| OutputFen | Specify one or more user-defined functions that the optimization function calls at each iteration. See "Output Function" on page 9-18. | B | ```fgoalattain, fminbnd, fmincon, fminimax, fminsearch, fminunc, fseminf, fsolve, fzero, lsqcurvefit, lsqnonlin``` |
| PlotFcns | Plots various measures of progress while the algorithm executes, select from predefined plots or write your own. Specifying @optimplotx plots the current point; @optimplotfunccount plots the function count; @optimplotfval plots the function value; @optimplotconstrviolation plots the maximum constraint violation; @optimplotresnorm plots the norm of the residuals; @optimplotstepsize plots the step size; @optimplotfirstorderopt plots the first-order of optimality. See "Plot Functions" on page 9-27. | B | fgoalattain, fminbnd, fmincon, fminimax, fminsearch, fminunc, fseminf, fsolve, fzero, lsqcurvefit, and lsqnonlin. See the individual function reference pages for the values that apply. |
| PrecondBandWidth | Upper bandwidth of preconditioner for PCG. Setting to 'Inf ' uses a direct factorization instead of CG. | L | fmincon, fminunc, fsolve, lsqcurvefit, lsqlin, lsqnonlin, quadprog |
| RelLineSrchBnd | Relative bound on line search step length. | M | fgoalattain, fmincon, fminimax, fseminf |

## Optimization Options (Continued)

| Option Name | Description | $\begin{aligned} & \text { L, M, B, } \\ & \text { I } \end{aligned}$ | Used by Functions |
| :---: | :---: | :---: | :---: |
| RelLineSrchBndDuration | Number of iterations for which the bound specified in RelLineSrchBnd should be active. | M | fgoalattain, fmincon, fminimax, fseminf |
| ScaleProblem | The default 'obj-and-constr' causes the algorithm to normalize all constraints and the objective function. Disable by setting to 'none'. | I | fmincon |
| Simplex | If ' on ' , function uses the simplex algorithm. | M | linprog |
| SubproblemAlgorithm | Determines how the iteration step is calculated. | I | fmincon |
| TolCon | Termination tolerance on the constraint violation. | B | ```bintprog, fgoalattain, fmincon, fminimax, fseminf``` |
| TolConSQP | Constraint violation tolerance for the inner SQP iteration. | M | fgoalattain, fmincon, fminimax, fseminf |
| TolFun | Termination tolerance on the function value. | B | ```bintprog, fgoalattain, fmincon, fminimax, fminsearch, fminunc, fseminf, fsolve, linprog (L only), lsqcurvefit, lsqlin (L only), lsqnonlin, quadprog (L only)``` |

## Optimization Options (Continued)

| Option Name | Description | L, M, B, <br> I | Used by Functions |
| :--- | :--- | :--- | :--- |
| TolPCG | Termination tolerance on the PCG <br> iteration. | L | fmincon, <br> fminunc, fsolve, <br> lsqcurvefit, <br> lsqlin, lsqnonlin, <br> quadprog |
| TolProjCG | A relative tolerance for projected <br> conjugate gradient algorithm; this <br> is for an inner iteration, not the <br> algorithm iteration. | I | fmincon |
| TolProjCGAbs | Absolute tolerance for projected <br> conjugate gradient algorithm; this <br> is for an inner iteration, not the <br> algorithm iteration. | I | fmincon |
| TolRLPFun | Termination tolerance on the <br> function value of a linear <br> programming relaxation problem. | M | bintprog |
| TolX | Termination tolerance on $x$. | B | All functions except <br> the medium-scale |
| algorithms for |  |  |  |, | linprog, lsqlin, |
| :--- |
| and quadprog |, | bintprog |
| :--- |
| TolXInteger |

## Optimization Options (Continued)

| Option Name | Description | L, M, B, | Used by Functions |
| :--- | :--- | :--- | :--- |
| TypicalX | Array that specifies typical <br> magnitude of array of parameters <br> x. The size of the array is equal to <br> the size of x0, the starting point. | B | fgoalattain, <br> fmincon, <br> fminunc, fsolve, <br> lsqcurvefit, <br> lsqlin, lsqnonlin, <br> quadprog |
| UseParallel | When 'always ', applicable solvers <br> estimate gradients in parallel. <br> Disable by setting to 'never'. | M | fgoalattain, <br> fmincon, fminimax. |

## Output Function

The Outputfen field of the options structure specifies one or more functions that an optimization function calls at each iteration. Typically, you might use an output function to plot points at each iteration or to display optimization quantities from the algorithm. Using an output function you can view, but not set, optimization quantities. To set up an output function, do the following:

## 1 Write the output function as an M-file function or subfunction.

2 Use optimset to set the value of Outputfon to be a function handle, that is, the name of the function preceded by the @ sign. For example, if the output function is outfun.m, the command

```
options = optimset('OutputFcn', @outfun);
```

specifies OutputFcn to be the handle to outfun. To specify more than one output function, use the syntax

```
options = optimset('OutputFcn',{@outfun, @outfun2});
```

3 Call the optimization function with options as an input argument.
See "Output Functions" on page 2-31 for an example of an output function.
"Passing Extra Parameters" on page 2-10 explains how to parameterize the output function OutputFcn, if necessary.

## Structure of the Output Function

The function definition line of the output function has the following form:

```
stop = outfun(x, optimValues, state)
```

where

- x is the point computed by the algorithm at the current iteration.
- optimValues is a structure containing data from the current iteration. "Fields in optimValues" on page 9-19 describes the structure in detail.
- state is the current state of the algorithm. "States of the Algorithm" on page 9-26 lists the possible values.
- stop is a flag that is true or false depending on whether the optimization routine should quit or continue. See "Stop Flag" on page 9-26 for more information.

The optimization function passes the values of the input arguments to outfun at each iteration.

## Fields in optimValues

The following table lists the fields of the optimValues structure. A particular optimization function returns values for only some of these fields. For each field, the Returned by Functions column of the table lists the functions that return the field.

Corresponding Output Arguments. Some of the fields of optimValues correspond to output arguments of the optimization function. After the final iteration of the optimization algorithm, the value of such a field equals the corresponding output argument. For example, optimValues.fval corresponds to the output argument fval. So, if you call fmincon with an output function and return fval, the final value of optimValues.fval equals fval. The Description column of the following table indicates the fields that have a corresponding output argument.

Command-Line Display. The values of some fields of optimValues are displayed at the command line when you call the optimization function with the Display field of options set to 'iter', as described in "Displaying Iterative Output" on page 4-84. For example, optimValues.fval is displayed in the $f(x)$ column. The Command-Line Display column of the following table indicates the fields that you can display at the command line.

In the following table, $\mathrm{L}, \mathrm{M}$, and B indicate:

- L - Function returns a value to the field when using a large-scale algorithm.
- M - Function returns a value to the field when using a medium-scale algorithm.
- B - Function returns a value to the field when using both large- and medium-scale algorithms.


## optimValues Fields

| OptimValues Field <br> (optimValues.field) | Description | Returned by <br> Functions | Command-Line <br> Display |
| :--- | :--- | :--- | :--- |
| cgiterations | Number of conjugate <br> gradient iterations at <br> current optimization <br> iteration. | fmincon (L), fsolve <br> (L), lsqcurvefit (L), <br> lsqnonlin (L) | CG-iterations <br> See "Displaying <br> Iterative <br> Output" on page <br> $4-84$. |
| constrviolation | Maximum constraint <br> violation. | fgoalattain (M), <br> fmincon (M), fminimax <br> (M), fseminf (M) | max constraint <br> See "Displaying <br> Iterative <br> Output" on page <br> $4-84$. |

## optimValues Fields (Continued)

| OptimValues Field <br> (optimValues.field) | Description | Returned by <br> Functions | Command-Line <br> Display |
| :--- | :--- | :--- | :--- |
| degenerate | Measure of degeneracy. <br> A point is degenerate if <br> The partial derivative <br> with respect to one of <br> the variables is 0 at the <br> point. <br> A bound constraint is <br> active for that variable <br> at the point. <br> See "Degeneracy" on <br> page 9-25. | fmincon (L), fsolve <br> (L), lsqcurvefit (L), <br> lsqnonlin (L) | None |
|  | Directional derivative in <br> the search direction. | fgoalattain (M), <br> fmincon (M), fminimax <br> (M), fminunc (M), <br> fseminf (M), fsolve <br> (M, NonlEqn- <br> Algorithm='lm ', 'gn' ), <br> lsqcurvefit (M), <br> lsqnonlin (M) | Directional <br> derivative <br> See "Displaying <br> Iterative <br> Output" on page <br> $4-84$. |
| directionalderivative |  |  |  |

## optimValues Fields (Continued)

| OptimValues Field <br> (optimValues.field) | Description | Returned by <br> Functions | Command-Line <br> Display |
| :--- | :--- | :--- | :--- |
| funccount | Cumulative number of <br> function evaluations. <br> Final value equals <br> optimization <br> function output <br> output.funcCount. | fgoalattain (M), <br> fminbnd (B), fmincon <br> (B), fminimax (M), <br> fminsearch (B), <br> fminunc (B), <br> fsolve (B), fzero (B), <br> fseminf (M), <br> lsqcurvefit (B), <br> lsqnonlin (B) | F-count <br> See "Displaying <br> Iterative <br> Output" on page <br> $4-84$. |
| fval | Function value <br> at current point. <br> Final value equals <br> optimization function <br> output fval. | fgoalattain (M), <br> fminbnd (B), fmincon <br> (B), fminimax (M), <br> fminsearch (B), <br> fminunc (B), fseminf <br> (M), fsolve (B), <br> fzero (B) | See "Displaying <br> Iterative <br> Output" on page <br> $4-84$. |
| gradient | Current gradient of <br> objective function <br> either analytic gradient <br> if you provide it or <br> finite-differencing <br> approximation. <br> Final value equals <br> optimization function <br> output grad. | fgoalattain (M), <br> fmincon (B), fminimax <br> (M), fminunc (M), <br> fseminf (M), fsolve <br> (B), lsqcurvefit (B), <br> lsqnonlin (B) | None |

## optimValues Fields (Continued)

| OptimValues Field (optimValues.field) | Description | Returned by Functions | Command-Line Display |
| :---: | :---: | :---: | :---: |
| iteration | Iteration number starts at 0 . Final value equals optimization function output output.iterations. | fgoalattain (M), fminbnd (B),fmincon (B), fminimax (M), fsolve (B), fminsearch (B), fminunc (B), fseminf (M), fsolve (M), <br> fzero(B), lsqcurvefit (B), lsqnonlin (B) | Iteration <br> See "Displaying Iterative Output" on page 4-84. |
| lambda | The <br> Levenberg-Marquardt parameter, lambda, at the current iteration. See "Levenberg-Marquardt Method" on page 5-21. | fgoalattain (M), fmincon (M), fminimax (M), fseminf (M), fsolve (M, NonlEqnAlgorithm='lm','gn'), lsqcurvefit (M), lsqnonlin (M) | Lambda |
| positivedefinite | 0 if algorithm detects negative curvature while computing Newton step. 1 otherwise. | fmincon (L), fsolve (L), lsqcurvefit (L), lsqnonlin (L) | None |
| procedure | Procedure messages. | fgoalattain (M), fminbnd (B), fmincon (M), fminimax (M), fminsearch (B), fseminf (M), fzero (B) | Procedure <br> See "Displaying Iterative Output" on page 4-84. |
| ratio | Ratio of change in the objective function to change in the quadratic approximation. | fmincon (L), fsolve (L), lsqcurvefit (L), lsqnonlin (L) | None |

## optimValues Fields (Continued)

| OptimValues Field (optimValues.field) | Description | Returned by Functions | Command-Line Display |
| :---: | :---: | :---: | :---: |
| residual | The residual vector. For fsolve, residual means the 2 -norm of the residual squared. | lsqcurvefit (B), lsqnonlin (B), fsolve (B) | Residual <br> See "Displaying Iterative Output" on page 4-84. |
| resnorm | 2-norm of the residual squared. | lsqcurvefit (B), lsqnonlin (B) | Resnorm <br> See "Displaying Iterative Output" on page 4-84. |
| searchdirection | Search direction. | fgoalattain (M), fmincon (M), fminimax (M), fminunc (M), fseminf (M), fsolve (M, NonlEqn- <br> Algorithm='lm','gn'), lsqcurvefit (M), lsqnonlin (M) | None |
| stepaccept | Status of the current trust-region step. Returns true if the current trust-region step was successful, and false if the trust-region step was unsuccessful. | fsolve (M, NonlEqnAlgorithm='dogleg') | None |

## optimValues Fields (Continued)

| OptimValues Field <br> (optimValues.field) | Description | Returned by <br> Functions | Command-Line <br> Display |
| :--- | :--- | :--- | :--- |
| stepsize | Current step size <br> (displacement in <br> x). Final value <br> equals optimization <br> function output <br> output.stepsize. | fgoalattain (M), <br> fmincon (B), fminimax <br> (M), fminunc (B), <br> fseminf (M), fsolve <br> (B), lsqcurvefit (B), <br> lsqnonlin (B) | Step-size or <br> Norm of Step |
| See "Displaying |  |  |  |
| Iterative |  |  |  |
| Output" on page |  |  |  |
| $4-84$. |  |  |  |

Degeneracy. The value of the field degenerate, which measures the degeneracy of the current optimization point x, is defined as follows. First, define a vector $r$, of the same size as $x$, for which $r(i)$ is the minimum distance from $x(i)$ to the $i$ th entries of the lower and upper bounds, $l b$ and $u b$. That is,

$$
r=\min (a b s(u b-x, x-l b))
$$

Then the value of degenerate is the minimum entry of the vector $r+a b s(g r a d)$, where grad is the gradient of the objective function. The value of degenerate is 0 if there is an index $i$ for which both of the following are true:

- $\operatorname{grad}(i)=0$
- $x(i)$ equals the $i$ th entry of either the lower or upper bound.


## States of the Algorithm

The following table lists the possible values for state:

| State | Description |
| :--- | :--- |
| 'init' | The algorithm is in the initial state before the first <br> iteration. |
| 'interrupt' | The algorithm is in some computationally expensive <br> part of the iteration. In this state, the output function <br> can interrupt the current iteration of the optimization. <br> At this time, the values of $x$ and optimValues are the <br> same as at the last call to the output function in which <br> state== 'iter'. |
| 'iter' | The algorithm is at the end of an iteration. |
| 'done' | The algorithm is in the final state after the last iteration. |

The following code illustrates how the output function might use the value of state to decide which tasks to perform at the current iteration:

```
switch state
    case 'iter'
        % Make updates to plot or guis as needed
    case 'interrupt'
        % Probably no action here. Check conditions to see
        % whether optimization should quit.
    case 'init'
        % Setup for plots or guis
    case 'done'
        % Cleanup of plots, guis, or final plot
otherwise
end
```


## Stop Flag

The output argument stop is a flag that is true or false. The flag tells the optimization function whether the optimization should quit or continue. The following examples show typical ways to use the stop flag.

Stopping an Optimization Based on Data in optimValues. The output function can stop an optimization at any iteration based on the current data in optimValues. For example, the following code sets stop to true if the directional derivative is less than .01:

```
function stop = outfun(x, optimValues)
stop = false;
% Check if directional derivative is less than .01.
if optimValues.directionalderivative < .01
    stop = true;
end
```

Stopping an Optimization Based on GUI Input. If you design a GUI to perform optimizations, you can make the output function stop an optimization when a user clicks a Stop button on the GUI. The following code shows how to do this, assuming that the Stop button callback stores the value true in the optimstop field of a handles structure called hObject:

```
function stop = outfun(x)
stop = false;
% Check if user has requested to stop the optimization.
stop = getappdata(hObject,'optimstop');
```


## Plot Functions

The PlotFcns field of the options structure specifies one or more functions that an optimization function calls at each iteration to plot various measures of progress while the algorithm executes. The structure of a plot function is the same as that for an output function. For more information on writing and calling a plot function, see "Output Function" on page 9-18.

To view and modify a predefined plot function listed for PlotFens in the previous table, you can open it in the MATLAB ${ }^{\circledR}$ Editor. For example, to view the M-file corresponding to the norm of residuals, type:
edit optimplotresnorm.m

## Function Reference

Minimization (p. 10-2)
Equation Solving (p. 10-2)
Least Squares (Curve Fitting)
(p. 10-3)

Graphical User Interface (p. 10-3)

Utility (p. 10-4)

Solve minimization problems
Equation solving
Solve least-squares problems

Open Optimization Tool to select solver, optimization options, and run problems
Get and set optimization options

## Minimization

| bintprog | Solve binary integer programming <br> problems |
| :--- | :--- |
| fgoalattain | Solve multiobjective goal attainment <br> problems |
| fminbnd | Find minimum of single-variable <br> function on fixed interval |
| fmincon | Find minimum of constrained <br> nonlinear multivariable function |
| fminimax | Solve minimax constraint problem |
| fminsearch | Find minimum of unconstrained <br> multivariable function using <br> derivative-free method |
| fminunc | Find minimum of unconstrained <br> multivariable function |
| fseminf | Find minimum of semi-infinitely <br> constrained multivariable nonlinear <br> function |
| ktrlink | Find minimum of constrained <br> or unconstrained nonlinear |
|  | multivariable function using <br> KNITRO |
|  | third-party libraries <br> Solve linear programming problems |
| linprog | Solve quadratic programming <br> problems |
| quadprog |  |

## Equation Solving

See $\backslash$ for solving linear equations of the form $A x=b$.
fsolve
fzero

Solve system of nonlinear equations
Find root of continuous function of one variable

## Least Squares (Curve Fitting)

See $\backslash$ for minimizing $||A x-b||$.
lsqcurvefit
lsqlin
lsqnonlin
lsqnonneg

## Graphical User Interface

optimtool

Solve nonlinear curve-fitting (data-fitting) problems in least-squares sense
Solve constrained linear least-squares problems
Solve nonlinear least-squares (nonlinear data-fitting) problems

Solve nonnegative least-squares constraint problem

Tool to select solver, optimization options, and run problems

## Utility

| color | Column partition for sparse finite <br> differences |
| :--- | :--- |
| fzmult | Multiplication with fundamental <br> nullspace basis |
| gangstr | Zero out "small" entries subject to <br> structural rank |
| optimget | Optimization options values |
| optimset | Create or edit optimization options <br> structure |

Functions - Alphabetical List

## bintprog

Purpose
Equation
Solve binary integer programming problems
Solves binary integer programming problems of the form

$$
\min _{x} f^{T} x \text { such that }\left\{\begin{array}{c}
A \cdot x \leq b \\
\text { Aeq } \cdot x=b e q \\
x \text { binary }
\end{array}\right.
$$

$f, b$, and $b e q$ are vectors, $A$ and $A e q$ are matrices, and the solution $x$ is required to be a binary integer vector-that is, its entries can only take on the values 0 or 1 .

Syntax

```
x = bintprog(f)
x = bintprog(f,A,b)
x = bintprog(f,A,b,Aeq,beq)
x = bintprog(f,A,b,Aeq,beq,x0)
x = bintprog(f,A,b,Aeq,Beq,x0,options)
x = bintprog(problem)
[x,fval] = bintprog(...)
[x,fval,exitflag] = bintprog(...)
[x,fval,exitflag,output] = bintprog(...)
```


## Description

$x=$ bintprog(f) solves the binary integer programming problem

$$
\min _{x} f^{T} x
$$

$x=$ bintprog( $f, A, b$ ) solves the binary integer programming problem
$\min _{x} f^{T} x$ such that $A \cdot x \leq b$.
$x=$ bintprog (f, $A, b, A e q, b e q)$ solves the preceding problem with the additional equality constraint.
$A e q \cdot x=b e q$.

## bintprog

$x=$ bintprog $(f, A, b, A e q, b e q, x 0)$ sets the starting point for the algorithm to $\times 0$. If $\times 0$ is not in the feasible region, bintprog uses the default initial point.
$x=$ bintprog(f, $A, b, A e q, B e q, x 0$, options) minimizes with the default optimization options replaced by values in the structure options, which you can create using the function optimset.
$x=$ bintprog(problem) finds the minimum for problem, where problem is a structure described in "Input Arguments" on page 11-3.

Create the structure problem by exporting a problem from Optimization Tool, as described in "Exporting to the MATLAB ${ }^{\circledR}$ Workspace" on page 3-14.
[ $x, f v a l]=$ bintprog (...) returns fval, the value of the objective function at $x$.
[x,fval,exitflag] = bintprog(...) returns exitflag that describes the exit condition of bintprog. See "Output Arguments" on page 11-4.
[x,fval,exitflag,output] = bintprog(...) returns a structure output that contains information about the optimization. See "Output Arguments" on page 11-4.

## Input Arguments

The following table lists the input arguments for bintprog. "Function Arguments" on page 9-2 contains general descriptions of input arguments for optimization functions.
f Vector containing the coefficients of the linear objective function.
A Matrix containing the coefficients of the linear inequality constraints $A \cdot x \leq b$.
b Vector corresponding to the right-hand side of the linear inequality constraints.

Aeq Matrix containing the coefficients of the linear equality constraints Aeq $\cdot x=$ beq.

## bintprog

| beq | Vector containing the constants of the linear equality constraints. |
| :---: | :---: |
| x0 | Initial point for the algorithm. |
| options | Options structure containing options for the algorithm. |
| problem | f Linear objective function vector f |
|  | Aineq Matrix for linear inequality constraints |
|  | bineq Vector for linear inequality constraints |
|  | Aeq Matrix for linear equality constraints |
|  | beq Vector for linear equality constraints |
|  | $x 0 \quad$ Initial point for $x$ |
|  | solver 'bintprog' |
|  | options Options structure created with optimset |

## Output Arguments

"Function Arguments" on page 9-2 contains general descriptions of arguments returned by bintprog. This section provides specific details for the arguments exitflag and output:
\(\left.$$
\begin{array}{l}\text { exitflag } \begin{array}{l}\text { Integer identifying the reason the algorithm terminated. } \\
\text { The following lists the values of exitflag and the } \\
\text { corresponding reasons the algorithm terminated. } \\
1\end{array} \\
\begin{array}{ll}\text { Function converged to a solution } x .\end{array}
$$ <br>
-2 <br>
-4 <br>
Number of iterations exceeded <br>

options.MaxIter.\end{array}\right\}\)| The problem is infeasible. |
| :--- |
| Number of searched nodes exceeded |
| options.MaxNodes. |
| Search time exceeded |
| options.MaxTime. |


|  | -6 | Number of iterations the LP-solver performed at a node to solve the LP-relaxation problem exceeded options.MaxRLP. |
| :---: | :---: | :---: |
| output | Structure containing The fields of the struc | information about the optimization. cture are |
|  | iterations | Number of iterations taken |
|  | nodes | Number of nodes searched |
|  | time | Execution time of the algorithm |
|  | algorithm | Optimization algorithm used |
|  | branchStrategy | Strategy used to select branch variable-see "Options" on page 11-5 |
|  | nodeSearchStrategy | Strategy used to select next node in search tree-see "Options" on page 11-5 |
|  | message | Exit message |

## Options

Optimization options used by bintprog. You can use optimset to set or change the values of these fields in the options structure options. See "Optimization Options" on page 9-8 for detailed information.

BranchStrategy Strategy the algorithm uses to select the branch variable in the search tree - see "Branching" on page 11-7. The choices are

- 'mininfeas ' - Choose the variable with the minimum integer infeasibility, that is, the variable whose value is closest to 0 or 1 but not equal to 0 or 1 .
- 'maxinfeas ' - Choose the variable with the maximum integer infeasibility, that


## bintprog

is, the variable whose value is closest to 0.5 (default).
$\left.\begin{array}{ll}\text { Diagnostics } & \begin{array}{l}\text { Display diagnostic information about the } \\ \text { function }\end{array} \\ \text { Display } & \begin{array}{l}\text { Level of display. 'off ' displays no output; } \\ \text { 'iter' displays output at each iteration; } \\ \text { 'final' (default) displays just the final } \\ \text { output. }\end{array} \\ \text { MaxIter } \\ \text { MaxNodes } & \begin{array}{l}\text { Maximum number of iterations allowed } \\ \text { the function searches solutions, or nodes, }\end{array} \\ \text { MaxRLPIter } & \begin{array}{l}\text { Maximum number of iterations the }\end{array} \\ \text { LP-solver performs to solve the }\end{array}\right\}$

## bintprog

TolFun<br>TolXInteger<br>TolRLPFun

- 'bn' - Best node search strategy, which chooses the node with lowest bound on the objective function.
Termination tolerance on the function value
Tolerance within which the value of a variable is considered to be integral

Termination tolerance on the function value of a linear programming relaxation problem

## Algorithm

bintprog uses a linear programming (LP)-based branch-and-bound algorithm to solve binary integer programming problems. The algorithm searches for an optimal solution to the binary integer programming problem by solving a series of $L P$-relaxation problems, in which the binary integer requirement on the variables is replaced by the weaker constraint $0 \leq x \leq 1$. The algorithm

- Searches for a binary integer feasible solution
- Updates the best binary integer feasible point found so far as the search tree grows
- Verifies that no better integer feasible solution is possible by solving a series of linear programming problems

The following sections describe the branch-and-bound method in greater detail.

## Branching

The algorithm creates a search tree by repeatedly adding constraints to the problem, that is, "branching." At a branching step, the algorithm chooses a variable $x_{j}$ whose current value is not an integer and adds the constraint $x_{j}=0$ to form one branch and the constraint $x_{j}=1$ to form the other branch. This process can be represented by a binary tree, in which the nodes represent the added constraints. The following picture illustrates a complete binary tree for a problem that has three variables,

## bintprog

$x_{1}, x_{2}$, and $x_{3}$. Note that, in general, the order of the variables going down the levels in the tree is not the usual order of their subscripts


## Deciding Whether to Branch

At each node, the algorithm solves an LP-relaxation problem using the constraints at that node and decides whether to branch or to move to another node depending on the outcome. There are three possibilities:

- If the LP-relaxation problem at the current node is infeasible or its optimal value is greater than that of the best integer point, the algorithm removes the node from the tree, after which it does not search any branches below that node. The algorithm then moves to a new node according to the method you specify in NodeSearchStrategy option.
- If the algorithm finds a new feasible integer point with lower objective value than that of the best integer point, it updates the current best integer point and moves to the next node.
- If the LP-relaxation problem is optimal but not integer and the optimal objective value of the LP relaxation problem is less than the best integer point, the algorithm branches according to the method you specify in the BranchStrategy option.

See "Options" on page 11-5 for a description of the NodeSearchStrategy and BranchStrategy options.

## bintprog

## Bounds

The solution to the LP-relaxation problem provides a lower bound for the binary integer programming problem. If the solution to the LP-relaxation problem is already a binary integer vector, it provides an upper bound for the binary integer programming problem.

As the search tree grows more nodes, the algorithm updates the lower and upper bounds on the objective function, using the bounds obtained in the bounding step. The bound on the objective value serves as the threshold to cut off unnecessary branches.

## Limits for the Algorithm

The algorithm for bintprog could potentially search all $2^{\mathrm{n}}$ binary integer vectors, where n is the number of variables. As a complete search might take a very long time, you can limit the search using the following options

- MaxNodes - Maximum number of nodes the algorithm searches
- MaxRLPIter - Maximum number of iterations the LP-solver performs at any node
- MaxTime - Maximum amount of time in seconds the algorithm runs

See "Options" on page 11-5 for more information.
Example To minimize the function

$$
f(x)=-9 x_{1}-5 x_{2}-6 x_{3}-4 x_{4},
$$

subject to the constraints

$$
\left[\begin{array}{cccc}
6 & 3 & 5 & 2 \\
0 & 0 & 1 & 1 \\
-1 & 0 & 1 & 0 \\
0 & -1 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] \leq\left[\begin{array}{l}
9 \\
1 \\
0 \\
0
\end{array}\right],
$$

## bintprog

where $x_{1}, x_{2}, x_{3}$, and $x_{4}$ are binary integers, enter the following commands:

```
f = [-9; -5; -6; -4];
A = [6 3 5 2; 0 0 1 1; -1 0 1 0; 0 -1 0 1];
b = [9; 1; 0; 0];
x = bintprog(f,A,b)
Optimization terminated successfully.
x =
    1
    1
    0
    0
```


## References

[1] Wolsey, Laurence A., Integer Programming, John Wiley \& Sons, 1998.
[2] Nemhauser, George L. and Laurence A. Wolsey, Integer and Combinatorial Optimization, John Wiley \& Sons, 1988.
[3] Hillier, Frederick S. and Lieberman Gerald J., Introduction to Operations Research, McGraw-Hill, 2001.

See Also linprog, optimset, optimtool

## Purpose Column partition for sparse finite differences

## Syntax <br> group $=\operatorname{color}(\mathrm{J}, \mathrm{P})$

Description group $=\operatorname{color}(J, P)$ returns a partition of the column corresponding to a coloring of the column-intersection graph. GROUP (I) $=\mathrm{J}$ means column I is colored J .

All columns belonging to a color can be estimated in a single finite difference.

Purpose
Equation
Solve multiobjective goal attainment problems
Finds the minimum of a problem specified by

$$
\underset{x, \gamma}{\operatorname{minimize} \gamma} \quad \text { such that }\left\{\begin{array}{c}
F(x)-\text { weight } \cdot \gamma \leq \text { goal } \\
c(x) \leq 0 \\
c e q(x)=0 \\
A \cdot x \leq b \\
\text { Aeq } \cdot x=b e q \\
l b \leq x \leq u b .
\end{array}\right.
$$

$x$, weight, goal, $b$, beq, $l b$, and $u b$ are vectors, $A$ and Aeq are matrices, and $c(x), \operatorname{ceq}(x)$, and $F(x)$ are functions that return vectors. $F(x), c(x)$, and $c e q(x)$ can be nonlinear functions.

## Syntax

```
x = fgoalattain(fun,x0,goal,weight)
x = fgoalattain(fun,x0,goal,weight,A,b)
x = fgoalattain(fun, x0,goal,weight,A,b,Aeq,beq)
x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq,lb,ub)
x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq,lb,ub,
    nonlcon)
x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq,lb,ub,nonlcon,
    ... options)
x = fgoalattain(problem)
[x,fval] = fgoalattain(...)
[x,fval,attainfactor] = fgoalattain(...)
[x,fval,attainfactor,exitflag] = fgoalattain(...)
[x,fval,attainfactor,exitflag,output] = fgoalattain(...)
[x,fval,attainfactor,exitflag,output,
    lambda] = fgoalattain(...)
```


## Description

fgoalattain solves the goal attainment problem, which is one formulation for minimizing a multiobjective optimization problem.
$x=$ fgoalattain(fun, $x 0$, goal, weight) tries to make the objective functions supplied by fun attain the goals specified by goal by varying $x$, starting at $x 0$, with weight specified by weight.
$x=$ fgoalattain(fun, $x 0, g o a l$, weight, $A, b)$ solves the goal attainment problem subject to the linear inequalities $A^{*} x \leq b$.
$x=$ fgoalattain(fun, $x 0$, goal, weight, $A, b, A e q, b e q)$ solves the goal attainment problem subject to the linear equalities Aeq*x = beq as well. Set A = [] and b = [] if no inequalities exist.
$x=$ fgoalattain(fun, $x 0$, goal, weight, $A, b, A e q, b e q, l b, u b)$ defines a set of lower and upper bounds on the design variables in $x$, so that the solution is always in the range $\mathrm{lb} \leq \mathrm{x} \leq \mathrm{ub}$.
x =
fgoalattain(fun, $x 0$, goal, weight, $A, b, A e q, b e q, l b, u b$, nonlcon) subjects the goal attainment problem to the nonlinear inequalities $c(x)$ or nonlinear equality constraints ceq(x) defined in nonlcon. fgoalattain optimizes such that $c(x) \leq 0$ and ceq $(x)=0$. Set lb $=$ [] and/or ub = [] if no bounds exist.
$\mathrm{x}=$
fgoalattain(fun, x0, goal, weight, A, b, Aeq, beq, lb, ub, nonlcon, ... options) minimizes with the optimization options specified in the structure options. Use optimset to set these options.
x = fgoalattain(problem) finds the minimum for problem, where problem is a structure described in "Input Arguments" on page 11-14.

Create the structure problem by exporting a problem from Optimization Tool, as described in "Exporting to the MATLAB ${ }^{\circledR}$ Workspace" on page 3-14.
[x,fval] = fgoalattain(...) returns the values of the objective functions computed in fun at the solution $x$.
[x,fval,attainfactor] = fgoalattain(...) returns the attainment factor at the solution $x$.
[x,fval,attainfactor,exitflag] = fgoalattain(...) returns a value exitflag that describes the exit condition of fgoalattain.
[x,fval,attainfactor,exitflag,output] = fgoalattain(...) returns a structure output that contains information about the optimization.
[x,fval, attainfactor,exitflag,output,lambda] =
fgoalattain(...) returns a structure lambda whose fields contain the Lagrange multipliers at the solution $x$.
"Passing Extra Parameters" on page 2-10 explains how to parameterize the objective function fun, if necessary.

Note If the specified input bounds for a problem are inconsistent, the output x is xO and the output fval is [].

## Input Arguments

"Function Arguments" on page 9-2 contains general descriptions of arguments passed into fgoalattain. This section provides function-specific details for fun, goal, nonlcon, options, weight, and problem:

$$
\begin{aligned}
& \text { fun The function to be minimized. fun is a function that } \\
& \text { accepts a vector } x \text { and returns a vector } F \text {, the objective } \\
& \text { functions evaluated at } x \text {. The function fun can be } \\
& \text { specified as a function handle for an M-file function } \\
& x=\text { fgoalattain (@myfun, } x 0 \text {, goal, weight) } \\
& \text { where myfun is a MATLAB }{ }^{\circledR} \text { function such as } \\
& \text { function } F=\text { myfun }(x) \\
& F=\ldots \quad \% \text { Compute function values at } x .
\end{aligned}
$$

fun can also be a function handle for an anonymous function.

$$
x=\text { fgoalattain(@(x)sin(x.*x),x0,goal, weight); }
$$

If the user-defined values for x and F are matrices, they are converted to a vector using linear indexing.

To make an objective function as near as possible to a goal value, (i.e., neither greater than nor less than) use optimset to set the GoalsExactAchieve option to the number of objectives required to be in the neighborhood of the goal values. Such objectives must be partitioned into the first elements of the vector $F$ returned by fun.
If the gradient of the objective function can also be computed and the GradObj option is 'on', as set by

```
options = optimset('GradObj','on')
```

then the function fun must return, in the second output argument, the gradient value G, a matrix, at $x$. The gradient consists of the partial derivative $d F / d x$ of each $F$ at the point $x$. If $F$ is a vector of length $m$ and $x$ has length $n$, where $n$ is the length of $x 0$, then the gradient $G$ of $F(x)$ is an n-by-m matrix where $G(i, j)$ is the partial derivative of $F(j)$ with respect to $x(i)$ (i.e., the $j$ th column of $G$ is the gradient of the $j$ th objective function F(j)).
goal Vector of values that the objectives attempt to attain. The vector is the same length as the number of objectives $F$ returned by fun. fgoalattain attempts to minimize the values in the vector $F$ to attain the goal values given by goal.
nonlcon The function that computes the nonlinear inequality constraints $\mathrm{c}(\mathrm{x}) \leq 0$ and the nonlinear equality constraints ceq $(x)=0$. The function nonlcon accepts a vector x and returns two vectors c and ceq. The vector c contains the nonlinear inequalities evaluated at $x$, and ceq contains the nonlinear equalities evaluated at $x$. The function nonlcon can be specified as a function handle.

```
x = fgoalattain(@myfun,x0,goal,weight,A,b,Aeq, beq,...
    lb,ub,@mycon)
```

where mycon is a MATLAB function such as

```
function [c,ceq] = mycon(x)
c = ... % compute nonlinear inequalities at x.
ceq = ... % compute nonlinear equalities at x.
```

If the gradients of the constraints can also be computed and the GradConstr option is 'on', as set by

```
options = optimset('GradConstr','on')
```

then the function nonlcon must also return, in the third and fourth output arguments, GC, the gradient of $c(x)$, and GCeq, the gradient of ceq $(x)$. "Nonlinear Constraints" on page 2-17 explains how to "conditionalize" the gradients for use in solvers that do not accept supplied gradients.

If nonlcon returns a vector $c$ of $m$ components and $x$ has length $n$, where $n$ is the length of $x 0$, then the gradient GC of $c(x)$ is an $n$-by-m matrix, where GC( $i, j)$ is the partial derivative of $c(j)$ with respect to $x(i)$ (i.e., the $j$ th column of GC is the gradient of the $j$ th inequality constraint $\mathrm{c}(\mathrm{j})$ ). Likewise, if ceq has p components, the gradient GCeq of ceq $(x)$ is an $n$-by-p matrix, where $\operatorname{GCeq}(\mathrm{i}, \mathrm{j})$ is the partial derivative of $\mathrm{ceq}(\mathrm{j})$ with
respect to $x(i)$ (i.e., the $j$ th column of GCeq is the gradient of the $j$ th equality constraint ceq( j$)$ ).

> Note Because Optimization Toolbox ${ }^{\mathrm{TM}}$ functions only accept inputs of type double, user-supplied objective and nonlinear constraint functions must return outputs of type double.
"Passing Extra Parameters" on page 2-10 explains how to parameterize the nonlinear constraint function nonlcon, if necessary.
options "Options" on page 11-20 provides the function-specific details for the options values.
weight A weighting vector to control the relative underattainment or overattainment of the objectives in fgoalattain. When the values of goal are all nonzero, to ensure the same percentage of under- or overattainment of the active objectives, set the weighting function to abs (goal). (The active objectives are the set of objectives that are barriers to further improvement of the goals at the solution.)

Note Setting a component of the weight vector to zero will cause the corresponding goal constraint to be treated as a hard constraint rather than as a goal constraint. An alternative method to set a hard constraint is to use the input argument nonlcon.

When the weighting function weight is positive, fgoalattain attempts to make the objectives less than the goal values. To make the objective functions greater than the goal values, set weight to be negative rather than positive. To make an objective function as near as

## fgoalattain

| problem | possible to a goal value, use the GoalsExactAchieve option and put that objective as the first element of the vector returned by fun (see the preceding description of fun and options). |  |
| :---: | :---: | :---: |
|  | objective | Vector of objective functions |
|  | x0 | Initial point for x |
|  | goal | Goals to attain |
|  | weight | Relative importance factors of goals |
|  | Aineq | Matrix for linear inequality constraints |
|  | bineq | Vector for linear inequality constraints |
|  | Aeq | Matrix for linear equality constraints |
|  | beq | Vector for linear equality constraints |
|  | lb | Vector of lower bounds |
|  | ub | Vector of upper bounds |
|  | nonlcon | Nonlinear constraint function |
|  | solver | 'fgoalattain' |
|  | options | Options structure created with optimset |

## Output Arguments

[^0]attainfactor The amount of over- or underachievement of the goals. If attainfactor is negative, the goals have been overachieved; if attainfactor is positive, the goals have been underachieved.
attainfactor contains the value of $\gamma$ at the solution. A negative value of $\gamma$ indicates overattainment in the goals.
exitflag Integer identifying the reason the algorithm terminated. The following lists the values of exitflag and the corresponding reasons the algorithm terminated.

\(\left.\left.$$
\begin{array}{ll}1 & \begin{array}{l}\text { Function converged to a solutions } \\
\text { x. }\end{array} \\
4 & \begin{array}{l}\text { Magnitude of the search direction } \\
\text { less than the specified tolerance } \\
\text { and constraint violation less than } \\
\text { options. TolCon }\end{array} \\
\text { Magnitude of directional } \\
\text { derivative less than the specified } \\
\text { tolerance and constraint violation } \\
\text { less than options. TolCon }\end{array}
$$\right\} \begin{array}{l}Number of iterations exceeded <br>
options. MaxIter or number of <br>
function evaluations exceeded <br>

options. FunEvals\end{array}\right\}\)| Algorithm was terminated by the |
| :--- |
| output function. |

## fgoalattain

|  | upper | Upper bounds ub |
| :--- | :--- | :--- |
| ineqlin | Linear inequalities |  |
| eqlin | Linear equalities |  |
| ineqnonlin | Nonlinear inequalities |  |
| eqnonlin | Structure containing information about the <br> optimization. The fields of the structure are <br> iterations | Number of iterations taken |

Options | Optimization options used by fgoalattain. You can use optimset to |
| :--- |
| set or change the values of these fields in the options structure options. |
| See "Optimization Options" on page 9-8 for detailed information. |

| Derivativecheck | Compare user-supplied derivatives <br> (gradients of objective or constraints) to <br> finite-differencing derivatives. |
| :--- | :--- |
| Diagnostics | Display diagnostic information about <br> the function to be minimized or solved. |
| DiffmaxChange | Maximum change in variables for <br> finite-difference gradients. |.


| DiffMinChange | Minimum change in variables for <br> finite-difference gradients. |
| :--- | :--- |
| Display | Level of display. 'off' displays no <br> output; 'iter' displays output at <br> each iteration; 'notify ' displays <br> output only if the function does not <br> converge; ' final' (default) displays <br> just the final output. |
| FunValCheck | Check whether objective function and <br> constraints values are valid. 'on' <br> displays an error when the objective <br> function or constraints return a value <br> that is complex, Inf, or NaN. 'off' <br> displays no error. |
| GoalsExactAchieve | Specifies the number of objectives for <br> which it is required for the objective fun <br> to equal the goal goal. Such objectives |
| should be partitioned into the first few |  |
| elements of F. |  |


| MeritFunction | Use goal attainment/minimax merit <br> function if set to 'multiobj '. Use <br> fmincon merit function if set to |
| :--- | :--- |
| 'singleobj'. |  |
| OutputFen |  |
| PlotFcns |  |
|  | Specify one or more user-defined <br> functions that an optimization function <br> calls at each iteration. See "Output |
|  | Function" on page 9-18. |


| TolConSQP | Termination tolerance on inner <br> iteration SQP constraint violation. |
| :--- | :--- |
| TolFun | Termination tolerance on the function <br> value. |
| TolX | Termination tolerance on $x$. |
| TypicalX | Typical x values. The length of the <br> vector is equal to the number of <br> elements in x0, the starting point. |
| UseParallel | When 'always ', estimate gradients in <br> parallel. Disable by setting to 'never '. |

## Examples Consider a linear system of differential equations.

An output feedback controller, K , is designed producing a closed loop system

$$
\begin{aligned}
& \dot{x}=(A+B K C) x+B u, \\
& y=C x .
\end{aligned}
$$

The eigenvalues of the closed loop system are determined from the matrices $A, B, C$, and $K$ using the command eig $(A+B * K * C)$. Closed loop eigenvalues must lie on the real axis in the complex plane to the left of the points $[-5,-3,-1]$. In order not to saturate the inputs, no element in $K$ can be greater than 4 or be less than -4 .
The system is a two-input, two-output, open loop, unstable system, with state-space matrices.

$$
A=\left[\begin{array}{ccc}
-0.5 & 0 & 0 \\
0 & -2 & 10 \\
0 & 1 & -2
\end{array}\right] \quad B=\left[\begin{array}{cc}
1 & 0 \\
-2 & 2 \\
0 & 1
\end{array}\right] \quad C=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

The set of goal values for the closed loop eigenvalues is initialized as

```
goal = [-5,-3,-1];
```

To ensure the same percentage of under- or overattainment in the active objectives at the solution, the weighting matrix, weight, is set to abs(goal).

Starting with a controller, K = [-1,-1; -1,-1], first write an M-file, eigfun.m.

```
function F = eigfun(K,A,B,C)
F = sort(eig(A+B*K*C)); % Evaluate objectives
```

Next, enter system matrices and invoke an optimization routine.

```
A = [-0.5 0 0; 0 -2 10; 0 1 - -2];
B = [1 0; -2 2; 0 1];
C = [1 0 0; 0 0 1];
KO = [-1 -1; -1 -1]; % Initialize controller matrix
goal = [-5 -3 -1]; % Set goal values for the eigenvalues
weight = abs(goal) % Set weight for same percentage
lb = -4*ones(size(KO)); % Set lower bounds on the controller
ub = 4*ones(size(KO)); % Set upper bounds on the controller
options = optimset('Display','iter'); % Set display parameter
[K,fval,attainfactor] = fgoalattain(@(K)eigfun(K,A,B,C),\ldots
    K0,goal,weight, [],[],[],[],lb,ub,[],options)
```

You can run this example by using the demonstration script goaldemo. (From the MATLAB Help browser or the MathWorks ${ }^{\text {TM }}$ Web site documentation, you can click the demo name to display the demo.) After about 12 iterations, a solution is

```
Active constraints:
```

            1
            2
            4
            9
            10
    $\mathrm{K}=$

```
    -4.0000 -0.2564
    -4.0000 -4.0000
fval =
    -6.9313
    -4.1588
    -1.4099
attainfactor =
    -0.3863
```


## Discussion

The attainment factor indicates that each of the objectives has been overachieved by at least $38.63 \%$ over the original design goals. The active constraints, in this case constraints 1 and 2 , are the objectives that are barriers to further improvement and for which the percentage of overattainment is met exactly. Three of the lower bound constraints are also active.

In the preceding design, the optimizer tries to make the objectives less than the goals. For a worst-case problem where the objectives must be as near to the goals as possible, use optimset to set the GoalsExactAchieve option to the number of objectives for which this is required.

Consider the preceding problem when you want all the eigenvalues to be equal to the goal values. A solution to this problem is found by invoking fgoalattain with the GoalsExactAchieve option set to 3 .

```
options = optimset('GoalsExactAchieve',3);
[K,fval,attainfactor] = fgoalattain(...
    @(K)eigfun(K,A,B,C) ,K0,goal,weight,[],[],[],[], lb,ub,[], ...
options)
```

After about seven iterations, a solution is

```
K =
    -1.5954 1.2040
    -0.4201 -2.9046
```

```
fval =
    -5.0000
    -3.0000
    -1.0000
attainfactor =
    1.0859e-20
```

In this case the optimizer has tried to match the objectives to the goals. The attainment factor (of $1.0859 \mathrm{e}-20$ ) indicates that the goals have been matched almost exactly.

Notes This problem has discontinuities when the eigenvalues become complex; this explains why the convergence is slow. Although the underlying methods assume the functions are continuous, the method is able to make steps toward the solution because the discontinuities do not occur at the solution point. When the objectives and goals are complex, fgoalattain tries to achieve the goals in a least-squares sense.

## Algorithm

Multiobjective optimization concerns the minimization of a set of objectives simultaneously. One formulation for this problem, and implemented in fgoalattain, is the goal attainment problem of Gembicki [3]. This entails the construction of a set of goal values for the objective functions. Multiobjective optimization is discussed fully in Chapter 5, "Standard Algorithms".

In this implementation, the slack variable $\gamma$ is used as a dummy argument to minimize the vector of objectives $F(x)$ simultaneously; goal is a set of values that the objectives attain. Generally, prior to the optimization, it is not known whether the objectives will reach the goals (under attainment) or be minimized less than the goals (overattainment). A weighting vector, weight, controls the relative underattainment or overattainment of the objectives.
fgoalattain uses a sequential quadratic programming (SQP) method, which is described fully in Chapter 5, "Standard Algorithms".

Modifications are made to the line search and Hessian. In the line search an exact merit function (see [1] and [4]) is used together with the merit function proposed by [5] and [6]. The line search is terminated when either merit function shows improvement. A modified Hessian, which takes advantage of the special structure of the problem, is also used (see [1] and [4]). A full description of the modifications used is found in "Goal Attainment Method" on page 5-44 in "Introduction to Algorithms." Setting the MeritFunction option to 'singleobj' with

```
options = optimset(options,'MeritFunction','singleobj')
```

uses the merit function and Hessian used in fmincon.
See also "SQP Implementation" on page 5-32 for more details on the algorithm used and the types of procedures displayed under the Procedures heading when the Display option is set to 'iter'.

## Limitations

References

The objectives must be continuous. fgoalattain might give only local solutions.
[1] Brayton, R.K., S.W. Director, G.D. Hachtel, and L.Vidigal, "A New Algorithm for Statistical Circuit Design Based on Quasi-Newton Methods and Function Splitting," IEEE Transactions on Circuits and Systems, Vol. CAS-26, pp 784-794, Sept. 1979.
[2] Fleming, P.J. and A.P. Pashkevich, Computer Aided Control System Design Using a Multi-Objective Optimisation Approach, Control 1985 Conference, Cambridge, UK, pp. 174-179.
[3] Gembicki, F.W., "Vector Optimization for Control with Performance and Parameter Sensitivity Indices," Ph.D. Dissertation, Case Western Reserve Univ., Cleveland, OH, 1974.
[4] Grace, A.C.W., "Computer-Aided Control System Design Using Optimization Techniques," Ph.D. Thesis, University of Wales, Bangor, Gwynedd, UK, 1989.
[5] Han, S.P., "A Globally Convergent Method For Nonlinear Programming," Journal of Optimization Theory and Applications, Vol. 22, p. 297, 1977.
[6] Powell, M.J.D., "A Fast Algorithm for Nonlinear Constrained Optimization Calculations," Numerical Analysis, ed. G.A. Watson, Lecture Notes in Mathematics, Vol. 630, Springer Verlag, 1978.

See Also
@ (function_handle), fmincon, fminimax, optimset, optimtool

## Purpose

Find minimum of single-variable function on fixed interval

## Equation

Finds a minimum for a problem specified by

$$
\min _{x} f(x) \text { such that } x_{1}<x<x_{2} .
$$

$x, x_{1}$, and $x_{2}$ are scalars and $f(x)$ is a function that returns a scalar.
Syntax

```
x = fminbnd(fun, x1,x2)
x = fminbnd(fun,x1,x2,options)
x = fminbnd(problem)
[x,fval] = fminbnd(...)
[x,fval,exitflag] = fminbnd(...)
[x,fval,exitflag,output] = fminbnd(...)
```


## Description

fminbnd attempts to find a minimum of a function of one variable
within a fixed interval.
$x=$ fminbnd(fun, $x 1, x 2$ ) returns a value $x$ that is a local minimizer of the scalar valued function that is described in fun in the interval $\mathrm{x} 1<\mathrm{x}<\mathrm{x} 2$. fun is a function handle for either an M-file function or an anonymous function.
$x=$ fminbnd(fun, $x 1, x 2$, options) minimizes with the optimization options specified in the structure options. Use optimset to set these options.
$x=$ fminbnd(problem) finds the minimum for problem, where problem is a structure described in "Input Arguments" on page 11-30.

Create the structure problem by exporting a problem from Optimization Tool, as described in "Exporting to the MATLAB ${ }^{\circledR}$ Workspace" on page 3-14.
[x,fval] = fminbnd(...) returns the value of the objective function computed in fun at the solution $x$.
[x,fval,exitflag] = fminbnd(...) returns a value exitflag that describes the exit condition of fminbnd.

## fminbnd

## Input Arguments

[x,fval,exitflag, output] = fminbnd(...) returns a structure output that contains information about the optimization.
"Passing Extra Parameters" on page 2-10 explains how to parameterize the objective function fun, if necessary.
"Function Arguments" on page 9-2 contains general descriptions of arguments passed into fminbnd. This section provides function-specific details for fun, options, and problem:

fun | The function to be minimized. fun is a function handle |
| :--- |
| for a function that accepts a scalar $x$ and returns a |
| scalar $f$, the objective function evaluated at $x$. The |
| function fun can be specified as a function handle for an |
| M-file function |

```
x = fminbnd(@myfun,x1,x2)
```

where myfun is a MATLAB ${ }^{\circledR}$ function such as

```
function f = myfun(x)
f = .. % Compute function value at x.
```

fun can also be a function handle for an anonymous function.

```
x = fminbnd(@(x)sin(x^2),x1,x2);
```

options "Options" on page 11-31 provides the function-specific details for the options values.
problem
$\mathrm{f} \quad$ Objective function
$x 1$ Left endpoint
x2 Right endpoint
solver 'fminbnd'
options Options structure created with optimset

## Output Arguments

## Options

"Function Arguments" on page 9-2 contains general descriptions of arguments returned by fminbnd. This section provides function-specific details for exitflag and output:
exitflag Integer identifying the reason the algorithm terminated. The following lists the values of exitflag and the corresponding reasons the algorithm terminated.

1 Function converged to a solution x .
$0 \quad$ Number of iterations exceeded options.MaxIter or number of function evaluations exceeded options.FunEvals.
-1 Algorithm was terminated by the output function.
-2 The bounds are inconsistent.
output Structure containing information about the optimization. The fields of the structure are
iterations Number of iterations taken
funcCount Number of function evaluations
algorithm Optimization algorithm used
message Exit message

Optimization options used by fminbnd. You can use optimset to set or change the values of these fields in the options structure options. See "Optimization Options" on page 9-8 for detailed information.

## fminbnd

| Display | Level of display. ' off ' displays no output; 'iter ' <br> displays output at each iteration; ' ' final' ' displays <br> just the final output; 'not iff ' (default) displays <br> output only if the function does not converge. |
| :--- | :--- |
| FunValCheck | Check whether objective function values are valid. <br> 'on' displays an error when the objective function <br> returns a value that is complex or NaN. 'off' <br> displays no error. |
| MaxFunEvals | Maximum number of function evaluations <br> allowed. |
| MaxIter | Maximum number of iterations allowed. |
| OutputFcn | Specify one or more user-defined functions that an <br> optimization function calls at each iteration. See <br> "Output Function" on page 9-18. |
| PlotFcns | Plots various measures of progress while the <br> algorithm executes, select from predefined plots <br> or write your own. Specifying @optimplotx plots <br> the current point; @optimplotunccount plots the <br> function count; @optimplotfval plots the function <br> value. |
| TolX | Termination tolerance on x. |

## Examples $\quad \mathrm{A}$ minimum of $\sin (x)$ occurs at

```
x = fminbnd(@sin,0,2*pi)
x =
```

$$
4.7124
$$

The value of the function at the minimum is

```
y = sin(x)
y =
    -1.0000
```

To find the minimum of the function

$$
f(x)=(x-3)^{2}-1,
$$

on the interval $(0,5)$, first write an M-file.

```
function f = myfun(x)
f = (x-3)^2 - 1;
```

Next, call an optimization routine.

```
x = fminbnd(@myfun,0,5)
```

This generates the solution

$$
x=3
$$

The value at the minimum is

$$
\begin{aligned}
& y=f(x) \\
& y=-1
\end{aligned}
$$

If fun is parameterized, you can use anonymous functions to capture the problem-dependent parameters. For example, suppose you want to minimize the objective function myfun defined by the following M-file function.

```
function f = myfun(x,a)
f = (x - a)^2;
```

Note that myfun has an extra parameter a, so you cannot pass it directly to fminbind. To optimize for a specific value of $a$, such as $a=1.5$.

1 Assign the value to a.

## fminbnd

```
a = 1.5; % define parameter first
```

2 Call fminbnd with a one-argument anonymous function that captures that value of a and calls myfun with two arguments:

$$
x=\text { fminbnd }(@(x) \text { myfun }(x, a), 0,1)
$$

[^1]
## Purpose

Find minimum of constrained nonlinear multivariable function

## Equation

Finds the minimum of a problem specified by

$$
\min _{x} f(x) \text { such that }\left\{\begin{aligned}
c(x) & \leq 0 \\
c e q(x) & =0 \\
A \cdot x & \leq b \\
A e q \cdot x & =b e q \\
l b & \leq x \leq u b
\end{aligned}\right.
$$

$x, b, b e q, l b$, and $u b$ are vectors, $A$ and $A e q$ are matrices, $c(x)$ and $c e q(x)$ are functions that return vectors, and $f(x)$ is a function that returns a scalar. $f(x), c(x)$, and $c e q(x)$ can be nonlinear functions.

Syntax

```
x = fmincon(fun, xo,A,b)
x = fmincon(fun, x0,A,b,Aeq,beq)
x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub)
x = fmincon(fun, x0,A,b,Aeq,beq,lb,ub,nonlcon)
x = fmincon(fun, x0,A,b,Aeq,beq,lb,ub,nonlcon,options)
x = fmincon(problem)
[x,fval] = fmincon(...)
[x,fval,exitflag] = fmincon(...)
[x,fval,exitflag,output] = fmincon(...)
[x,fval,exitflag,output,lambda] = fmincon(...)
[x,fval,exitflag,output,lambda,grad] = fmincon(...)
[x,fval,exitflag,output,lambda,grad,hessian] = fmincon(...)
```


## Description

fmincon attempts to find a constrained minimum of a scalar function of several variables starting at an initial estimate. This is generally referred to as constrained nonlinear optimization or nonlinear programming.
$x=$ fmincon(fun, $x 0, A, b)$ starts at $x 0$ and attempts to find a minimizer $x$ of the function described in fun subject to the linear inequalities $\mathrm{A}^{*} \mathrm{x} \leq \mathrm{b}$. x 0 can be a scalar, vector, or matrix.

## fmincon

$x=$ fmincon(fun $, x 0, A, b, A e q, b e q)$ minimizes fun subject to the linear equalities $A e q * x=b e q$ and $A^{*} x \leq b$. If no inequalities exist, set $\mathrm{A}=$ [] and $\mathrm{b}=$ [].
$x=$ fmincon(fun, $x 0, A, b, A e q, b e q, l b, u b)$ defines a set of lower and upper bounds on the design variables in $x$, so that the solution is always in the range $\mathrm{lb} \leq \mathrm{x} \leq \mathrm{ub}$. If no equalities exist, set Aeq $=$ [] and beq $=$ []. If $x(i)$ is unbounded below, set $\operatorname{lb}(i)=-$ Inf, and if $x(i)$ is unbounded above, set ub(i) = Inf.
$x=$ fmincon(fun, $x 0, A, b, A e q, b e q, l b, u b, n o n l c o n)$ subjects the minimization to the nonlinear inequalities $c(x)$ or equalities ceq ( $x$ ) defined in nonlcon. fmincon optimizes such that $c(x) \leq 0$ and $\operatorname{ceq}(x)=0$. If no bounds exist, set $1 b=[]$ and/or ub $=[]$.
$x=$ fmincon(fun, $x 0, A, b, A e q, b e q, l b, u b, n o n l c o n, o p t i o n s)$ minimizes with the optimization options specified in the structure options. Use optimset to set these options. If there are no nonlinear inequality or equality constraints, set nonlcon $=$ [].
$x=$ fmincon(problem) finds the minimum for problem, where problem is a structure described in "Input Arguments" on page 11-37.

Create the structure problem by exporting a problem from Optimization Tool, as described in "Exporting to the MATLAB ${ }^{\circledR}$ Workspace" on page 3-14.
[x,fval] = fmincon(...) returns the value of the objective function fun at the solution $x$.
[x,fval,exitflag] = fmincon(...) returns a value exitflag that describes the exit condition of fmincon.
[x,fval,exitflag,output] = fmincon(...) returns a structure output with information about the optimization.
[x,fval, exitflag, output, lambda] = fmincon(...) returns a structure lambda whose fields contain the Lagrange multipliers at the solution X .
[x,fval,exitflag,output,lambda,grad] = fmincon(...) returns the value of the gradient of fun at the solution $x$.

$$
\begin{aligned}
& {[x, \text { fval, exitflag, output, lambda, grad, hessian }]=\text { fmincon }(\ldots)} \\
& \text { returns the value of the Hessian at the solution } x . \text { See "Hessian" on } \\
& \text { page 11-42. } \\
& \text { "Passing Extra Parameters" on page } 2-10 \text { explains how to parameterize } \\
& \text { the objective function fun, if necessary. }
\end{aligned}
$$

Note If the specified input bounds for a problem are inconsistent, the output x is $\mathrm{x0}$ and the output fval is [].

Components of $x 0$ that violate the bounds $1 b \leq x \leq u b$ are reset to the interior of the box defined by the bounds. Components that respect the bounds are not changed.

## Input Arguments

"Function Arguments" on page 9-2 describes the arguments passed to fmincon. "Options" on page 11-138 provides the function-specific details for the options values. This section provides function-specific details for fun, nonlcon, and problem.
fun $\quad$ The function to be minimized. fun is a function that accepts a vector x and returns a scalar $f$, the objective function evaluated at $x$. fun can be specified as a function handle for an M-file function

$$
x=\text { fmincon(@myfun, x0, A,b) }
$$

where myfun is a MATLAB ${ }^{\circledR}$ function such as

```
function f = myfun(x)
f = .. % Compute function value at }
```

fun can also be a function handle for an anonymous function:

```
x = fmincon(@(x)norm(x)^2,x0,A,b);
```

If the gradient of fun can also be computed and the GradObj option is 'on ', as set by

## fmincon

```
options = optimset('GradObj','on')
```

then fun must return the gradient vector $g(x)$ in the second output argument.

If the Hessian matrix can also be computed and the Hessian option is 'on' via options = optimset('Hessian','user-supplied') and the Algorithm option is trust-region-reflective, fun must return the Hessian value $H(x)$, a symmetric matrix, in a third output argument. See "Writing Objective Functions" on page 2-4 for details.

If the Hessian matrix can be computed and the Algorithm option is interior-point, there are several ways to pass the Hessian to fmincon. For more information, see "Hessian" on page 11-42.
nonlcon The function that computes the nonlinear inequality constraints $\mathrm{c}(\mathrm{x}) \leq 0$ and the nonlinear equality constraints ceq $(x)=0$. nonlcon accepts a vector $x$ and returns the two vectors $c$ and ceq. $c$ is a vector that contains the nonlinear inequalities evaluated at $x$, and ceq is a vector that contains the nonlinear equalities evaluated at $x$. nonlcon can be specified as a function handle:

```
x = fmincon(@myfun,x0,A,b,Aeq,beq,lb,ub,@mycon)
```

where mycon is a MATLAB function such as

```
function [c,ceq] = mycon(x)
c = ... % Compute nonlinear inequalities at x.
ceq = ... % Compute nonlinear equalities at x.
```

If the gradients of the constraints can also be computed and the GradConstr option is 'on', as set by

```
options = optimset('GradConstr','on')
```

then nonlcon must also return, in the third and fourth output arguments, GC, the gradient of $c(x)$, and GCeq, the gradient of ceq(x). For more information, see "Nonlinear Constraints" on page 2-17.

> Note Because Optimization Toolbox ${ }^{\mathrm{TM}}$ functions only accept inputs of type double, user-supplied objective and nonlinear constraint functions must return outputs of type double.

|  | "Passing Extra Parameters" on page 2-10 explains how to parameterize the <br> nonlinear constraint function nonlcon, if necessary. |  |
| :--- | :--- | :---: |
| problem | objective |  |
| xo | Objective function |  |

[^2]
## fmincon

| exitflag | Integer identifying the reason the algorithm terminated. The following lists the values of exitflag and the corresponding reasons the algorithm terminated. |  |
| :---: | :---: | :---: |
|  | 1 | First-order optimality measure was less than options.TolFun, and maximum constraint violation was less than options.TolCon. |
|  | 2 | Change in $x$ was less than options.TolX. |
|  | 3 | Change in the objective function value was less than options.TolFun. |
|  | 4 | Magnitude of the search direction was less than $2^{*}$ options.TolX and constraint violation was less than options.TolCon. |
|  | 5 | Magnitude of directional derivative in search direction was less than $2^{*}$ options.TolFun and maximum constraint violation was less than options. TolCon. |
|  | 0 | Number of iterations exceeded options.MaxIter or number of function evaluations exceeded options.FunEvals. |
|  | -1 | The output function terminated the algorithm. |
|  | -2 | No feasible point was found. |
| grad |  |  |
| hessian |  |  |


| lambda | Structure containing the Lagrange multipliers at the solution $x$ (separated by constraint type). The fields of the structure are: |  |
| :---: | :---: | :---: |
|  | lower | Lower bounds lb |
|  | upper | Upper bounds ub |
|  | ineqlin | Linear inequalities |
|  | eqlin | Linear equalities |
|  | ineqnonlin | Nonlinear inequalities |
|  | eqnonlin | Nonlinear equalities |
| output | Structure containing information about the optimization. The fields of the structure are: |  |
|  | iterations | Number of iterations taken |
|  | funcCount | Number of function evaluations |
|  | lssteplength | Size of line search step relative to search direction (active-set algorithm only) |
|  | constrviolation | Maximum of constraint violations (active-set and interior-point algorithms) |
|  | stepsize | Length of last displacement in $x$ (active-set and interior-point algorithms) |
|  | algorithm | Optimization algorithm used |
|  | cgiterations | Total number of PCG iterations (trust-region-reflective and interior-point algorithms) |
|  | firstorderopt | Measure of first-order optimality |
|  | message | Exit message |

## fmincon

## Hessian

fmincon uses a Hessian, the second derivatives of the Lagrangian (see Equation 2-2), namely,

$$
\begin{equation*}
\nabla_{x x}^{2} L(x, \lambda)=\nabla^{2} f(x)+\sum \lambda_{i} \nabla^{2} c_{i}(x)+\sum \lambda_{i} \nabla^{2} c e q_{i}(x) . \tag{11-1}
\end{equation*}
$$

There are three algorithms used by fmincon, and each one handles Hessians differently:

- The active-set algorithm does not accept a user-supplied Hessian. It computes a quasi-Newton approximation to the Hessian of the Lagrangian.
- The trust-region-reflective can accept a user-supplied Hessian as the final output of the objective function. Since this algorithm has only bounds or linear constraints, the Hessian of the Lagrangian is same as the Hessian of the objective function. See "Writing Objective Functions" on page 2-4 for details on how to pass the Hessian to fmincon. Indicate that you are supplying a Hessian by

```
options = optimset('Hessian','user-supplied');
```

If you do not pass a Hessian, the algorithm computes a finite-difference approximation.

- The interior-point algorithm can accept a user-supplied Hessian as a separately defined function-it is not computed in the objective function. The syntax is

```
hessian = hessianfcn(x, lambda)
```

hessian is an $n$-by- $n$ matrix, sparse or dense, where $n$ is the number of variables. lambda is a structure with the Lagrange multiplier vectors associated with the nonlinear constraints:
lambda.ineqnonlin
lambda.eqnonlin
fmincon computes the structure lambda. hessianfen must calculate the sums in Equation 11-1. Indicate that you are supplying a Hessian by

```
options = optimset('Hessian','user-supplied',...
    'HessFcn', @hessianfcn);
```

The interior-point algorithm has several more options for Hessians:

- options = optimset('Hessian','bfgs');
fmincon calculates the Hessian by a dense quasi-Newton approximation.
- options $=$ optimset('Hessian',\{'lbfgs',positive integer\});
fmincon calculates the Hessian by a limited-memory, large-scale quasi-Newton approximation. The positive integer specifies how many past iterations should be remembered.
- options = optimset('Hessian','lbfgs');
fmincon calculates the Hessian by a limited-memory, large-scale quasi-Newton approximation. The default memory, 10 iterations, is used.
- options = optimset('Hessian','fin-diff-grads',...
'SubproblemAlgorithm', 'cg', 'GradObj', 'on',...
'GradConstr', 'on');
fmincon calculates a Hessian-times-vector product by finite differences of the gradient(s). You must supply the gradient of the objective function, and also gradients of nonlinear constraints if they exist.
- options = optimset('Hessian','on',...
'SubproblemAlgorithm','cg', 'HessMult',@HessMultFcn]);
fmincon uses a Hessian-times-vector product. You must supply the function HessMultFcn, which returns an $n$-by- 1 vector. The HessMult option enables you to pass the result of multiplying the Hessian by a vector without calculating the Hessian.


## fmincon

The 'HessMult' option for the interior-point algorithm has a different syntax than that of the trust-region-reflective algorithm. The syntax for the interior-point algorithm is
W = HessMultFcn(x,lambda, v);

The result W should be the product $\mathrm{H} * \mathrm{v}$, where H is the Hessian at x , lambda is the Lagrange multiplier (computed by fmincon), and $v$ is a vector. In contrast, the syntax for the trust-region-reflective algorithm does not involve lambda:
W = HessMultFcn (H,v);

Again, the result $\mathrm{W}=\mathrm{H}^{*} \mathrm{v} . \mathrm{H}$ is the function returned in the third output of the objective function (see "Writing Objective Functions" on page 2-4), and $v$ is a vector. H does not have to be the Hessian; rather, it can be any function that enables you to calculate $W=H^{*} v$.

Optimization options used by fmincon. Some options apply to all algorithms, and others are relevant for particular algorithms. You can use optimset to set or change the values of these fields in the structure options. See "Optimization Options" on page 9-8 for detailed information.
fmincon uses one of three algorithms: active-set, interior-point, or trust-region-reflective. You choose the algorithm at the command line with optimset. For example:

```
options=optimset('Algorithm','active-set');
```

The default trust-region-reflective (formerly called large-scale) requires:

- A gradient to be supplied in the objective function
- 'GradObj' to be set to 'on'
- Either bound constraints or linear equality constraints, but not both

If these conditions are not all satisfied, the 'active-set' algorithm (formerly called medium-scale) is the default.

## All Algorithms

These options are used by all three algorithms:

| Algorithm | Choose the optimization algorithm. <br> DerivativeCheck <br> Compare user-supplied derivatives (gradients of <br> the objective and constraints) to finite-difference <br> approximates. |
| :--- | :--- |
| Diagnostics | Display diagnostic information about the <br> function to be minimized. |
| DiffMaxChange | Maximum change in variables for finite <br> differencing. |
| DiffMinChange | Minimum change in variables for finite <br> differencing. |
| Display | Level of display. |
|  | - 'off' displays no output |
| - 'notify' displays output only if the function |  |
| does not converge |  |

## fmincon

\(\left.$$
\begin{array}{ll}\text { GradObj } & \begin{array}{l}\text { Gradient for the objective function defined by } \\
\text { the user. You must provide the gradient to use } \\
\text { the trust-region-reflective method. This option is } \\
\text { not required for the active-set and interior-point } \\
\text { methods. See the preceding description of fun to } \\
\text { see how to define the gradient in fun. } \\
\text { Maximum number of function evaluations } \\
\text { allowed. }\end{array} \\
\text { MaxFunEvals } \\
\text { MaxIter } & \begin{array}{l}\text { Maximum number of iterations allowed. }\end{array} \\
\text { OutputFcn } & \begin{array}{l}\text { Specify one or more user-defined functions that } \\
\text { an optimization function calls at each iteration. } \\
\text { See "Output Function" on page 9-18. }\end{array} \\
\text { PlotFcns } & \begin{array}{l}\text { Plots various measures of progress while the } \\
\text { algorithm executes, select from predefined plots } \\
\text { or write your own. }\end{array}
$$ <br>

- @optimplotx plots the current point\end{array}\right\}\)| - @optimplotfunccount plots the function |
| :--- |
| count |

## Trust-Region-Reflective Algorithm

These options are used by the trust-region-reflective algorithm:

Hessian | If 'on', fmincon uses a user-defined Hessian |
| :--- |
| (defined in fun), or Hessian information (when |
| using HessMult), for the objective function. |
| If 'off', fmincon approximates the Hessian |
| using finite differences. |
| Function handle for Hessian multiply function. |
| For large-scale structured problems, this |
| function computes the Hessian matrix product |
| H*Y without actually forming H. The function |
| is of the form |
| W = hmfun (Hinfo, Y, p1, p2, ...) |

## fmincon

Note 'Hessian' must be set to 'on' for Hinfo to be passed from fun to hmfun.

HessPattern

MaxPCGIter

See "Nonlinear Minimization with a Dense but Structured Hessian and Equality Constraints" on page 4-62 for an example.

Sparsity pattern of the Hessian for finite differencing. If it is not convenient to compute the sparse Hessian matrix $H$ in fun, the trust-region-reflective method in fmincon can approximate H via sparse finite differences (of the gradient) provided that you supply the sparsity structure of H-i.e., locations of the nonzeros-as the value for HessPattern. In the worst case, if the structure is unknown, you can set HessPattern to be a dense matrix and a full finite-difference approximation is computed at each iteration (this is the default). This can be very expensive for large problems, so it is usually worth the effort to determine the sparsity structure.

Maximum number of PCG (preconditioned conjugate gradient) iterations. For more information, see "Preconditioned Conjugate Gradients" on page 6-12.

PrecondBandWidth Upper bandwidth of preconditioner for PCG. By default, diagonal preconditioning is used (upper bandwidth of 0 ). For some problems, increasing the bandwidth reduces the number of PCG iterations. Setting PrecondBandWidth to 'Inf' uses a direct factorization (Cholesky) rather than the conjugate gradients (CG). The direct factorization is computationally more expensive than CG, but produces a better quality step towards the solution.
TolPCG
Termination tolerance on the PCG iteration.

## fmincon

## Active-Set Algorithm

These options are used only by the active-set algorithm:

| MaxSQPIter | Maximum number of SQP iterations <br> allowed. |
| :--- | :--- |
| RelLineSrchBnd | Relative bound (a real nonnegative <br> scalar value) on the line search step <br> length such that the total displacement <br> in $x$ satisfies $\|\Delta x(i)\| \leq$ relLineSrchBnd <br> max $(\|x(i)\|,\|t y p i c a l x(i)\|)$. This option <br> provides control over the magnitude <br> of the displacements in $x$ for cases in <br> which the solver takes steps that are <br> considered too large. |
| RelLineSrchBndDuration | Number of iterations for which the <br> bound specified in RelLineSrchBnd <br> should be active (default is 1). |
| TolConSQP | Termination tolerance on inner <br> iteration SQP constraint violation. |
| UseParallel | When 'always ', estimate gradients in <br> parallel. Disable by setting to 'never'. |

## Interior-Point Algorithm

These options are used by the interior-point algorithm:

| AlwaysHonorConstraints | The default 'bounds ' ensures that bound constraints are satisfied at every iteration. Disable by setting to 'none ' |
| :---: | :---: |
| FinDifftype | Finite differences, used to estimate gradients, are either 'forward ' (the default), or else are 'central' (centered). 'central' take twice as many function evaluations but should be more accurate. 'central' differences might violate bounds during their evaluation. |
| HessFcn | Function handle to a user-supplied Hessian (see "Hessian" on page 11-42). |
| Hessian | Chooses how fmincon calculates the Hessian (see "Hessian" on page 11-42). |
| HessMult | Handle to a user-supplied function that gives a Hessian-times-vector product (see "Hessian" on page 11-42). |
| InitBarrierParameter | Initial barrier value. Sometimes it might help to try a value above the default 0.1 , especially if the objective or constraint functions are large. |
| InitTrustRegionRadius | Initial radius of the trust region. On badly scaled problems it might help to choose a value smaller than the default $\sqrt{n}$, where $n$ is the number of variables. |
| MaxProjCGIter | A tolerance (stopping criterion) for the number of projected conjugate gradient iterations; this is an inner iteration, not the number of iterations of the algorithm. |

## fmincon

| ObjectiveLimit | A tolerance (stopping criterion). If the <br> objective function value goes below <br> ObjectiveLimit and the iterate is <br> feasible, the iterations halt, since the <br> problem is presumably unbounded. |
| :--- | :--- |
| ScaleProblem | The default obj -and-constr causes <br> the algorithm to normalize all <br> constraints and the objective function. <br> Disable by setting to none. |
| SubproblemAlgorithm | Determines how the iteration <br> step is calculated. The default <br> ldl-factorization is usually faster <br> than cg (conjugate gradient), though <br> cg may be faster for large problems <br> with dense Hessians. |
| TolProjCG | A relative tolerance (stopping criterion) <br> for projected conjugate gradient <br> algorithm; this is for an inner iteration,, <br> not the algorithm iteration. |
| TolProjCGAbs | Absolute tolerance (stopping criterion) <br> for projected conjugate gradient |
| algorithm; this is for an inner iteration, |  |

Examples $\quad$ Find values of $x$ that minimize $f(x)=-x_{1} x_{2} x_{3}$, starting at the point $x=[10 ; 10 ; 10]$, subject to the constraints:

$$
0 \leq x_{1}+2 x_{2}+2 x_{3} \leq 72 .
$$

1 Write an M-file that returns a scalar value $f$ of the objective function evaluated at x :

```
function f = myfun(x)
f = -x(1) * x(2) * x(3);
```

2 Rewrite the constraints as both less than or equal to a constant,

$$
\begin{aligned}
& -x_{1}-2 x_{2}-2 x_{3} \leq 0 \\
& x_{1}+2 x_{2}+2 x_{3} \leq 72
\end{aligned}
$$

3 Since both constraints are linear, formulate them as the matrix inequality $A \cdot x \leq b$, where

$$
A=\left[\begin{array}{ccc}
-1 & -2 & -2 \\
1 & 2 & 2
\end{array}\right], \quad b=\left[\begin{array}{c}
0 \\
72
\end{array}\right] .
$$

4 Supply a starting point and invoke an optimization routine:

```
x0 = [10; 10; 10]; % Starting guess at the solution
[x,fval] = fmincon(@myfun,x0,A,b)
```

5 After 66 function evaluations, the solution is

$$
\begin{array}{ll}
\mathrm{x}= \\
24.0000 \\
12.0000 \\
12.0000
\end{array}
$$

where the function value is

```
fval =
    -3.4560e+03
```

and linear inequality constraints evaluate to be less than or equal to 0 :

$$
\begin{aligned}
& A * x-b= \\
&-72
\end{aligned}
$$

0

## fmincon

## Notes Trust-Region-Reflective Optimization

To use the trust-region-reflective algorithm, you must

- Supply the gradient of the objective function in fun.
- Set GradObj to 'on' in options.
- Specify the feasible region using one, but not both, of the following types of constraints:
- Upper and lower bounds constraints
- Linear equality constraints, in which the equality constraint matrix Aeq cannot have more rows than columns

You cannot use inequality constraints with the trust-region-reflective algorithm. If the preceding conditions are not met, fmincon reverts to the active-set algorithm.
fmincon returns a warning if you do not provide a gradient and the Algorithm option is trust-region-reflective. fmincon permits an approximate gradient to be supplied, but this option is not recommended; the numerical behavior of most optimization methods is considerably more robust when the true gradient is used. For more information on what problem formulations are covered and what information you must provide, see Large-Scale Problem Coverage and Requirements on page 4-44.

The trust-region-reflective method in fmincon is in general most effective when the matrix of second derivatives, i.e., the Hessian matrix $H(x)$, is also computed. However, evaluation of the true Hessian matrix is not required. For example, if you can supply the Hessian sparsity structure (using the HessPattern option in options), fmincon computes a sparse finite-difference approximation to $H(x)$.

If $x 0$ is not strictly feasible, fmincon chooses a new strictly feasible (centered) starting point.

If components of $x$ have no upper (or lower) bounds, fmincon prefers that the corresponding components of ub (or lb) be set to Inf (or - Inf
for lb) as opposed to an arbitrary but very large positive (or negative in the case of lower bounds) number.

Take note of these characteristics of linearly constrained minimization:

- A dense (or fairly dense) column of matrix Aeq can result in considerable fill and computational cost.
- fmincon removes (numerically) linearly dependent rows in Aeq; however, this process involves repeated matrix factorizations and therefore can be costly if there are many dependencies.
- Each iteration involves a sparse least-squares solution with matrix

$$
\overline{A e q}=A e q^{T} R^{T}
$$

where $R^{T}$ is the Cholesky factor of the preconditioner. Therefore, there is a potential conflict between choosing an effective preconditioner and minimizing fill in $\overline{A e q}$.

## Active-Set Optimization

If equality constraints are present and dependent equalities are detected and removed in the quadratic subproblem, 'dependent ' appears under the Procedures heading (when you ask for output by setting the Display option to'iter'). The dependent equalities are only removed when the equalities are consistent. If the system of equalities is not consistent, the subproblem is infeasible and 'infeasible' appears under the Procedures heading.

## Algorithm

## Trust-Region-Reflective Optimization

The trust-region-reflective algorithm is a subspace trust-region method and is based on the interior-reflective Newton method described in [3] and [4]. Each iteration involves the approximate solution of a large linear system using the method of preconditioned conjugate gradients (PCG). See the trust-region and preconditioned conjugate gradient method descriptions in Chapter 6, "Large-Scale Algorithms".

## fmincon

## Active-Set Optimization

fmincon uses a sequential quadratic programming (SQP) method. In this method, the function solves a quadratic programming (QP) subproblem at each iteration. fmincon updates an estimate of the Hessian of the Lagrangian at each iteration using the BFGS formula (see fminunc and references [7] and [8]).
fmincon performs a line search using a merit function similar to that proposed by [6], [7], and [8]. The QP subproblem is solved using an active set strategy similar to that described in [5]. "Constrained Optimization" on page 5-29 describes this algorithm in detail.

See also "SQP Implementation" on page 5-32 for more details on the algorithm used.

## Interior-Point Optimization

This algorithm is described in [1], [3], and [9].

## Limitations

fmincon is a gradient-based method that is designed to work on problems where the objective and constraint functions are both continuous and have continuous first derivatives.

When the problem is infeasible, fmincon attempts to minimize the maximum constraint value.

The trust-region-reflective algorithm does not allow equal upper and lower bounds. For example, if $\mathrm{lb}(2)==\mathrm{ub}(2)$, fmincon gives this error:

```
Equal upper and lower bounds not permitted in this
large-scale method.
Use equality constraints and the medium-scale
method instead.
```

There are two different syntaxes for passing a Hessian, and there are two different syntaxes for passing a HessMult function; one for trust-region-reflective, and another for interior-point.

For trust-region-reflective, the Hessian of the Lagrangian is the same as the Hessian of the objective function. You pass that Hessian as the third output of the objective function.

For interior-point, the Hessian of the Lagrangian involves the Lagrange multipliers and the Hessians of the nonlinear constraint functions. You pass the Hessian as a separate function that takes into account both the position x and the Lagrange multiplier structure lambda.

## References

[1] Byrd, R.H., J. C. Gilbert, and J. Nocedal, "A Trust Region Method Based on Interior Point Techniques for Nonlinear Programming," Mathematical Programming, Vol 89, No. 1, pp. 149-185, 2000.
[2] Byrd, R.H., Mary E. Hribar, and Jorge Nocedal, "An Interior Point Algorithm for Large-Scale Nonlinear Programming, SIAM Journal on Optimization," SIAM Journal on Optimization, Vol 9, No. 4, pp. 877-900, 1999.
[3] Coleman, T.F. and Y. Li, "An Interior, Trust Region Approach for Nonlinear Minimization Subject to Bounds," SIAM Journal on Optimization, Vol. 6, pp. 418-445, 1996.
[4] Coleman, T.F. and Y. Li, "On the Convergence of Reflective Newton Methods for Large-Scale Nonlinear Minimization Subject to Bounds," Mathematical Programming, Vol. 67, Number 2, pp. 189-224, 1994.
[5] Gill, P.E., W. Murray, and M.H. Wright, Practical Optimization, London, Academic Press, 1981.
[6] Han, S.P., "A Globally Convergent Method for Nonlinear Programming," Vol. 22, Journal of Optimization Theory and Applications, p. 297, 1977.
[7] Powell, M.J.D., "A Fast Algorithm for Nonlinearly Constrained Optimization Calculations," Numerical Analysis, ed. G.A. Watson, Lecture Notes in Mathematics, Springer Verlag, Vol. 630, 1978.

## fmincon

[8] Powell, M.J.D., "The Convergence of Variable Metric Methods For Nonlinearly Constrained Optimization Calculations," Nonlinear Programming 3 (O.L. Mangasarian, R.R. Meyer, and S.M. Robinson, eds.), Academic Press, 1978.
[9] Waltz, R. A., J. L. Morales, J. Nocedal, and D. Orban, "An interior algorithm for nonlinear optimization that combines line search and trust region steps," Mathematical Programming, Vol 107, No. 3, pp. 391-408, 2006.

## See Also

@ (function_handle), fminbnd, fminsearch, fminunc, optimset, optimtool

## Purpose Solve minimax constraint problem

## Equation Finds the minimum of a problem specified by

$$
\min _{x} \max _{i} F_{i}(x) \text { such that }\left\{\begin{array}{c}
c(x) \leq 0 \\
c e q(x)=0 \\
A \cdot x \leq b \\
A e q \cdot x=b e q \\
l b \leq x \leq u b
\end{array}\right.
$$

where $x, b, b e q, l b$, and $u b$ are vectors, $A$ and $A e q$ are matrices, and $c(x), c e q(x)$, and $F(x)$ are functions that return vectors. $F(x), c(x)$, and $c e q(x)$ can be nonlinear functions.

## Syntax

```
x = fminimax(fun,x0)
x = fminimax(fun,x0,A,b)
x = fminimax(fun,x,A,b,Aeq,beq)
x = fminimax(fun,x,A,b,Aeq,beq,lb,ub)
x = fminimax(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon)
x = fminimax(fun, x0,A,b,Aeq,beq,lb,ub,nonlcon,options)
x = fminimax(problem)
[x,fval] = fminimax(...)
[x,fval,maxfval] = fminimax(...)
[x,fval,maxfval,exitflag] = fminimax(...)
[x,fval,maxfval,exitflag,output] = fminimax(...)
[x,fval,maxfval,exitflag,output,lambda] = fminimax(...)
```


## Description

fminimax minimizes the worst-case (largest) value of a set of multivariable functions, starting at an initial estimate. This is generally referred to as the minimax problem.
$x=$ fminimax (fun, $x 0$ ) starts at $x 0$ and finds a minimax solution $x$ to the functions described in fun.
$x=$ fminimax (fun, $x 0, A, b)$ solves the minimax problem subject to the linear inequalities $A^{*} \mathrm{x} \leq \mathrm{b}$.

## fminimax

$x=$ fminimax (fun, $x, A, b, A e q, b e q)$ solves the minimax problem subject to the linear equalities Aeq* $x=$ beq as well. Set $A=[]$ and $b$ $=[]$ if no inequalities exist.
$x=$ fminimax (fun, $x, A, b, A e q, b e q, l b, u b)$ defines a set of lower and upper bounds on the design variables in $x$, so that the solution is always in the range $\mathrm{lb} \leq \mathrm{x} \leq \mathrm{ub}$.
$x$ = fminimax(fun, $x 0, A, b, A e q, b e q, l b, u b, n o n l c o n)$ subjects the minimax problem to the nonlinear inequalities $c(x)$ or equality constraints ceq $(x)$ defined in nonlcon. fminimax optimizes such that $c(x) \leq 0$ and $\operatorname{ceq}(x)=0$. Set $\mathrm{lb}=[]$ and/or ub $=[]$ if no bounds exist.
$x$ = fminimax(fun, $x 0, A, b, A e q, b e q, l b, u b, n o n l c o n, o p t i o n s)$ minimizes with the optimization options specified in the structure options. Use optimset to set these options.
$x$ = fminimax (problem) finds the minimum for problem, where problem is a structure described in "Input Arguments" on page 11-61.

Create the structure problem by exporting a problem from Optimization Tool, as described in "Exporting to the MATLAB ${ }^{\circledR}$ Workspace" on page 3-14.
[x,fval] = fminimax (...) returns the value of the objective function fun at the solution $x$.
[x,fval, maxfval] = fminimax(...) returns the maximum of the objective functions in the input fun evaluated at the solution $x$.
[x,fval,maxfval,exitflag] = fminimax(...) returns a value exitflag that describes the exit condition of fminimax.
[x,fval,maxfval,exitflag,output] = fminimax(...) returns a structure output with information about the optimization.
[x,fval,maxfval,exitflag,output,lambda] = fminimax(...) returns a structure lambda whose fields contain the Lagrange multipliers at the solution $x$.
"Passing Extra Parameters" on page 2-10 explains how to parameterize the objective function fun, if necessary.

Note If the specified input bounds for a problem are inconsistent, the output x is x 0 and the output fval is [].

## Input Arguments

"Function Arguments" on page 9-2 contains general descriptions of arguments passed into fminimax. This section provides function-specific details for fun, nonlcon, and problem:
fun The function to be minimized. fun is a function that accepts a vector x and returns a vector $F$, the objective functions evaluated at $x$. The function fun can be specified as a function handle for an M-file function

$$
x=\text { fminimax }(@ m y f u n, x 0)
$$

where myfun is a MATLAB ${ }^{\circledR}$ function such as

```
function F = myfun(x)
F = .. % Compute function values at x
```

fun can also be a function handle for an anonymous function.

```
x = fminimax(@(x)sin(x.*x),x0);
```

If the user-defined values for $x$ and $F$ are matrices, they are converted to a vector using linear indexing.

To minimize the worst case absolute values of any of the elements of the vector $F(x)$ (i.e., $\min \{\max \operatorname{abs}\{F(x)\}\}$ ), partition those objectives into the first elements of F and use optimset to set the MinAbsMax option to be the number of such objectives.

If the gradient of the objective function can also be computed and the GradObj option is 'on', as set by

```
options = optimset('GradObj','on')
```


## fminimax

then the function fun must return, in the second output argument, the gradient value $G$, a matrix, at $x$. Note that by checking the value of nargout, the function can avoid computing $G$ when myfun is called with only one output argument (in the case where the optimization algorithm only needs the value of $F$ but not $G$ ).

```
function [F,G] = myfun(x)
F = ... % Compute the function values at x
if nargout > 1 % Two output arguments
    G = ... %Gradients evaluated at x
end
```

nonlcon The gradient consists of the partial derivative $d F / d x$ of each $F$ at the point $x$. If $F$ is a vector of length $m$ and $x$ has length $n$, where $n$ is the length of $x 0$, then the gradient $G$ of $F(x)$ is an $n$-by-m matrix where $G(i, j)$ is the partial derivative of $F(j)$ with respect to $x(i)$ (i.e., the $j$ th column of $G$ is the gradient of the jth objective function $F(j)$ ).

The function that computes the nonlinear inequality constraints $c(x) \leq 0$ and nonlinear equality constraints $c e q(x)=0$. The function nonlcon accepts a vector $x$ and returns two vectors $c$ and ceq. The vector $c$ contains the nonlinear inequalities evaluated at $x$, and ceq contains the nonlinear equalities evaluated at $x$. The function nonlcon can be specified as a function handle.

```
x = fminimax(@myfun,x0,A,b,Aeq,beq,lb,ub,@mycon)
```

where mycon is a MATLAB function such as

```
function [c,ceq] = mycon(x)
c = ... % Compute nonlinear inequalities at x
ceq = ... % Compute nonlinear equalities at x
```

If the gradients of the constraints can also be computed and the GradConstr option is 'on', as set by

```
options = optimset('GradConstr','on')
```

then the function nonlcon must also return, in the third and fourth output arguments, GC, the gradient of $c(x)$, and GCeq, the gradient of ceq $(x)$. "Nonlinear Constraints" on page 2-17 explains how to "conditionalize" the gradients for use in solvers that do not accept supplied gradients, and explains the syntax of gradients.

Note Because Optimization Toolbox ${ }^{\text {TM }}$ functions only accept inputs of type double, user-supplied objective and nonlinear constraint functions must return outputs of type double.
"Passing Extra Parameters" on page 2-10 explains how to parameterize the nonlinear constraint function nonlcon, if necessary.

| problem | objective | Objective function |
| :--- | :--- | :--- |
| xo | Initial point for $x$ |  |
| Aineq | Matrix for linear inequality constraints |  |
| bineq | Vector for linear inequality constraints |  |
| Aeq | Matrix for linear equality constraints |  |
| beq | Vector for linear equality constraints |  |
| lb | Vector of lower bounds |  |
| nonlcon | Vector of upper bounds |  |
| solver | Nonlinear constraint function |  |
| options | 'fminimax' |  |
|  | Options structure created with optimset |  |

Output "Function Arguments" on page 9-2 contains general descriptions Arguments of arguments returned by fminimax. This section provides function-specific details for exitflag, lambda, maxfval, and output:

## fminimax

$\left.\begin{array}{l}\text { exitflag } \begin{array}{l}\text { Integer identifying the reason the algorithm terminated. The following } \\ \text { lists the values of exitflag and the corresponding reasons the } \\ \text { algorithm terminated: }\end{array} \\ \begin{array}{l}\text { Function converged to a solution } x .\end{array} \\ 4 \\ \text { Magnitude of the search direction less than } \\ \text { the specified tolerance and constraint violation } \\ \text { less than options. TolCon. } \\ \text { Magnitude of directional derivative less than } \\ \text { the specified tolerance and constraint violation } \\ \text { less than options. TolCon. } \\ \text { Number of iterations exceeded }\end{array}\right\}$
output Structure containing information about the optimization. The fields of the structure are

| iterations | Number of iterations taken. |
| :--- | :--- |
| funcCount | Number of function evaluations. |
| lssteplength | Size of line search step relative to search <br> direction |
| stepsize | Final displacement in x |
| algorithm | Optimization algorithm used. |
| firstorderopt | Measure of first-order optimality |
| constrviolation | Maximum of nonlinear constraint functions |
| message | Exit message |

## Options

Optimization options used by fminimax. You can use optimset to set or change the values of these fields in the options structure options. See "Optimization Options" on page 9-8 for detailed information.

| DerivativeCheck | Compare user-supplied derivatives <br> (gradients of the objective or constraints) <br> to finite-differencing derivatives. |
| :--- | :--- |
| Diagnostics | Display diagnostic information about <br> the function to be minimized or solved. |
| DiffMaxChange | Maximum change in variables for <br> finite-difference gradients. |
| DiffMinChange | Minimum change in variables for <br> finite-difference gradients. |

## fminimax

| Display | Level of display. 'off' displays no <br> output; 'iter' displays output at <br> each iteration; 'notify' displays <br> output only if the function does not <br> converge;' final' (default) displays just <br> the final output. |
| :--- | :--- |
| FunValCheck | Check whether objective function and <br> constraints values are valid. 'on' <br> displays an error when the objective <br> function or constraints return a value <br> that is complex, Inf, or NaN. 'off' <br> displays no error. |
| GradConstr | Gradient for the user-defined <br> constraints. See the preceding <br> description of nonlcon to see how to <br> define the gradient in nonlcon. |
| GradObj | Gradient for the user-defined objective <br> function. See the preceding description <br> of fun to see how to define the gradient <br> in fun. |
| MaxFunEvals | Maximum number of function <br> evaluations allowed. |
| MaxIter |  |
| MaxSQPIter | Maximum number of iterations allowed. <br> Maximum number of SQP iterations |
| allowed. |  |

$\left.\left.\begin{array}{ll}\text { OutputFen } & \begin{array}{l}\text { Specify one or more user-defined } \\ \text { functions that are called after each } \\ \text { iteration of an optimization (medium } \\ \text { scale algorithm only). See "Output }\end{array} \\ \text { FlotFcns } \\ \text { Function" on page 9-18. }\end{array}\right\} \begin{array}{l}\text { Plots various measures of progress } \\ \text { while the algorithm executes, select } \\ \text { from predefined plots or write your } \\ \text { own. Specifying @optimplotx plots the } \\ \text { current point; @optimplotfunccount } \\ \text { plots the function count; } \\ \text { @optimplotfval plots the function } \\ \text { value; @optimplotconstrviolation } \\ \text { plots the maximum constraint violation; } \\ \text { @optimplotstepsize plots the step size; } \\ \text { @optimplotfirstorderopt plots the }\end{array}\right\}$

## fminimax

| TolFun | Termination tolerance on the function <br> value. |
| :--- | :--- |
| TolX | Termination tolerance on x. |
| UseParallel | When 'always ', estimate gradients in <br> parallel. Disable by setting to 'never' |

## Examples Find values of $x$ that minimize the maximum value of

$$
\left[f_{1}(x), f_{2}(x), f_{3}(x), f_{4}(x), f_{5}(x)\right]
$$

where

$$
\begin{aligned}
& f_{1}(x)=2 x_{1}^{2}+x_{2}^{2}-48 x_{1}-40 x_{2}+304, \\
& f_{2}(x)=-x_{1}^{2}-3 x_{2}^{2} \\
& f_{3}(x)=x_{1}+3 x_{2}-18 \\
& f_{4}(x)=-x_{1}-x_{2} \\
& f_{5}(x)=x_{1}+x_{2}-8
\end{aligned}
$$

First, write an M-file that computes the five functions at x.

```
function f = myfun(x)
f(1)= 2*x(1)^2+x(2)^2-48*x(1)-40*x(2)+304; % Objectives
f(2)= -x(1)^2 - 3*x(2)^2;
f(3)=x(1) + 3*x(2) -18;
f(4)= -x(1)- x(2);
f(5)=x(1) + x(2) - 8;
```

Next, invoke an optimization routine.

```
x0 = [0.1; 0.1]; % Make a starting guess at solution
[x,fval] = fminimax(@myfun,x0)
```

After seven iterations, the solution is

```
x =
    4 . 0 0 0 0
    4 . 0 0 0 0
fval =
    0.0000 -64.0000 -2.0000 -8.0000 -0.0000
```

Notes

You can set the number of objectives for which the worst case absolute values of $F$ are minimized in the MinAbsMax option using optimset. You should partition these objectives into the first elements of $F$.

For example, consider the preceding problem, which requires finding values of $x$ that minimize the maximum absolute value of

$$
\left[f_{1}(x), f_{2}(x), f_{3}(x), f_{4}(x), f_{5}(x)\right]
$$

Solve this problem by invoking fminimax with the commands

```
x0 = [0.1; 0.1]; % Make a starting guess at the solution
options = optimset('MinAbsMax',5); % Minimize abs. values
[x,fval] = fminimax(@myfun,x0,...
    [],[],[],[],[],[],[],options);
```

After seven iterations, the solution is

```
x =
    4 . 9 2 5 6
    2.0796
fval =
    37.2356 -37.2356 -6.8357 -7.0052 -0.9948
```

If equality constraints are present, and dependent equalities are detected and removed in the quadratic subproblem, 'dependent ' is displayed under the Procedures heading (when the Display option is set to 'iter'). The dependent equalities are only removed when the equalities are consistent. If the system of equalities is not consistent, the subproblem is infeasible and 'infeasible' is displayed under the Procedures heading.

## fminimax

## Algorithm

Limitations

References
fminimax internally reformulates the minimax problem into an equivalent Nonlinear Linear Programming problem by appending additional (reformulation) constraints of the form $F_{i}(x) \leq \mathrm{\gamma}$ to the constraints given in "Equation" on page 11-59, and then minimizing Y over x. fminimax uses a sequential quadratic programming (SQP) method [1] to solve this problem.

Modifications are made to the line search and Hessian. In the line search an exact merit function (see [2] and [4]) is used together with the merit function proposed by [3] and [5]. The line search is terminated when either merit function shows improvement. The function uses a modified Hessian that takes advantage of the special structure of this problem. Using optimset to set the MeritFunction option to 'singleobj' uses the merit function and Hessian used in fmincon.

See also "SQP Implementation" on page 5-32 for more details on the algorithm used and the types of procedures printed under the Procedures heading when you set the Display option to'iter'.

The function to be minimized must be continuous. fminimax might only give local solutions.
[1] Brayton, R.K., S.W. Director, G.D. Hachtel, and L.Vidigal, "A New Algorithm for Statistical Circuit Design Based on Quasi-Newton Methods and Function Splitting," IEEE Trans. Circuits and Systems, Vol. CAS-26, pp. 784-794, Sept. 1979.
[2] Grace, A.C.W., "Computer-Aided Control System Design Using Optimization Techniques," Ph.D. Thesis, University of Wales, Bangor, Gwynedd, UK, 1989.
[3] Han, S.P., "A Globally Convergent Method For Nonlinear Programming," Journal of Optimization Theory and Applications, Vol. 22, p. 297, 1977.
[4] Madsen, K. and H. Schjaer-Jacobsen, "Algorithms for Worst Case Tolerance Optimization," IEEE Trans. of Circuits and Systems, Vol. CAS-26, Sept. 1979.
[5] Powell, M.J.D., "A Fast Algorithm for Nonlinearly Constrained Optimization Calculations," Numerical Analysis, ed. G.A. Watson, Lecture Notes in Mathematics, Vol. 630, Springer Verlag, 1978.

See Also @ (function_handle), fgoalattain, lsqnonlin, optimset, optimtool

## fminsearch

Purpose

## Equation

Syntax

## Description

Find minimum of unconstrained multivariable function using derivative-free method

Finds the minimum of a problem specified by

$$
\min _{x} f(x)
$$

where $x$ is a vector and $f(x)$ is a function that returns a scalar.

```
x = fminsearch(fun,x0)
```

x = fminsearch(fun,x0)
x = fminsearch(fun,x0,options)
x = fminsearch(fun,x0,options)
x = fminsearch(problem)
x = fminsearch(problem)
[x,fval] = fminsearch(...)
[x,fval] = fminsearch(...)
[x,fval,exitflag] = fminsearch(...)
[x,fval,exitflag] = fminsearch(...)
[x,fval,exitflag,output] = fminsearch(...)

```
[x,fval,exitflag,output] = fminsearch(...)
```

fminsearch attempts to find a minimum of a scalar function of several variables, starting at an initial estimate. This is generally referred to as unconstrained nonlinear optimization.
$x=$ fminsearch (fun, $x 0$ ) starts at the point $x 0$ and attempts to find a local minimum $x$ of the function described in fun. fun is a function handle for either an M-file function or an anonymous function. x0 can be a scalar, vector, or matrix.
$x=$ fminsearch(fun, $x 0$, options) minimizes with the optimization options specified in the structure options. Use optimset to set these options.
$x=$ fminsearch(problem) finds the minimum for problem, where problem is a structure described in "Input Arguments" on page 11-73.

Create the structure problem by exporting a problem from Optimization Tool, as described in "Exporting to the MATLAB ${ }^{\circledR}$ Workspace" on page 3-14.
[x,fval] = fminsearch(...) returns in fval the value of the objective function fun at the solution $x$.

## Input Arguments

[x,fval,exitflag] = fminsearch(...) returns a value exitflag that describes the exit condition of fminsearch.
[x,fval,exitflag,output] = fminsearch(...) returns a structure output that contains information about the optimization.
"Passing Extra Parameters" on page 2-10 explains how to parameterize the objective function fun, if necessary.
"Function Arguments" on page 9-2 contains general descriptions of arguments passed into fminsearch. This section provides function-specific details for fun, options, and problem:
fun The function to be minimized. fun is a function handle for a function that accepts a vector $x$ and returns a scalar $f$, the objective function evaluated at $x$. The function fun can be specified as a function handle for an M-file function

$$
x \text { = fminsearch(@myfun, x0) }
$$

where myfun is a MATLAB ${ }^{\circledR}$ function such as

```
function f = myfun(x)
f = ... % Compute function value at }
```

fun can also be a function handle for an anonymous function, such as

```
x = fminsearch(@(x)norm(x)^2,x0,A,b);
```

options "Options" on page 11-75 provides the function-specific details for the options values.

## fminsearch

| problem | objective | Objective function |
| :--- | :--- | :--- |
|  | x0 | Initial point for x |
| solver | 'fminsearch' |  |
| options | Options structure created with <br> optimset |  |

## Output Arguments

"Function Arguments" on page 9-2 contains general descriptions of arguments returned by fminsearch. This section provides function-specific details for exitflag and output:

| exitflag | Integer identifying the reason the algorithm <br> terminated. The following lists the values of <br> exitflag and the corresponding reasons the |
| :--- | :--- |
| algorithm terminated. |  |

1 The function converged to a solution x .
$0 \quad$ Number of iterations exceeded options.MaxIter or number of function evaluations exceeded options.FunEvals.

## -1 The algorithm was terminated by the

 output function.output Structure containing information about the optimization. The fields of the structure are
iterations Number of iterations
funcCount Number of function evaluations
algorithm Optimization algorithm used
message Exit message

## Options

Optimization options used by fminsearch. You can use optimset to set or change the values of these fields in the options structure options. See "Optimization Options" on page 9-8 for detailed information.

| Display | Level of display. 'off' displays no output; <br> 'iter' displays output at each iteration; <br> 'final ' displays just the final output; <br> 'notify ' (default) displays output only if the <br> function does not converge. |
| :--- | :--- |
| FunValCheck | Check whether objective function and <br> constraints values are valid. 'on ' displays an <br> error when the objective function or constraints <br> return a value that is complex or NaN. 'off' <br> (the default) displays no error. |
| MaxFunEvals | Maximum number of function evaluations <br> allowed. |
| MaxIter | Maximum number of iterations allowed. |
| OutputFcn | Specify one or more user-defined functions that <br> an optimization function calls at each iteration. |
| PlotFcns | See "Output Function" on page 9-18. <br> Plots various measures of progress while the <br> algorithm executes, select from predefined plots <br> or write your own. Specifying @optimplotx |
| plots the current point; @optimplotfunccount |  |

## Examples Example 1

A classic test example for multidimensional minimization is the Rosenbrock banana function

## fminsearch

$$
f(x)=100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2} .
$$

The minimum is at $(1,1)$ and has the value 0 . The traditional starting point is $(-1.2,1)$. The anonymous function shown here defines the function and returns a function handle called banana:

```
banana = @(x)100*(x(2)-x(1)^2)^2+(1-x(1) )^2;
```

Pass the function handle to fminsearch:

```
[x,fval,exitflag] = fminsearch(banana,[-1.2, 1])
```

This produces

```
x =
    1.0000 1.0000
fval =
    8.1777e-010
exitflag =
    1
```

This indicates that the minimizer was found at [11] with a value near zero.

## Example 2

You can modify the first example by adding a parameter $a$ to the second term of the banana function:

$$
f(x)=100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(a-x_{1}\right)^{2}
$$

This changes the location of the minimum to the point [ $a, a^{\wedge} 2$ ]. To minimize this function for a specific value of $a$, for example $a=\operatorname{sqrt}(2)$, create a one-argument anonymous function that captures the value of a.

```
a = sqrt(2);
banana = @(x)100*(x(2)-x(1)^2)^2+(a-x(1) )^2;
```

Then the statement

```
[x,fval,exitflag] = fminsearch(banana, [-1.2, 1], ...
    optimset('TolX',1e-8));
```

seeks the minimum [sqrt(2), 2] to an accuracy higher than the default on $x$. The result is

```
x =
    1.4142 2.0000
fval =
    4.2065e-018
exitflag =
    1
```


## Algorithms

fminsearch uses the simplex search method of [1]. This is a direct search method that does not use numerical or analytic gradients as in fminunc.

If n is the length of x , a simplex in n -dimensional space is characterized by the $n+1$ distinct vectors that are its vertices. In two-space, a simplex is a triangle; in three-space, it is a pyramid. At each step of the search, a new point in or near the current simplex is generated. The function value at the new point is compared with the function's values at the vertices of the simplex and, usually, one of the vertices is replaced by the new point, giving a new simplex. This step is repeated until the diameter of the simplex is less than the specified tolerance.
fminsearch is generally less efficient than fminunc for problems of order greater than two. However, when the problem is highly discontinuous, fminsearch might be more robust.

## fminsearch

## Limitations

## Notes

References

See Also
fminsearch solves nondifferentiable problems and can often handle discontinuity, particularly if it does not occur near the solution. fminsearch might only give local solutions.
fminsearch only minimizes over the real numbers, that is, $x$ must only consist of real numbers and $f(x)$ must only return real numbers. When $x$ has complex variables, they must be split into real and imaginary parts.
fminsearch is not the preferred choice for solving problems that are sums of squares, that is, of the form

$$
\min _{x}\|f(x)\|_{2}^{2}=\min _{x}\left(f_{1}(x)^{2}+f_{2}(x)^{2}+\ldots+f_{n}(x)^{2}\right)
$$

Instead use the lsqnonlin function, which has been optimized for problems of this form.
[1] Lagarias, J. C., J. A. Reeds, M. H. Wright, and P. E. Wright, "Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions," SIAM Journal of Optimization, Vol. 9, Number 1, pp. 112-147, 1998.
@ (function_handle), fminbnd, fminunc, optimset, optimtool, anonymous functions

## Purpose

Find minimum of unconstrained multivariable function

## Equation

Finds the minimum of a problem specified by

$$
\min _{x} f(x)
$$

where $x$ is a vector and $f(x)$ is a function that returns a scalar.
Syntax

```
x = fminunc(fun, x0)
x = fminunc(fun,x0,options)
x = fminunc(problem)
[x,fval] = fminunc(...)
[x,fval,exitflag] = fminunc(...)
[x,fval,exitflag,output] = fminunc(...)
[x,fval,exitflag,output,grad] = fminunc(...)
[x,fval,exitflag,output,grad,hessian] = fminunc(...)
```


## Description

fminunc attempts to find a minimum of a scalar function of several variables, starting at an initial estimate. This is generally referred to as unconstrained nonlinear optimization.
$x=$ fminunc (fun,$x 0$ ) starts at the point $x 0$ and attempts to find a local minimum $x$ of the function described in fun. $x 0$ can be a scalar, vector, or matrix.
$x=$ fminunc(fun, $x 0$, options) minimizes with the optimization options specified in the structure options. Use optimset to set these options.
$x=$ fminunc (problem) finds the minimum for problem, where problem is a structure described in "Input Arguments" on page 11-80.

Create the structure problem by exporting a problem from Optimization Tool, as described in "Exporting to the MATLAB ${ }^{\circledR}$ Workspace" on page 3-14.
[ $x, f v a l]=$ fminunc(...) returns in fval the value of the objective function fun at the solution $x$.

## fminunc

[x,fval,exitflag] = fminunc(...) returns a value exitflag that describes the exit condition.
[x,fval,exitflag, output] = fminunc(...) returns a structure output that contains information about the optimization.
[x,fval,exitflag,output,grad] = fminunc(...) returns in grad the value of the gradient of fun at the solution $x$.
[x,fval,exitflag,output,grad,hessian] = fminunc(...) returns in hessian the value of the Hessian of the objective function fun at the solution x. See "Hessian" on page 11-83.
"Passing Extra Parameters" on page 2-10 explains how to parameterize the objective function fun, if necessary.

## Input Arguments

"Function Arguments" on page 9-2 contains general descriptions of arguments passed into fminunc. This section provides function-specific details for fun, options, and problem:
fun The function to be minimized. fun is a function that accepts a vector $x$ and returns a scalar $f$, the objective function evaluated at $x$. The function fun can be specified as a function handle for an M-file function

$$
x=\text { fminunc }(@ m y f u n, x 0)
$$

where myfun is a MATLAB ${ }^{\circledR}$ function such as

```
function f = myfun(x)
f = .. % Compute function value at x
```

fun can also be a function handle for an anonymous function.

```
x = fminunc(@(x)norm(x)^2,x0);
```

If the gradient of fun can also be computed and the GradObj option is 'on', as set by

```
options = optimset('GradObj','on')
```

then the function fun must return, in the second output argument, the gradient value $g$, a vector, at $x$. The gradient is the partial derivatives $\partial f / \partial x_{i}$ of $f$ at the point $x$. That is, the ith component of $g$ is the partial derivative of $f$ with respect to the ith component of $x$.

If the Hessian matrix can also be computed and the Hessian option is 'on', i.e., options = optimset('Hessian','on'), then the function fun must return the Hessian value H , a symmetric matrix, at x in a third output argument. The Hessian matrix is the second partial derivatives matrix of $f$ at the point $x$. That is, the ( $i, j$ )th component of $H$ is the second partial derivative of f with respect to $\mathrm{x}_{i}$ and $\mathrm{x}_{j}, \partial^{2} f / \partial x_{i} \partial x_{j}$. The Hessian is by definition a symmetric matrix.
"Writing Objective Functions" on page 2-4 explains how to "conditionalize" the gradients and Hessians for use in solvers that do not accept them. "Passing Extra Parameters" on page 2-10 explains how to parameterize fun, if necessary.

| options | "Options" on page 11-83 provides the function-specific details for the |
| :--- | :--- | :--- |
| options values. |  |

Output
Arguments
"Function Arguments" on page 9-2 contains general descriptions of arguments returned by fminunc. This section provides function-specific details for exitflag and output:

## fminunc

| exitflag | Integer identifying the reason the algorithm terminated. The following lists the values of exitflag and the corresponding reasons the algorithm terminated. |  |
| :---: | :---: | :---: |
|  | 1 | Magnitude of gradient smaller than the specified tolerance. |
|  | 2 | Change in $x$ was smaller than the specified tolerance. |
|  | 3 | Change in the objective function value was less than the specified tolerance. |
|  | 0 | Number of iterations exceeded options.MaxIter or number of function evaluations exceeded options.FunEvals. |
|  | -1 | Algorithm was terminated by the output function. |
|  | -2 | Line search cannot find an acceptable point along the current search direction. |
| grad | Gradient at x |  |
| hessian | Hessian at x |  |
| output | Structure containing information about the optimization. The fields of the structure are |  |
|  | iterations | Number of iterations taken |
|  | funcCount | Number of function evaluations |
|  | firstorderopt | Measure of first-order optimality |
|  | algorithm | Optimization algorithm used |

cgiterations Total number of PCG iterations (large-scale algorithm only)

| stepsize | Final displacement in x <br> (medium-scale algorithm only) |
| :--- | :--- |
| message | Exit message |

## Hessian

fminunc computes the output argument hessian as follows:

- When using the medium-scale algorithm, the function computes a finite-difference approximation to the Hessian at x using
- The gradient grad if you supply it
- The objective function fun if you do not supply the gradient
- When using the large-scale algorithm, the function uses
- options. Hessian, if you supply it, to compute the Hessian at x
- A finite-difference approximation to the Hessian at x, if you supply only the gradient


## Options

fminunc uses these optimization options. Some options apply to all algorithms, some are only relevant when you are using the large-scale algorithm, and others are only relevant when you are using the medium-scale algorithm. You can use optimset to set or change the values of these fields in the options structure options. See "Optimization Options" on page 9-8 for detailed information.

The LargeScale option specifies a preference for which algorithm to use. It is only a preference, because certain conditions must be met to use the large-scale algorithm. For fminunc, you must provide the gradient (see the preceding description of fun) or else use the medium-scale algorithm:

## fminunc

| LargeScale | Use large-scale algorithm if possible when set to <br> 'on'. Use medium-scale algorithm when set to <br> 'off'. |
| :--- | :--- |

## Large-Scale and Medium-Scale Algorithms

These options are used by both the large-scale and medium-scale algorithms:

| DerivativeCheck | Compare user-supplied derivatives (gradient) to <br> finite-differencing derivatives. |
| :--- | :--- |
| Diagnostics | Display diagnostic information about the function <br> to be minimized. |
| DiffMaxChange | Maximum change in variables for finite <br> differencing. |
| DiffMinChange | Minimum change in variables for finite <br> differencing. |
| Display | Level of display. ' off' displays no output; ' iter' <br> displays output at each iteration; ' notify' <br> displays output only if the function does not <br> converge; ' final ' (default) displays just the final <br> output. |
| FunValCheck | Check whether objective function values are <br> valid. 'on ' displays an error when the objective <br> function return a value that is complex or NaN. <br> 'off' (the default) displays no error. |
| GradObj | Gradient for the objective function that you <br> define. See the preceding description of fun to see |
| how to define the gradient in fun. |  |


| OutputFen | Specify one or more user-defined functions that <br> an optimization function calls at each iteration. <br> See "Output Function" on page 9-18. |
| :--- | :--- |
| PlotFcns | Plots various measures of progress while the <br> algorithm executes, select from predefined plots <br> or write your own. Specifying @optimplotx plots <br> the current point; @optimplotfunccount plots <br> the function count; @optimplotfval plots the <br> function value; @optimplotstepsize plots the <br> step size; @optimplotfirstorderopt plots the <br> first-order of optimality. |
| TolFun | Termination tolerance on the function value. |
| TolX | Termination tolerance on $x$. |
| TypicalX | Typical $x$ values. |

## Large-Scale Algorithm Only

These options are used only by the large-scale algorithm:

| Hessian | If 'on', fminunc uses a user-defined Hessian <br> (defined in fun), or Hessian information (when <br> using HessMult), for the objective function. <br> If 'off', fminunc approximates the Hessian <br> using finite differences. |
| :---: | :--- |
| Hessmult | Function handle for Hessian multiply function. <br> For large-scale structured problems, this <br> function computes the Hessian matrix product <br> H*Y without actually forming H . The function <br> is of the form |
| $\quad \mathrm{W}=$ hmfun(Hinfo, Y, p1, p2, ...) |  |

## fminunc

The first argument must be the same as the third argument returned by the objective function fun, for example by

$$
[f, g, \text { Hinfo }]=\text { fun }(x)
$$

$Y$ is a matrix that has the same number of rows as there are dimensions in the problem. $\mathrm{W}=$ $\mathrm{H} * \mathrm{Y}$ although H is not formed explicitly. fminunc uses Hinfo to compute the preconditioner. The optional parameters p1, p2, ... can be any additional parameters needed by hmfun. See "Passing Extra Parameters" on page 2-10 for information on how to supply values for the parameters.

Note 'Hessian' must be set to 'on' for Hinfo to be passed from fun to hmfun.

See "Nonlinear Minimization with a Dense but Structured Hessian and Equality Constraints" on page 4-62 for an example.

Sparsity pattern of the Hessian for finite differencing. If it is not convenient to compute the sparse Hessian matrix H in fun, the large-scale method in fminunc can approximate H via sparse finite differences (of the gradient) provided the sparsity structure of H -i.e., locations of the nonzeros-is supplied as the value for HessPattern. In the worst case, if the structure is unknown, you can set HessPattern to be a dense matrix and a full finite-difference approximation is computed at each iteration (this is the default). This can be very expensive
for large problems, so it is usually worth the effort to determine the sparsity structure.

| MaxPCGIter | Maximum number of PCG (preconditioned <br> conjugate gradient) iterations (see "Algorithms" <br> on page 11-90). |
| :--- | :--- |
| PrecondBandWidth | Upper bandwidth of preconditioner for PCG. By <br> default, diagonal preconditioning is used (upper <br> bandwidth of 0). For some problems, increasing |
| the bandwidth reduces the number of PCG |  |
| iterations. Setting PrecondBandWidth to 'Inf ' |  |
| uses a direct factorization (Cholesky) rather |  |
| than the conjugate gradients (CG). The direct |  |
| factorization is computationally more expensive |  |
| than CG, but produces a better quality step |  |
| towards the solution. |  |

## Medium-Scale Algorithm Only

These options are used only by the medium-scale algorithm:
HessUpdate Method for choosing the search direction in the Quasi-Newton algorithm. The choices are

- 'bfgs'
- 'dfp'
- 'steepdesc'

See "Hessian Update" on page 5-11 for a description of these methods.

InitialHessMatrix Initial quasi-Newton matrix. This option is only available if you set InitialHessType to 'user-supplied'. In that case, you can set InitialHessMatrix to one of the following:

## fminunc

- scalar - the initial matrix is the scalar times the identity
- vector - the initial matrix is a diagonal matrix with the entries of the vector on the diagonal.

InitialHessType Initial quasi-Newton matrix type. The options are

- 'identity'
- 'scaled-identity'
- 'user-supplied'

Examples $\quad$ Minimize the function $f(x)=3 x_{1}^{2}+2 x_{1} x_{2}+x_{2}^{2}$.
To use an M-file, create a file myfun.m.

```
function f = myfun(x)
f = 3*x(1)^2 + 2*x(1)*x(2) + x(2)^2; % Cost function
```

Then call fminunc to find a minimum of myfun near $[1,1]$.

```
x0 = [1,1];
[x,fval] = fminunc(@myfun,x0)
```

After a couple of iterations, the solution, $x$, and the value of the function at $x$, fval, are returned.

```
x =
    1.0e-006 *
        0.2541 -0.2029
fval =
    1.3173e-013
```

To minimize this function with the gradient provided, modify the M-file myfun.m so the gradient is the second output argument

```
function [f,g] = myfun(x)
f = 3*x(1)^2 + 2*x(1)*x(2) + x(2)^2; % Cost function
if nargout > 1
    g(1) = 6*x(1)+2*x(2);
    g(2) = 2*x(1)+2*x(2);
end
```

and indicate that the gradient value is available by creating an optimization options structure with the GradObj option set to 'on' using optimset.

```
options = optimset('GradObj','on');
x0 = [1,1];
[x,fval] = fminunc(@myfun,x0,options)
```

After several iterations the solution, $x$, and fval, the value of the function at $x$, are returned.

```
x =
    1.0e-015 *
        0.1110 -0.8882
fval =
    6.2862e-031
```

To minimize the function $f(x)=\sin (x)+3$ using an anonymous function

```
f = @(x)sin(x)+3;
x = fminunc(f,4)
```

which returns a solution

$$
x=4.7124
$$

## fminunc

Notes
fminunc is not the preferred choice for solving problems that are sums of squares, that is, of the form

$$
\min _{x}\|f(x)\|_{2}^{2}=\min _{x}\left(f_{1}(x)^{2}+f_{2}(x)^{2}+\ldots+f_{n}(x)^{2}\right)
$$

Instead use the lsqnonlin function, which has been optimized for problems of this form.

To use the large-scale method, you must provide the gradient in fun (and set the GradObj option to 'on' using optimset). A warning is given if no gradient is provided and the LargeScale option is not 'off'.

## Algorithms

## Limitations

## Large-Scale Optimization

By default fminunc chooses the large-scale algorithm if you supplies the gradient in fun (and the GradObj option is set to 'on' using optimset). This algorithm is a subspace trust-region method and is based on the interior-reflective Newton method described in [2] and [3]. Each iteration involves the approximate solution of a large linear system using the method of preconditioned conjugate gradients (PCG). See "Trust-Region Methods for Nonlinear Minimization" on page 6-3 and "Preconditioned Conjugate Gradients" on page 6-12.

## Medium-Scale Optimization

fminunc, with the LargeScale option set to 'off' with optimset, uses the BFGS Quasi-Newton method with a cubic line search procedure. This quasi-Newton method uses the BFGS ([1],[5],[8], and [9]) formula for updating the approximation of the Hessian matrix. You can select the DFP ([4],[6], and [7]) formula, which approximates the inverse Hessian matrix, by setting the HessUpdate option to 'dfp' (and the LargeScale option to 'off'). You can select a steepest descent method by setting HessUpdate to 'steepdesc' (and LargeScale to 'off'), although this is not recommended.

The function to be minimized must be continuous. fminunc might only give local solutions.
fminunc only minimizes over the real numbers, that is, $x$ must only consist of real numbers and $f(x)$ must only return real numbers. When $x$ has complex variables, they must be split into real and imaginary parts.

## Large-Scale Optimization

To use the large-scale algorithm, you must supply the gradient in fun (and GradObj must be set ' on ' in options). See Large-Scale Problem Coverage and Requirements on page 4-44 for more information on what problem formulations are covered and what information must be provided.

## References

[1] Broyden, C.G., "The Convergence of a Class of Double-Rank Minimization Algorithms," Journal Inst. Math. Applic., Vol. 6, pp. 76-90, 1970.
[2] Coleman, T.F. and Y. Li, "An Interior, Trust Region Approach for Nonlinear Minimization Subject to Bounds," SIAM Journal on Optimization, Vol. 6, pp. 418-445, 1996.
[3] Coleman, T.F. and Y. Li, "On the Convergence of Reflective Newton Methods for Large-Scale Nonlinear Minimization Subject to Bounds," Mathematical Programming, Vol. 67, Number 2, pp. 189-224, 1994.
[4] Davidon, W.C., "Variable Metric Method for Minimization," A.E.C. Research and Development Report, ANL-5990, 1959.
[5] Fletcher, R., "A New Approach to Variable Metric Algorithms," Computer Journal, Vol. 13, pp. 317-322, 1970.
[6] Fletcher, R., "Practical Methods of Optimization," Vol. 1, Unconstrained Optimization, John Wiley and Sons, 1980.
[7] Fletcher, R. and M.J.D. Powell, "A Rapidly Convergent Descent Method for Minimization," Computer Journal, Vol. 6, pp. 163-168, 1963.

## fminunc

[8] Goldfarb, D., "A Family of Variable Metric Updates Derived by Variational Means," Mathematics of Computing, Vol. 24, pp. 23-26, 1970.
[9] Shanno, D.F., "Conditioning of Quasi-Newton Methods for Function Minimization," Mathematics of Computing, Vol. 24, pp. 647-656, 1970.

See Also
@ (function_handle), fminsearch, optimset, optimtool, anonymous functions

## Purpose

Equation

Find minimum of semi-infinitely constrained multivariable nonlinear function

Finds the minimum of a problem specified by

$$
\left\{\begin{array}{c}
A \cdot x \leq b, \\
A e q \cdot x=b e q, \\
l b \leq x \leq u b, \\
c(x) \leq 0, \\
c e q(x)=0, \\
K_{i}\left(x, w_{i}\right) \leq 0,1 \leq i \leq n .
\end{array}\right.
$$

$x, b, b e q, l b$, and $u b$ are vectors, $A$ and Aeq are matrices, $c(x), c e q(x)$, and $K_{i}\left(x, w_{i}\right)$ are functions that return vectors, and $f(x)$ is a function that returns a scalar. $f(x), c(x)$, and $c e q(x)$ can be nonlinear functions. The vectors (or matrices) $K_{i}\left(x, w_{i}\right) \leq 0$ are continuous functions of both $x$ and an additional set of variables $w_{1}, w_{2}, \ldots, w_{n}$. The variables $w_{1}, w_{2}, \ldots, w_{n}$ are vectors of, at most, length two.

Syntax $\quad x=$ fseminf(fun, $x 0$, ntheta, seminfion)
$x=$ fseminf(fun, $x 0$, ntheta, seminfcon, $A, b)$
$x=$ fseminf(fun, $x 0$, ntheta, seminfcon, $A, b, A e q, b e q)$
$x=$ fseminf(fun, $x 0$, ntheta, seminfcon, $A, b, A e q, b e q, l b, u b)$
$x=$ fseminf(fun, $x 0$, ntheta, seminfcon, $A, b, A e q, b e q, l b, u b$, options)
x = fseminf(problem)
[x,fval] = fseminf(...)
[x,fval,exitflag] = fseminf(...)
[x,fval,exitflag,output] = fseminf(...)
[x,fval,exitflag,output,lambda] = fseminf(...)

## Description

fseminf finds a minimum of a semi-infinitely constrained scalar function of several variables, starting at an initial estimate. The aim is to minimize $f(x)$ so the constraints hold for all possible values of $w_{i} \in \mathfrak{R}^{1}$ (or $w_{i} \in \mathfrak{R}^{2}$ ). Because it is impossible to calculate all possible values
of $K_{i}\left(x, w_{i}\right)$, a region must be chosen for $w_{i}$ over which to calculate an appropriately sampled set of values.
$x=$ fseminf(fun, $x 0$, ntheta, seminfcon) starts at $x 0$ and finds a minimum of the function fun constrained by ntheta semi-infinite constraints defined in seminfcon.
$x=$ fseminf(fun, $x 0$, ntheta, seminfcon, $A, b)$ also tries to satisfy the linear inequalities $A^{*} x \leq b$.
$x=$ fseminf(fun, $x 0$, ntheta, seminfcon, $A, b, A e q, b e q)$ minimizes subject to the linear equalities Aeq*x $=$ beq as well. Set A = [] and $\mathrm{b}=$ [] if no inequalities exist.
$x=$ fseminf(fun, $x 0$, ntheta, seminfcon, $A, b, A e q, b e q, l b, u b)$ defines a set of lower and upper bounds on the design variables in x , so that the solution is always in the range $\mathrm{lb} \leq \mathrm{x} \leq \mathrm{ub}$.

X =
fseminf(fun, $x 0$, ntheta, seminfcon, $A, b, A e q$, beq, lb, ub, options) minimizes with the optimization options specified in the structure options. Use optimset to set these options.
$x=$ fseminf(problem) finds the minimum for problem, where problem is a structure described in "Input Arguments" on page 11-95.

Create the structure problem by exporting a problem from Optimization Tool, as described in "Exporting to the MATLAB ${ }^{\circledR}$ Workspace" on page 3-14.
[x,fval] = fseminf(...) returns the value of the objective function fun at the solution $x$.
[x,fval,exitflag] = fseminf(...) returns a value exitflag that describes the exit condition.
[x,fval,exitflag,output] = fseminf(...) returns a structure output that contains information about the optimization.
[x,fval,exitflag,output,lambda] = fseminf(...) returns a structure lambda whose fields contain the Lagrange multipliers at the solution x .
"Passing Extra Parameters" on page 2-10 explains how to parameterize the objective function fun, if necessary.

Note If the specified input bounds for a problem are inconsistent, the output x is x 0 and the output fval is [].

## Input Arguments

"Function Arguments" on page 9-2 contains general descriptions of arguments passed into fseminf. This section provides function-specific details for fun, ntheta, options, seminfcon, and problem:
fun The function to be minimized. fun is a function that accepts a vector x and returns a scalar $f$, the objective function evaluated at $x$. The function fun can be specified as a function handle for an M-file function

```
x = fseminf(@myfun,x0,ntheta,seminfcon)
```

where myfun is a MATLAB ${ }^{\circledR}$ function such as

```
function f = myfun(x)
f = ... % Compute function value at }
```

fun can also be a function handle for an anonymous function.

$$
\text { fun }=@(x) \sin \left(x^{\prime \prime *} x\right) ;
$$

If the gradient of fun can also be computed and the GradObj option is 'on', as set by

```
options = optimset('GradObj','on')
```

then the function fun must return, in the second output argument, the gradient value g , a vector, at x .
ntheta The number of semi-infinite constraints.
options "Options" on page 11-99 provides the function-specific details for the options values.
seminfcon The function that computes the vector of nonlinear inequality constraints, c, a vector of nonlinear equality constraints, ceq, and ntheta semi-infinite constraints (vectors or matrices) K1, K2, ..., Kntheta evaluated over an interval $S$ at the point $x$. The function seminfcon can be specified as a function handle.

```
x = fseminf(@myfun,x0,ntheta,@myinfcon)
```

where myinfcon is a MATLAB function such as

```
function [c,ceq,K1,K2,...,Kntheta,S] = myinfcon(x,S)
% Initial sampling interval
if isnan(S(1,1)),
    S = ...% S has ntheta rows and 2 columns
end
w1 = ...% Compute sample set
w2 = ...% Compute sample set
wntheta = ... % Compute sample set
K1 = ... % 1st semi-infinite constraint at x and w
K2 = ... % 2nd semi-infinite constraint at x and w
Kntheta = ...% Last semi-infinite constraint at x and w
c = ... % Compute nonlinear inequalities at x
ceq = ... % Compute the nonlinear equalities at x
```

$S$ is a recommended sampling interval, which might or might not be used. Return [] for c and ceq if no such constraints exist.

The vectors or matrices K1, K2, ..., Kntheta contain the semi-infinite constraints evaluated for a sampled set of values for the independent variables w1, w2, ... wntheta, respectively. The two-column matrix, S, contains a recommended sampling interval for values of w 1 , w2, ..., wntheta, which are used to evaluate K1, K2, ..., Kntheta. The ith row of S contains the recommended sampling interval for evaluating Ki. When $K i$ is a vector, use only $S(i, 1)$ (the second column can be all zeros). When $K i$ is a matrix, $S(i, 2)$ is used for the sampling of the rows in $K i, S(i, 1)$ is used for the sampling interval of the columns of Ki (see "Two-Dimensional Example" on page 11-104). On the first iteration S is NaN, so that some initial sampling interval must be determined by seminfcon.

Note Because Optimization Toolbox ${ }^{\mathrm{TM}}$ functions only accept inputs of type double, user-supplied objective and nonlinear constraint functions must return outputs of type double.
"Passing Extra Parameters" on page 2-10 explains how to parameterize seminfcon, if necessary.

| problem | objective <br> xo <br> ntheta <br> seminfcon | Objective function |
| :--- | :--- | :--- |
| Aineq | Number of semi-infinite constraints |  |
|  | bineq | Matrix for linear inequality constraints |
|  | Aeq | Vector for linear inequality constraints |
| beq | Matrix for linear equality constraints |  |
| lb | Vector for linear equality constraints |  |
| ub | Vector of lower bounds |  |
| solver | Vector of upper bounds |  |
|  | 'fseminf ' |  |

options Options structure created with optimset

## Output Arguments



| eqlin | Linear equalities |
| :--- | :--- |
| ineqnonlin | Nonlinear inequalities |
| eqnonlin | Nonlinear equalities |

output Structure containing information about the optimization. The fields of the structure are

| iterations | Number of iterations taken |
| :---: | :---: |
| funcCount | Number of function evaluations |
| lssteplength | Size of line search step relative to search direction |
| stepsize | Final displacement in x |
| algorithm | Optimization algorithm used |
| constrviolation | Maximum of nonlinear constraint functions |
| firstorderopt | Measure of first-order optimality |
| message | Exit message |

## Options

Optimization options used by fseminf. You can use optimset to set or change the values of these fields in the options structure options. See "Optimization Options" on page 9-8 for detailed information.

| DerivativeCheck | Compare user-supplied derivatives <br> (gradients) to finite-differencing <br> derivatives. |
| :--- | :--- |
| Diagnostics | Display diagnostic information about the <br> function to be minimized or solved. |
| DiffMaxChange | Maximum change in variables for <br> finite-difference gradients. |
| DiffMinChange | Minimum change in variables for <br> finite-difference gradients. |


| Display | Level of display. 'off' displays no <br> output; 'iter' displays output at each <br> iteration; ' notify' displays output only <br> if the function does not converge; ' final' <br> (default) displays just the final output. |
| :--- | :--- |
| FunValCheck | Check whether objective function and <br> constraints values are valid. 'on' <br> displays an error when the objective <br> function or constraints return a value <br> that is complex, Inf, or NaN. 'off' (the <br> default) displays no error. |
| GradObj | Gradient for the objective function <br> defined by the user. See the preceding <br> description of fun to see how to define the |
| gradient in fun. |  |
| MaxFunEvals | Maximum number of function evaluations <br> allowed. |
| MaxIter | Maximum number of iterations allowed. |
| OutputFcn | Specify one or more user-defined functions <br> that an optimization function calls at <br> each iteration. See "Output Function" on <br> page 9-18. |
| PlotFcns | Plots various measures of progress <br> while the algorithm executes, |
| select from predefined plots |  |
| or write your own. Specifying |  |
| @optimplotx plots the current point; |  |
| @optimplotfunccount plots the function |  |
| count; @optimplotfval plots the function |  |
| value; @optimplotconstrviolation |  |
| plots the maximum constraint violation; |  |
| @optimplotstepsize plots the step size. |  |


| RelLineSrchBnd | Relative bound (a real nonnegative scalar value) on the line search step length such that the total displacement in x satisfies $\|\Delta x(i)\| \leq$ relLineSrchBnd• $\max (\|x(i)\|, \mid$ typicalx $(i) \mid)$. This option provides control over the magnitude of the displacements in x for cases in which the solver takes steps that are considered too large. |
| :---: | :---: |
| RelLineSrchBndDuration | Number of iterations for which the bound specified in RelLineSrchBnd should be active (default is 1 ). |
| TolCon | Termination tolerance on the constraint violation. |
| TolConsQP | Termination tolerance on inner iteration SQP constraint violation. |
| TolFun | Termination tolerance on the function value. |
| TolX | Termination tolerance on x . |
| The optimization routine fs sampling interval, S , set in s values other than the recom for efficiency or robustness. is calculated, is allowed to vary it does not result in significa in $K_{i}\left(x, w_{i}\right)$. | eminf might vary the recommended seminfcon, during the computation because mended interval might be more appropriate Also, the finite region $w_{i}$, over which $K_{i}\left(x, w_{i}\right)$ ary during the optimization, provided that ant changes in the number of local minima |

## Examples One-Dimensional Example

Find values of $x$ that minimize

$$
f(x)=\left(x_{1}-0.5\right)^{2}+\left(x_{2}-0.5\right)^{2}+\left(x_{3}-0.5\right)^{2}
$$

where

$$
\begin{aligned}
& K_{1}\left(x, w_{1}\right)=\sin \left(w_{1} x_{1}\right) \cos \left(w_{1} x_{2}\right)-\frac{1}{1000}\left(w_{1}-50\right)^{2}-\sin \left(w_{1} x_{3}\right)-x_{3} \leq 1 \\
& K_{2}\left(x, w_{2}\right)=\sin \left(w_{2} x_{2}\right) \cos \left(w_{2} x_{1}\right)-\frac{1}{1000}\left(w_{2}-50\right)^{2}-\sin \left(w_{2} x_{3}\right)-x_{3} \leq 1
\end{aligned}
$$

for all values of $w_{1}$ and $w_{2}$ over the ranges

$$
\begin{aligned}
& 1 \leq w_{1} \leq 100 \\
& 1 \leq w_{2} \leq 100
\end{aligned}
$$

Note that the semi-infinite constraints are one-dimensional, that is, vectors. Because the constraints must be in the form $K_{i}\left(x, w_{i}\right) \leq 0$, you need to compute the constraints as

$$
\begin{aligned}
& K_{1}\left(x, w_{1}\right)=\sin \left(w_{1} x_{1}\right) \cos \left(w_{1} x_{2}\right)-\frac{1}{1000}\left(w_{1}-50\right)^{2}-\sin \left(w_{1} x_{3}\right)-x_{3}-1 \leq 0 \\
& K_{2}\left(x, w_{2}\right)=\sin \left(w_{2} x_{2}\right) \cos \left(w_{2} x_{1}\right)-\frac{1}{1000}\left(w_{2}-50\right)^{2}-\sin \left(w_{2} x_{3}\right)-x_{3}-1 \leq 0
\end{aligned}
$$

First, write an M-file that computes the objective function.

```
function f = myfun(x,s)
% Objective function
f = sum((x-0.5).^2);
```

Second, write an M-file, mycon.m, that computes the nonlinear equality and inequality constraints and the semi-infinite constraints.

```
function [c,ceq,K1,K2,s] = mycon(X,s)
% Initial sampling interval
if isnan(s(1,1)),
    s = [0.2 0; 0.2 0];
end
% Sample set
w1 = 1:s(1,1):100;
```

```
w2 = 1:s(2,1):100;
% Semi-infinite constraints
K1 = sin(w1*X(1)).*cos(w1*X(2)) - 1/1000*(w1-50).^2 -...
        sin(w1*x(3))-x(3)-1;
K2 = sin(w2*X(2)).*cos(w2*X(1)) - 1/1000*(w2-50).^2 -...
    sin(w2*X(3))-X(3)-1;
% No finite nonlinear constraints
c = []; ceq=[];
% Plot a graph of semi-infinite constraints
plot(w1,K1,'-',w2,K2,':')
title('Semi-infinite constraints')
drawnow
```

Then, invoke an optimization routine.

```
x0 = [0.5; 0.2; 0.3]; % Starting guess
[x,fval] = fseminf(@myfun,x0,2,@mycon)
```

After eight iterations, the solution is
$\mathrm{x}=$

$$
\begin{aligned}
& 0.6673 \\
& 0.3013 \\
& 0.4023
\end{aligned}
$$

The function value and the maximum values of the semi-infinite constraints at the solution $x$ are

```
fval =
    0.0770
[c,ceq,K1,K2] = mycon(x,NaN); % Initial sampling interval
max(K1)
ans =
```

```
    -0.0017
    max(K2)
ans =
    -0.0845
```

A plot of the semi-infinite constraints is produced.


This plot shows how peaks in both constraints are on the constraint boundary.

The plot command inside 'mycon.m' slows down the computation. Remove this line to improve the speed.

## Two-Dimensional Example

Find values of $x$ that minimize

$$
f(x)=\left(x_{1}-0.2\right)^{2}+\left(x_{2}-0.2\right)^{2}+\left(x_{3}-0.2\right)^{2}
$$

where

$$
\begin{aligned}
K_{1}(x, w)= & \sin \left(w_{1} x_{1}\right) \cos \left(w_{2} x_{2}\right)-\frac{1}{1000}\left(w_{1}-50\right)^{2}-\sin \left(w_{1} x_{3}\right)-x_{3}+\ldots \\
& \sin \left(w_{2} x_{2}\right) \cos \left(w_{1} x_{1}\right)-\frac{1}{1000}\left(w_{2}-50\right)^{2}-\sin \left(w_{2} x_{3}\right)-x_{3} \leq 1.5,
\end{aligned}
$$

for all values of $w_{1}$ and $w_{2}$ over the ranges

$$
\begin{aligned}
& 1 \leq w_{1} \leq 100 \\
& 1 \leq w_{2} \leq 100
\end{aligned}
$$

starting at the point $x=[0.25,0.25,0.25]$.
Note that the semi-infinite constraint is two-dimensional, that is, a matrix.

First, write an M-file that computes the objective function.

```
function f = myfun(x,s)
% Objective function
f = sum((x-0.2).^2);
```

Second, write an M-file for the constraints, called mycon.m. Include code to draw the surface plot of the semi-infinite constraint each time mycon is called. This enables you to see how the constraint changes as $X$ is being minimized.

```
function [c,ceq,K1,s] = mycon(X,s)
% Initial sampling interval
if isnan(s(1,1)),
    s = [2 2];
end
% Sampling set
w1x = 1:s(1,1):100;
w1y = 1:s(1,2):100;
[wx,wy] = meshgrid(w1x,w1y);
% Semi-infinite constraint
```

```
K1 = sin(wx*x(1)).* cos(wx*X(2))-1/1000*(wx-50).^2 -...
    sin(wx*x(3))-x(3)+sin(wy*x(2)).**os(wx*x(1)) - .. 
    1/1000*(wy-50).^2-sin(wy*X(3))-X(3)-1.5;
% No finite nonlinear constraints
c = []; ceq=[];
% Mesh plot
m = surf(wx,wy,K1,'edgecolor','none','facecolor','interp');
camlight headlight
title('Semi-infinite constraint')
drawnow
```

Next, invoke an optimization routine.

```
x0 = [0.25, 0.25, 0.25]; % Starting guess
[x,fval] = fseminf(@myfun,x0,1,@mycon)
```

After nine iterations, the solution is

```
X =
    0.2926 0.1874 0.2202
```

and the function value at the solution is

```
fval =
    0.0091
```

The goal was to minimize the objective $f(x)$ such that the semi-infinite constraint satisfied $K_{1}(x, w) \leq 1.5$. Evaluating mycon at the solution x and looking at the maximum element of the matrix K1 shows the constraint is easily satisfied.

```
[c,ceq,K1] = mycon(x,[0.5,0.5]); % Sampling interval 0.5
max(max(K1))
ans =
    -0.0027
```

This call to mycon produces the following surf plot, which shows the semi-infinite constraint at $x$.


## Algorithm

fseminf uses cubic and quadratic interpolation techniques to estimate peak values in the semi-infinite constraints. The peak values are used to form a set of constraints that are supplied to an SQP method as in the function fmincon. When the number of constraints changes, Lagrange multipliers are reallocated to the new set of constraints.

The recommended sampling interval calculation uses the difference between the interpolated peak values and peak values appearing in the data set to estimate whether the function needs to take more or fewer
points. The function also evaluates the effectiveness of the interpolation by extrapolating the curve and comparing it to other points in the curve. The recommended sampling interval is decreased when the peak values are close to constraint boundaries, i.e., zero.
See also "SQP Implementation" on page 5-32 for more details on the algorithm used and the types of procedures displayed under the Procedures heading when the Display option is set to 'iter' with optimset.

## Limitations

The function to be minimized, the constraints, and semi-infinite constraints, must be continuous functions of $x$ and $w$. fseminf might only give local solutions.

When the problem is not feasible, fseminf attempts to minimize the maximum constraint value.

## See Also

@ (function_handle), fmincon, optimset, optimtool

## Purpose

Solve system of nonlinear equations

## Equation

Solves a problem specified by

$$
F(x)=0
$$

for $x$, where $x$ is a vector and $F(x)$ is a function that returns a vector value.

## Syntax

```
x = fsolve(fun,x0)
x = fsolve(fun,x0,options)
x = fsolve(problem)
[x,fval] = fsolve(fun,x0)
[x,fval,exitflag] = fsolve(...)
[x,fval,exitflag,output] = fsolve(...)
[x,fval,exitflag,output,jacobian] = fsolve(...)
```

fsolve finds a root (zero) of a system of nonlinear equations.
$x=$ fsolve(fun, $x 0$ ) starts at $x 0$ and tries to solve the equations described in fun.
$x=$ fsolve(fun, $x 0$, options) solves the equations with the optimization options specified in the structure options. Use optimset to set these options.
$\mathrm{x}=\mathrm{fsolve}(\mathrm{problem})$ solves problem, where problem is a structure described in "Input Arguments" on page 11-110.
Create the structure problem by exporting a problem from Optimization Tool, as described in "Exporting to the MATLAB ${ }^{\circledR}$ Workspace" on page 3-14.
[ $x, f v a l]=$ fsolve(fun, $x 0$ ) returns the value of the objective function fun at the solution $x$.
[x,fval,exitflag] = fsolve(...) returns a value exitflag that describes the exit condition.

## fsolve

[x,fval,exitflag, output] = fsolve(...) returns a structure output that contains information about the optimization.
[x,fval,exitflag, output, jacobian] = fsolve(...) returns the Jacobian of fun at the solution $x$.
"Passing Extra Parameters" on page 2-10 explains how to parameterize the objective function fun, if necessary.

## Input Arguments

"Function Arguments" on page 9-2 contains general descriptions of arguments passed into fsolve. This section provides function-specific details for fun and problem:
fun The nonlinear system of equations to solve. fun is a function that accepts a vector $x$ and returns a vector $F$, the nonlinear equations evaluated at $x$. The function fun can be specified as a function handle for an M-file function

```
x = fsolve(@myfun,x0)
```

where myfun is a MATLAB ${ }^{\circledR}$ function such as

```
function F = myfun(x)
F = .. % Compute function values at x
```

fun can also be a function handle for an anonymous function.

$$
x=\text { fsolve }(@(x) \sin (x . * x), x 0) ;
$$

If the user-defined values for x and F are matrices, they are converted to a vector using linear indexing.

If the Jacobian can also be computed and the Jacobian option is ' on ', set by

```
options = optimset('Jacobian','on')
```

then the function fun must return, in a second output argument, the Jacobian value $J$, a matrix, at $x$.

If fun returns a vector (matrix) of $m$ components and $x$ has length $n$, where $n$ is the length of $x 0$, then the Jacobian $J$ is an m-by-n matrix where $J(i, j)$ is the partial derivative of $F(i)$ with respect to $x(j)$. (Note that the Jacobian $J$ is the transpose of the gradient of F.)
problem
objective
$x 0$
Objective function
solver
Initial point for x
options
'fsolve'
Options structure created with optimset

## Output Arguments

"Function Arguments" on page 9-2 contains general descriptions of arguments returned by fsolve. For more information on the output headings for fsolve, see "Function-Specific Output Headings" on page 4-85.

This section provides function-specific details for exitflag and output:

$$
\begin{array}{ll}
\text { exitflag } \begin{array}{l}
\text { Integer identifying the reason the algorithm terminated. } \\
\text { The following lists the values of exitflag and the } \\
\text { corresponding reasons the algorithm terminated. }
\end{array}
\end{array}
$$

Function converged to a solution $x$.
Change in $x$ was smaller than the specified tolerance.
Change in the residual was smaller than the specified tolerance.
Magnitude of search direction was smaller than the specified tolerance.

0
Number of iterations exceeded options.MaxIter or number of function evaluations exceeded options.FunEvals.

## fsolve

| -1 | Algorithm was terminated by the <br> output function. <br> Algorithm appears to be converging to <br> a point that is not a root. |  |
| :--- | :--- | :--- |
| output | -2 | Trust radius became to small. |
| -4 | Line search cannot sufficiently <br> decrease the residual along the <br> current search direction. |  |
| optimization. The fields of the structure are |  |  |
| iterations |  |  |
| funcCount |  |  |
| algorithm |  |  |
| cgiterations |  |  |$\quad$| Number of iterations taken |
| :--- |
| Number of function evaluations |
| Optimization algorithm used. |

## Options

Optimization options used by fsolve. Some options apply to all algorithms, some are only relevant when using the large-scale algorithm, and others are only relevant when using the medium-scale algorithm. You can use optimset to set or change the values of these fields in the options structure, options. See "Optimization Options" on page 9-8 for detailed information.

The LargeScale option specifies a preference for which algorithm to use. It is only a preference because certain conditions must be met
to use the large-scale algorithm. For fsolve, the nonlinear system of equations cannot be underdetermined; that is, the number of equations (the number of elements of $F$ returned by fun) must be at least as many as the length of $x$ or else the medium-scale algorithm is used:

$$
\begin{array}{ll}
\text { LargeScale } & \text { Use large-scale algorithm if possible when set to } \\
\text { 'on'. Use medium-scale algorithm when set to } \\
\text { 'off'. The default for fsolve is 'off'. }
\end{array}
$$

## Medium-Scale and Large-Scale Algorithms

These options are used by both the medium-scale and large-scale algorithms:

| DerivativeCheck | Compare user-supplied derivatives (Jacobian) to <br> finite-differencing derivatives. |
| :--- | :--- |
| Diagnostics | Display diagnostic information about the function <br> to be solved. |
| DiffMaxChange | Maximum change in variables for finite <br> differencing. |
| DiffMinChange | Minimum change in variables for finite <br> differencing. |
| Display | Level of display. 'off' displays no output; <br> 'iter' displays output at each iteration; 'final' ' <br> (default) displays just the final output. |
| FunValCheck | Check whether objective function values are <br> valid. 'on' displays an error when the objective <br> function returns a value that is complex, Inf, or |
| Jacobian | NaN. 'off' (the default) displays no error. |
| If 'on', fsolve uses a user-defined Jacobian |  |
| (defined in fun), or Jacobian information (when |  |

## fsolve

| MaxFunEvals | Maximum number of function evaluations <br> allowed. |
| :--- | :--- |
| Maxiter | Maximum number of iterations allowed. |
| OutputFcn | Specify one or more user-defined functions that <br> an optimization function calls at each iteration. <br> See "Output Function" on page 9 -18. |
| PlotFcns | Plots various measures of progress while the <br> algorithm executes, select from predefined plots <br> or write your own. Specifying @optimplot plots <br> the current point; @optimplotfunccount plots <br> the function count; @optimplotfval plots the <br> function value; @optimplotresnorm plots the <br> norm of the residuals; @optimplotstepsize plots <br> the step size; @optimplotfirstorderopt plots |
| the first-order of optimality. |  |

## Large-Scale Algorithm Only

These options are used only by the large-scale algorithm:

argument returned by the objective function fun, for example by
[F,Jinfo] = fun(x)
$Y$ is a matrix that has the same number of rows as there are dimensions in the problem. flag determines which product to compute:

- If flag == 0 then $W=J^{\prime *}(J * Y)$.
- If flag > 0 then $W=J * Y$.
- If flag < 0 then $W=J^{\prime *}$ Y.

In each case, $J$ is not formed explicitly. fsolve uses Jinfo to compute the preconditioner. The optional parameters $\mathrm{p} 1, \mathrm{p} 2, \ldots$ can be any additional parameters needed by jmfun. See "Passing Extra Parameters" on page 2-10 for information on how to supply values for these parameters.

Note 'Jacobian' must be set to 'on' for Jinfo to be passed from fun to jmfun.

See "Nonlinear Minimization with a Dense but Structured Hessian and Equality Constraints" on page 4-62 for a similar example.

## fsolve

| JacobPattern | Sparsity pattern of the Jacobian for finite <br> differencing. If it is not convenient to compute <br> the Jacobian matrix $J$ in fun, lsqnonlin can <br> approximate $J$ via sparse finite differences <br> provided the structure of $J$-i.e., locations <br> of the nonzeros-is supplied as the value <br> for JacobPattern. In the worst case, if the <br> structure is unknown, you can set JacobPattern <br> to be a dense matrix and a full finite-difference <br> approximation is computed in each iteration <br> (this is the default if JacobPattern is not set). |
| :--- | :--- |
|  | This can be very expensive for large problems, <br> so it is usually worth the effort to determine the |
| sparsity structure. |  |

## Medium-Scale Algorithm Only

These options are used only by the medium-scale algorithm:

| NonlEqnAlgorithm | Specify one of the following algorithms for <br> solving nonlinear equations: |
| :--- | :--- |
|  | - 'dogleg' — Trust-region dogleg algorithm <br> (default) |
| - 'lm' — Levenberg-Marquardt |  |
| - 'gn' — Gauss-Newton |  |

## Examples Example 1

This example finds a zero of the system of two equations and two unknowns:

$$
\begin{aligned}
2 x_{1}-x_{2} & =e^{-x_{1}} \\
-x_{1}+2 x_{2} & =e^{-x_{2}} .
\end{aligned}
$$

You want to solve the following system for $x$

$$
\begin{aligned}
2 x_{1}-x_{2}-e^{-x_{1}} & =0 \\
-x_{1}+2 x_{2}-e^{-x_{2}} & =0,
\end{aligned}
$$

starting at $\mathrm{x} 0=\left[\begin{array}{ll}-5 & -5\end{array}\right]$.
First, write an M-file that computes F, the values of the equations at x.

```
function F = myfun(x)
F = [2*x(1) - x(2) - exp(-x(1));
    -x(1) + 2*x(2) - exp(-x(2))];
```

Next, call an optimization routine.

```
x0 = [-5; -5]; % Make a starting guess at the solution
```

```
options=optimset('Display','iter'); % Option to display output
[x,fval] = fsolve(@myfun,x0,options) % Call optimizer
```

After 33 function evaluations, a zero is found.

|  |  |  | Norm of | First-order Trust-region |  |
| :---: | ---: | ---: | ---: | ---: | :---: |
| Iteration | Func-count | $f(x)$ | step | optimality | radius |
| 0 | 3 | 23535.6 |  | $2.29 \mathrm{e}+004$ | 1 |
| 1 | 6 | 6001.72 | 1 | $5.75 \mathrm{e}+003$ | 1 |
| 2 | 9 | 1573.51 | 1 | $1.47 \mathrm{e}+003$ | 1 |
| 3 | 12 | 427.226 | 1 | 388 | 1 |
| 4 | 15 | 119.763 | 1 | 107 | 1 |
| 5 | 18 | 33.5206 | 1 | 30.8 | 1 |
| 6 | 21 | 8.35208 | 1 | 9.05 | 1 |
| 7 | 24 | 1.21394 | 1 | 2.26 | 1 |
| 8 | 27 | 0.016329 | 0.759511 | 0.206 | 2.5 |
| 9 | 30 | $3.51575 e-006$ | 0.111927 | 0.00294 | 2.5 |
| 10 | 33 | $1.64763 e-013$ | 0.00169132 | $6.36 e-007$ | 2.5 |

Optimization terminated successfully:
First-order optimality is less than options.TolFun

```
x =
```

0.5671
0.5671
fval $=$
1.0e-006 *
$-0.4059$
$-0.4059$

## Example 2

Find a matrix x that satisfies the equation

$$
X * X * X=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]
$$

starting at the point $x=[1,1 ; 1,1]$.
First, write an M-file that computes the equations to be solved.

```
function F = myfun(x)
F = x*x*x-[1,2;3,4];
```

Next, invoke an optimization routine.

```
x0 = ones(2,2); % Make a starting guess at the solution
options = optimset('Display','off'); % Turn off Display
[x,Fval,exitflag] = fsolve(@myfun,x0,options)
```

The solution is

```
x =
    -0.1291 0.8602
    1.2903 1.1612
Fval =
    1.0e-009 *
            -0.1619 0.0776
            0.1161 -0.0469
exitflag =
            1
```

and the residual is close to zero.

```
sum(sum(Fval.*Fval))
ans =
    4.7915e-020
```


## Notes

If the system of equations is linear, use <br>(matrix left division) for better speed and accuracy. For example, to find the solution to the following linear system of equations:

## fsolve

$$
\begin{aligned}
& 3 x_{1}+11 x_{2}-2 x_{3}=7 \\
& x_{1}+x_{2}-2 x_{3}=4 \\
& x_{1}-x_{2}+x_{3}=19 .
\end{aligned}
$$

You can formulate and solve the problem as

```
\(\mathrm{A}=\left[\begin{array}{lllllll} & 11 & -2 ; 1 & 1 & -2 ; 1 & -1 & 1] ;\end{array}\right.\)
b = [ 7; 4; 19];
\(x=A \backslash b\)
x =
    13.2188
    -2.3438
    3.4375
```


## Algorithm

The Gauss-Newton, Levenberg-Marquardt, and large-scale methods are based on the nonlinear least-squares algorithms also used in lsqnonlin. Use one of these methods if the system may not have a zero. The algorithm still returns a point where the residual is small. However, if the Jacobian of the system is singular, the algorithm might converge to a point that is not a solution of the system of equations (see "Limitations" on page 11-121 and "Diagnostics" on page 11-121 following).

## Large-Scale Optimization

fsolve, with the LargeScale option set to 'on' with optimset, uses the large-scale algorithm if possible. This algorithm is a subspace trust-region method and is based on the interior-reflective Newton method described in [1] and [2]. Each iteration involves the approximate solution of a large linear system using the method of preconditioned conjugate gradients (PCG). See "Trust-Region Methods for Nonlinear Minimization" on page 6-3 and "Preconditioned Conjugate Gradients" on page 6-12.

## Medium-Scale Optimization

By default fsolve chooses the medium-scale algorithm and uses the trust-region dogleg method. The algorithm is a variant of the Powell dogleg method described in [8]. It is similar in nature to the algorithm implemented in [7].

Alternatively, you can select a Gauss-Newton method [3] with line-search, or a Levenberg-Marquardt method [4], [5], and [6] with line-search. Use optimset to set NonlEqnAlgorithm option to 'dogleg' (default), 'lm', or 'gn'.

The default line search algorithm for the Levenberg-Marquardt and Gauss-Newton methods, i.e., the LineSearchType option, is 'quadcubic'. This is a safeguarded mixed quadratic and cubic polynomial interpolation and extrapolation method. A safeguarded cubic polynomial method can be selected by setting LineSearchType to 'cubicpoly'. This method generally requires fewer function evaluations but more gradient evaluations. Thus, if gradients are being supplied and can be calculated inexpensively, the cubic polynomial line search method is preferable. The algorithms used are described fully in Chapter 5, "Standard Algorithms".

## Diagnostics

## Limitations

## Medium and Large-Scale Optimization

fsolve may converge to a nonzero point and give this message:

```
Optimizer is stuck at a minimum that is not a root
Try again with a new starting guess
```

In this case, run fsolve again with other starting values.

## Medium-Scale Optimization

For the trust-region dogleg method, fsolve stops if the step size becomes too small and it can make no more progress. fsolve gives this message:

```
The optimization algorithm can make no further progress:
    Trust region radius less than 10*eps
```

In this case, run fsolve again with other starting values.

The function to be solved must be continuous. When successful, fsolve only gives one root. fsolve may converge to a nonzero point, in which case, try other starting values.
fsolve only handles real variables. When $x$ has complex variables, the variables must be split into real and imaginary parts.

## Large-Scale Optimization

The preconditioner computation used in the preconditioned conjugate gradient part of the large-scale method forms $J^{T} J$ (where $J$ is the Jacobian matrix) before computing the preconditioner; therefore, a row of $J$ with many nonzeros, which results in a nearly dense product $J^{T} J$, might lead to a costly solution process for large problems.

## Medium-Scale Optimization

The default trust-region dogleg method can only be used when the system of equations is square, i.e., the number of equations equals the number of unknowns. For the Levenberg-Marquardt and Gauss-Newton methods, the system of equations need not be square.

## References

[1] Coleman, T.F. and Y. Li, "An Interior, Trust Region Approach for Nonlinear Minimization Subject to Bounds," SIAM Journal on Optimization, Vol. 6, pp. 418-445, 1996.
[2] Coleman, T.F. and Y. Li, "On the Convergence of Reflective Newton Methods for Large-Scale Nonlinear Minimization Subject to Bounds," Mathematical Programming, Vol. 67, Number 2, pp. 189-224, 1994.
[3] Dennis, J. E. Jr., "Nonlinear Least-Squares," State of the Art in Numerical Analysis, ed. D. Jacobs, Academic Press, pp. 269-312.
[4] Levenberg, K., "A Method for the Solution of Certain Problems in Least-Squares," Quarterly Applied Mathematics 2, pp. 164-168, 1944.
[5] Marquardt, D., "An Algorithm for Least-squares Estimation of Nonlinear Parameters," SIAM Journal Applied Mathematics, Vol. 11, pp. 431-441, 1963.
[6] Moré, J. J., "The Levenberg-Marquardt Algorithm: Implementation and Theory," Numerical Analysis, ed. G. A. Watson, Lecture Notes in Mathematics 630, Springer Verlag, pp. 105-116, 1977.
[7] Moré, J. J., B. S. Garbow, and K. E. Hillstrom, User Guide for MINPACK 1, Argonne National Laboratory, Rept. ANL-80-74, 1980.
[8] Powell, M. J. D., "A Fortran Subroutine for Solving Systems of Nonlinear Algebraic Equations," Numerical Methods for Nonlinear Algebraic Equations, P. Rabinowitz, ed., Ch.7, 1970.
@ (function_handle), <br>(matrix left division), lsqcurvefit, lsqnonlin, optimset, optimtool, anonymous functions

## Purpose Find root of continuous function of one variable

```
Syntax \(\quad x=\) fzero (fun, \(x 0\) )
\(x=\) fzero(fun, x0,options)
x = fzero(problem)
[x,fval] = fzero(...)
[x,fval,exitflag] = fzero(...)
[x,fval,exitflag,output] = fzero(...)
```


## Description

$x=$ fzero(fun, $x 0$ ) tries to find a zero of fun near $x 0$, if $x 0$ is a scalar. fun is a function handle for either an M-file function or an anonymous function. The value x returned by fzero is near a point where fun changes sign, or NaN if the search fails. In this case, the search terminates when the search interval is expanded until an Inf, NaN, or complex value is found.

If $x 0$ is a vector of length two, fzero assumes $x 0$ is an interval where the sign of fun ( $\mathrm{xO}(1)$ ) differs from the sign of fun ( $\mathrm{xO}(2)$ ). An error occurs if this is not true. Calling fzero with such an interval guarantees that fzero returns a value near a point where fun changes sign.

Note Calling fzero with an interval ( $x 0$ with two elements) is often faster than calling it with a scalar $x 0$.
$x=$ fzero(fun, $x 0$, options) solves the equation with the optimization options specified in the structure options. Use optimset to set these options.
$x$ = fzero(problem) solves problem, where problem is a structure described in "Input Arguments" on page 11-125.

Create the structure problem by exporting a problem from Optimization Tool, as described in "Exporting to the MATLAB ${ }^{\circledR}$ Workspace" on page 3-14.
[x,fval] = fzero(...) returns the value of the objective function fun at the solution $x$.
[x,fval,exitflag] = fzero(...) returns a value exitflag that describes the exit condition.
[x,fval,exitflag,output] = fzero(...) returns a structure output that contains information about the optimization.

Note For the purposes of this command, zeros are considered to be points where the function actually crosses-not just touches-the $x$-axis.
"Passing Extra Parameters" on page 2-10 explains how to parameterize the objective function fun, if necessary.

## Input Arguments

"Function Arguments" on page 9-2 contains general descriptions of arguments passed into fzero. This section provides function-specific details for fun, options, and problem:
fun The function whose zero is to be computed. fun is a function handle for a function that accepts a scalar $x$ and returns a scalar, the objective function evaluated at $x$. The function fun can be specified as a function handle for an M-file function

$$
x=\text { fzero(@myfun, x0) }
$$

where myfun is a MATLAB ${ }^{\circledR}$ function such as

```
function f = myfun(x)
f = ... % Compute function value at x
```

fun can also be a function handle for an anonymous function.

$$
x=\operatorname{fzero}\left(@(x) \sin \left(x^{*} x\right), x 0\right) ;
$$

| options | Optimization options. You can set or change the values of these options using the optimset function. fzero uses these options structure fields: |  |
| :---: | :---: | :---: |
|  | Display | Level of display. 'off' displays no output; 'iter' displays output at each iteration; 'final ' displays just the final output; 'notify' (default) displays output only if the function does not converge. |
|  | FunValCheck | Check whether objective function values are valid. ' on ' displays an error when the objective function returns a value that is complex or NaN. 'off' (the default) displays no error. |
|  | OutputFen | Specify one or more user-defined functions that an optimization function calls at each iteration. See "Output Function" on page 9-18. |
|  | TolX | Termination tolerance on x . |
| problem | objective | Objective function |
|  | x0 | Initial point for x , scalar or 2-dimensional vector |
|  | solver | 'fzero' |
|  | options | Options structure created with optimset |

"Function Arguments" on page 9-2 contains general descriptions of arguments returned by fzero. This section provides function-specific details for exitflag and output:
exitflag Integer identifying the reason the algorithm terminated. The following lists the values of exitflag and the corresponding reasons the algorithm terminated.

| 1 | Function converged to a <br> solution $x$. |
| :--- | :--- |
| -1 | Algorithm was terminated by <br> the output function. |
| -3 | NaN or Inf function value was <br> encountered during search for <br> an interval containing a sign <br> change. |
| -4 | Complex function value was <br> encountered during search for <br> an interval containing a sign <br> change. |
| -5 | Algorithm might have <br> converged to a singular <br> point. |

output Structure containing information about the optimization. The fields of the structure are
intervaliterations Number of iterations taken to find an interval containing a root

| iterations | Number of zero-finding <br> iterations |
| :--- | :--- |
| funcCount | Number of function <br> evaluations |
| algorithm | Optimization algorithm used <br> message |
| Exit message |  |

Examples Calculate $\pi$ by finding the zero of the sine function near 3.

```
x = fzero(@sin,3)
x =
    3.1416
```

To find the zero of cosine between 1 and 2 , enter

```
x = fzero(@cos,[1 2])
x =
    1.5708
```

Note that $\cos (1)$ and $\cos (2)$ differ in sign.
To find a zero of the function

$$
f(x)=x^{3}-2 x-5,
$$

write an M-file called f.m.

```
function y = f(x)
y = x.^3-2*x-5;
```

To find the zero near 2, enter

```
z = fzero(@f,2)
z =
    2.0946
```

Since this function is a polynomial, the statement roots ([ $\left.\left.\begin{array}{llll}1 & 0 & -2 & -5\end{array}\right]\right)$ finds the same real zero, and a complex conjugate pair of zeros.

$$
\begin{array}{r}
2.0946 \\
-1.0473+1.1359 i \\
-1.0473-1.1359 i
\end{array}
$$

"Passing Extra Parameters" on page 2-10 explains how to parameterize fun, if necessary.

## Algorithm

Limitations

References

See Also

The fzero command is an M-file. The algorithm, which was originated by T. Dekker, uses a combination of bisection, secant, and inverse quadratic interpolation methods. An Algol 60 version, with some improvements, is given in [1]. A Fortran version, upon which the fzero M-file is based, is in [2].

The fzero command finds a point where the function changes sign. If the function is continuous, this is also a point where the function has a value near zero. If the function is not continuous, fzero may return values that are discontinuous points instead of zeros. For example, fzero(@tan, 1) returns 1.5708, a discontinuous point in tan.

Furthermore, the fzero command defines a zero as a point where the function crosses the $x$-axis. Points where the function touches, but does not cross, the $x$-axis are not valid zeros. For example, $\mathrm{y}=\mathrm{x} .{ }^{\wedge} 2$ is a parabola that touches the $x$-axis at 0 . Since the function never crosses the $x$-axis, however, no zero is found. For functions with no valid zeros, fzero executes until Inf, NaN, or a complex value is detected.
[1] Brent, R., Algorithms for Minimization Without Derivatives, Prentice-Hall, 1973.
[2] Forsythe, G. E., M. A. Malcolm, and C. B. Moler, Computer Methods for Mathematical Computations, Prentice-Hall, 1976.
@ (function_handle), <br>(matrix left division), fminbnd, fsolve, optimset, optimtool, roots, anonymous functions

## fzmult

Purpose Multiplication with fundamental nullspace basis

```
Syntax \(\quad W=\operatorname{fzmult}(A, V)\)
W = fzmult(A, V,'transpose')
[W,L,U,pcol,P] = fzmult(A, V)
W = fzmult(A, V,transpose, L, U, pcol, P)
```


## Description

$W=f z m u l t(A, V)$ computes the product $W$ of matrix $Z$ with matrix $V$, that is, $W=Z * V$, where $Z$ is a fundamental basis for the nullspace of matrix A. A must be a sparse m-by-n matrix where $m<n$, $\operatorname{rank}(A)=m$, and $\operatorname{rank}(A(1: m, 1: m))=m$. $V$ must be $p-b y-q$, where $p=n-m$. If $V$ is sparse $W$ is sparse, else $W$ is full.
$\mathrm{W}=\mathrm{fzmult}(\mathrm{A}, \mathrm{V}$, 'transpose') computes the product of the transpose of the fundamental basis times $V$, that is, $W=Z^{\prime} * V$. $V$ must be $p$-by- $q$, where $q=n-m$. fzmult $(A, V)$ is the same as fzmult $(A, V,[])$.
$[W, L, U, p c o l, P]=$ fzmult $(A, V)$ returns the sparse LU-factorization of matrix $A(1: m, 1: m)$, that is, $A 1=A(1: m, 1: m)$ and P*A1 (:, pcol) = L*U.
$\mathrm{W}=\mathrm{fzmult}(\mathrm{A}, \mathrm{V}$, transpose, $\mathrm{L}, \mathrm{U}, \mathrm{pcol}, \mathrm{P})$ uses the precomputed sparse $L U$ factorization of matrix $A(1: m, 1: m)$, that is, $A 1=A(1: m, 1: m)$ and $\mathrm{P} * \mathrm{~A} 1(:, \mathrm{pcol})=\mathrm{L}$ U. transpose is either 'transpose' or [].

The nullspace basis matrix $Z$ is not formed explicitly. An implicit representation is used based on the sparse LU factorization of A(1:m,1:m).

| Purpose | Zero out "small" entries subject to structural rank |
| :--- | :--- |
| Syntax | $A=$ gangstr ( $M$, tol $)$ | Description $\quad$| $A=$ gangstr $(M$, tol $)$ creates matrix $A$ of full structural rank such |
| :--- |
| that $A$ is $M$ except that elements of $M$ that are relatively "small," based |
| on tol, are zeros in $A$. The algorithm decreases tol, if needed, until |
| sprank $(A)=$ sprank $(M) . M$ must have at least as many columns as |
| rows. Default tol is $1 e-2$. |

See Also sprank, spy

Purpose

Equation

Find minimum of constrained or unconstrained nonlinear multivariable function using KNITRO ${ }^{\circledR}$ third-party libraries

Finds the minimum of a problem specified by

$$
\min _{x} f(x) \text { such that }\left\{\begin{aligned}
c(x) & \leq 0 \\
c e q(x) & =0 \\
A \cdot x & \leq b \\
A e q \cdot x & =b e q \\
l b & \leq x \leq u b
\end{aligned}\right.
$$

where $x, b$, beq, $l b$, and $u b$ are vectors, $A$ and $A e q$ are matrices, $c(x)$ and $c e q(x)$ are functions that return vectors, and $f(x)$ is a function that returns a scalar. $f(x), c(x)$, and $c e q(x)$ can be nonlinear functions. All constraints are optional; ktrlink can minimize unconstrained problems.

## Syntax

```
x = ktrlink(fun, x0)
x = ktrlink(fun, x0,A,b)
x = ktrlink(fun, x0,A,b,Aeq,beq)
x = ktrlink(fun, x0,A,b,Aeq,beq,lb,ub)
x = ktrlink(fun, x0,A,b,Aeq,beq,lb,ub,nonlcon)
x = ktrlink(fun, x0,A,b,Aeq, beq,lb,ub,nonlcon,options)
x = ktrlink(fun, x0,A,b,Aeq, beq,lb,ub,nonlcon,options,
knitroOptions)
[x,fval] = ktrlink(...)
[x,fval,exitflag] = ktrlink(...)
[x,fval,exitflag,output] = ktrlink(...)
[x,fval,exitflag,output,lambda] = ktrlink(...)
```


## Description

ktrlink attempts to find a minimum of a scalar function of several variables starting at an initial estimate. This is generally referred to as constrained or unconstrained nonlinear optimization, or nonlinear programming.
$x=k t r l i n k(f u n, x 0)$ starts at $x 0$ and attempts to find a minimizer $x$ of the function described in fun, subject to no constraints. $x 0$ can be a scalar, vector, or matrix.
$x=k t r l i n k(f u n, x 0, A, b)$ minimizes fun subject to the linear inequalities $A * x \leq b$.
$x=k t r l i n k(f u n, x 0, A, b, A e q, b e q)$ minimizes fun subject to the linear equalities $A e q * x=b e q$ as well as $A^{*} x \leq b$. If no inequalities exist, set $A=[]$ and $b=[]$.
$x=k t r l i n k(f u n, x 0, A, b, A e q, b e q, l b, u b)$ defines a set of lower and upper bounds on the design variables in $x$, so that the solution is always in the range $1 b \leq x \leq u b$. If no equalities exist, set Aeq $=$ [] and beq $=$ []. If $x(i)$ is unbounded below, set $\operatorname{lb}(i)=-\operatorname{Inf}$, and if $x(i)$ is unbounded above, set ub(i) = Inf.
$x=k t r l i n k(f u n, x 0, A, b, A e q, b e q, l b, u b, n o n l c o n)$ subjects the minimization to the nonlinear inequalities $c(x)$ and the equalities $\operatorname{ceq}(x)$ defined in nonlcon. fmincon optimizes such that $c(x) \leq 0$ and $\operatorname{ceq}(x)=0$. If no bounds exist, set $1 \mathrm{~b}=[$ ] and/or ub $=$ [].
$x=k t r l i n k(f u n, x 0, A, b, A e q, b e q, l b, u b, n o n l c o n, o p t i o n s)$ minimizes with the optimization options specified in the structure options. Use optimset to set these options. If there are no nonlinear inequality or equality constraints, set nonlcon $=$ [].
$x=k t r l i n k(f u n, x 0, A, b, A e q, b e q, l b, u b, n o n l c o n, o p t i o n s$, knitroOptions) minimizes with the KNITRO options specified in the text file knitroOptions. All options given in options are ignored except for HessFcn, HessMult, HessPattern, and JacobPattern.
[ $x, f v a l]=k t r l i n k(. .$.$) returns the value of the objective function$ fun at the solution $x$.
[x,fval,exitflag] = ktrlink(...) returns exitflag, which describes the exit condition of the KNITRO solver.
[x,fval,exitflag,output] = ktrlink(...) returns a structure output with information about the optimization.
[x,fval,exitflag, output, lambda] = ktrlink(...) returns a structure lambda whose fields contain the Lagrange multipliers at the solution x .
"Passing Extra Parameters" on page 2-10 explains how to parameterize the objective function fun, if necessary.

Note If the specified input bounds for a problem are inconsistent, the output $x$ is $x 0$ and the output fval is [].

Components of x 0 that violate the bounds $\mathrm{lb} \leq \mathrm{x} \leq \mathrm{ub}$ are reset to the interior of the box defined by the bounds. Components that respect the bounds are not changed.

## Input Arguments

"Function Arguments" on page 9-2 contains descriptions of arguments passed to ktrlink. "Options" on page 11-44 provides the function-specific details for the options values. This section provides function-specific details for fun and nonlcon.
fun The function to be minimized. fun is a function that accepts a vector x and returns a scalar $f$, the objective function evaluated at $x$. fun can be specified as a function handle for an M-file function

$$
x=k t r l i n k(@ m y f u n, x 0, A, b)
$$

where myfun is a MATLAB ${ }^{\circledR}$ function such as

```
function f = myfun(x)
f=... % Compute function value at x
```

fun can also be a function handle for an anonmous function.

```
x = ktrlink(@(x)norm(x)^2,x0,A,b);
```

If you can compute the gradient of fun and the GradObj option is 'on ', as set by

```
options = optimset('GradObj','on')
```

then fun must return the gradient vector $g(x)$ in the second output argument.

If you can compute the Hessian matrix, there are several ways to pass the Hessian to ktrlink. See "Hessian" on page 11-137 for details.
nonlcon The function that computes the nonlinear inequality constraints $c(x) \leq 0$ and the nonlinear equality constraints ceq $(x)=0$. nonlcon accepts a vector $x$ and returns the two vectors $c$ and ceq. $c$ contains the nonlinear inequalities evaluated at $x$, and ceq contains the nonlinear equalities evaluated at $x$. The function nonlcon can be specified as a function handle.
x = ktrlink(@myfun, x0, A, b, Aeq, beq, lb, ub, @mycon)
where mycon is a MATLAB function such as

```
function [c,ceq] = mycon(x)
c = ... % Compute nonlinear inequalities at x.
ceq = ... % Compute nonlinear equalities at x.
```

If you can compute the gradients of the constraints and the GradConstr option is 'on', as set by

```
options = optimset('GradConstr','on')
```

then nonlcon must also return GC, the gradient of $c(x)$, and GCeq, the gradient of ceq ( $x$ ), in the third and fourth output arguments respectively. See "Nonlinear Constraints" on page 2-17 for details.

Note Because Optimization Toolbox ${ }^{\mathrm{TM}}$ functions only accept inputs of type double, user-supplied objective and nonlinear constraint functions must return outputs of type double.

## ktrlink

"Passing Extra Parameters" on page 2-10 explains how to parameterize the nonlinear constraint function nonlcon, if necessary.

## Output Arguments

"Function Arguments" on page 9-2 contains descriptions of arguments returned by ktrlink. This section provides function-specific details for exitflag, lambda, and output:
exitflag Integer identifying the reason the algorithm terminated. For more information, see the KNITRO documentation at http://www.ziena.com/
lambda Structure containing the Lagrange multipliers at the solution x (separated by constraint type). The fields of the structure are

| lower | Lower bounds lb |
| :--- | :--- |
| upper | Upper bounds ub |
| ineqlin | Linear inequalities |
| eqlin | Linear equalities |
| ineqnonlin | Nonlinear inequalities |
| eqnonlin | Nonlinear equalities |
| Structure containing information about the <br> optimization. The fields of the structure are: |  |
| iterations | Number of iterations taken |
| funcCount | Number of function evaluations <br> constrviolation <br> Maximum of constraint <br> violations (interior-point <br> algorithm only) |
| firstorderopt | Measure of first-order optimality |

## Hessian

ktrlink can optionally use a user-supplied Hessian, the matrix of second derivatives of the Lagrangian, namely,

$$
\begin{equation*}
\nabla_{x x}^{2} L(x, \lambda)=\nabla^{2} f(x)+\sum \lambda_{i} \nabla^{2} c_{i}(x)+\sum \lambda_{i} \nabla^{2} c e q_{i}(x) . \tag{11-2}
\end{equation*}
$$

If you don't supply a Hessian, KNITRO software estimates it.
To provide a Hessian, the syntax is

```
hessian = hessianfcn(x, lambda)
```

hessian is an $n$-by- $n$ matrix, sparse or dense, where $n$ is the number of variables. lambda is a structure with the Lagrange multiplier vectors associated with the nonlinear constraints:

```
lambda.ineqnonlin
lambda.eqnonlin
```

KNITRO software computes lambda. hessianfcn must calculate the sums in Equation 11-2. Indicate that you are supplying a Hessian by

```
options = optimset('Hessian','user-supplied',...
    'HessFcn',@hessianfcn);
```

There are several more options for Hessians:

```
- options = optimset('Hessian','bfgs');
```

The KNITRO solver calculates the Hessian by a dense quasi-Newton approximation.

```
- options = optimset('Hessian',...
```

    \{'lbfgs', positive integer\});
    The KNITRO solver calculates the Hessian by a limited-memory, large-scale quasi-Newton approximation. The positive integer specifies how many past iterations should be remembered.

- options = optimset('Hessian','fin-diff-grads',...
'SubproblemAlgorithm', 'cg', 'GradObj', 'on', ...
'GradConstr', 'on');
The KNITRO solver calculates a Hessian-times-vector product by finite differences of the gradient(s). You must supply the gradient of the objective function, and also gradients of any nonlinear constraint functions.
- options = optimset('Hessian','user-supplied',... 'SubproblemAlgorithm', 'cg', 'HessMult', @HessMultFcn]);

The KNITRO solver uses a Hessian-times-vector product. You must supply the function HessMultFcn, which returns an $n$-by- 1 vector. The HessMult option enables you to pass the result of multiplying the Hessian by a vector without calculating the Hessian.

The syntax for the 'HessMult' option is:

```
w = HessMultFcn(x,lambda,v);
```

The result w should be the product $\mathrm{H} * \mathrm{v}$, where H is the Hessian at x , lambda is the Lagrange multiplier (computed by KNITRO software), and $v$ is a vector.

## Options

Optimization options used by ktrlink. Use optimset to set or change the values of fields in the options structure options. See "Optimization Options" on page 9-8 for detailed information. For example:

```
options=optimset('Algorithm','active-set');
```


## Option

Algorithm

## Description

Choose a KNITRO optimization algorithm: 'interior-point' or 'active-set'.

AlwaysHonorConstraints The default 'bounds' ensures that bound constraints are satisfied at every iteration. Disable by setting to 'none'.

| Option | Description |
| :---: | :---: |
| Display | Level of display: <br> - 'off' displays no output. <br> - 'iter' displays output at each iteration. <br> - 'final' (default) displays just the final output. |
| FinDiffType | Finite differences, used to estimate gradients, are either the default 'forward', or are 'central' (centered). 'central' take twice as many function evaluations as 'forward', but should be more accurate. 'central' differences might violate bounds during their evaluation. |
| GradObj | Gradient for the objective function defined by the user. See the preceding description of fun to see how to define the gradient in fun. It is optional for the 'active-set' and 'interior-point' methods. |
| HessFcn | Function handle to a user-supplied Hessian (see "Hessian" on page 11-42). |
| Hessian | Chooses how ktrlink calculates the Hessian (see "Hessian" on page 11-42). |
| HessMult | Handle to a user-supplied function that gives a Hessian-times-vector product (see "Hessian" on page 11-42). |
| InitBarrierParameter | Initial barrier value. A value above the default 0.1 might help, especially if the objective or constraint functions are large. |

## ktrlink

| Option | Description |
| :---: | :---: |
| InitTrustRegionRadius | Initial radius of the trust region. On badly-scaled problems choose a value smaller than the default, $\sqrt{n}$, where $n$ is the number of variables. |
| MaxIter | Maximum number of iterations allowed. |
| MaxProjCGIter | A tolerance (stopping criterion) for the number of projected conjugate gradient iterations; this is an inner iteration, not the number of iterations of the algorithm. |
| ObjectiveLimit | A tolerance (stopping criterion). If the objective function value goes below ObjectiveLimit and the iterate is feasible, the iterations halt, since the problem is presumably unbounded. |
| ScaleProblem | The default 'obj-and-constr' causes the algorithm to normalize all constraints and the objective function. Disable by setting to 'none'. |
| SubproblemAlgorithm | Determines how the iteration step is calculated. The default 'ldl-factorization' is usually faster than 'cg' (conjugate gradient), though 'cg' may be faster for large problems with dense Hessians. |
| TolFun | Termination tolerance on the function value. |
| TolCon | Termination tolerance on the constraint violation. |
| TolX | Termination tolerance on x . |

## KNITRO ${ }^{\circledR}$ Options

## References

See Also

You can set options for the KNITRO libraries and pass them in a text file. The text file should consist of lines of text with the name of an option followed by blank space and then the desired value of the option. For example, to select the maximum run time to be less than 100 seconds, and to use an adaptive algorithm for changing the multiplier $\mu$, create a text file containing the following lines:

```
ms_maxtime_real 100
bar_murule adaptive
```

For full details about the structure of the file and all possible options, see the KNITRO documentation at http: / /www.ziena.com/.
[1] http://www.ziena.com/
@ (function_handle), fminbnd, fmincon, fminsearch, fminunc, optimset

Purpose
Equation
Solve linear programming problems
Finds the minimum of a problem specified by

$$
\min _{x} f^{T} x \text { such that }\left\{\begin{aligned}
A \cdot x & \leq b \\
A e q \cdot x & =b e q \\
l b \leq x & \leq u b
\end{aligned}\right.
$$

$f, x, b, b e q, l b$, and $u b$ are vectors, and $A$ and $A e q$ are matrices.

## Syntax

```
x = linprog(f,A,b)
    x = linprog(f,A,b,Aeq,beq)
    x = linprog(f,A,b,Aeq,beq,lb,ub)
    x = linprog(f,A,b,Aeq,beq,lb,ub,x0)
    x = linprog(f,A,b,Aeq,beq,lb,ub,x0,options)
    x = linprog(problem)
    [x,fval] = linprog(...)
    [x,fval,exitflag] = linprog(...)
    [x,fval,exitflag,output] = linprog(...)
    [x,fval,exitflag,output,lambda] = linprog(...)
```


## Description

linprog solves linear programming problems.
$x=\operatorname{linprog}(f, A, b)$ solves min $f^{\prime *} x$ such that $A^{*} x \leq b$.
$x=\operatorname{linprog}(f, A, b, A e q, b e q)$ solves the problem above while additionally satisfying the equality constraints Aeq*x = beq. Set $A=[]$ and $b=[]$ if no inequalities exist.
$x=\operatorname{linprog}(f, A, b, A e q, b e q, l b, u b)$ defines a set of lower and upper bounds on the design variables, $x$, so that the solution is always in the range $\mathrm{lb} \leq \mathrm{x} \leq \mathrm{ub}$. Set Aeq = [] and beq = [] if no equalities exist.
$x=\operatorname{linprog}(f, A, b, A e q, b e q, l b, u b, x 0)$ sets the starting point to $\mathrm{x0}$. This option is only available with the medium-scale algorithm (the LargeScale option is set to 'off' using optimset). The default large-scale algorithm and the simplex algorithm ignore any starting point.
$x=\operatorname{linprog}(f, A, b, A e q, b e q, l b, u b, x 0, o p t i o n s)$ minimizes with the optimization options specified in the structure options. Use optimset to set these options.
$x=$ linprog(problem) finds the minimum for problem, where problem is a structure described in "Input Arguments" on page 11-143.

Create the structure problem by exporting a problem from Optimization Tool, as described in "Exporting to the MATLAB ${ }^{\circledR}$ Workspace" on page 3-14.
$[x, f v a l]=\operatorname{linprog}(\ldots)$ returns the value of the objective function fun at the solution $x$ : fval $=f^{\prime *} x$.
[x,fval,exitflag] = linprog(...) returns a value exitflag that describes the exit condition.
[x,fval,exitflag,output] = linprog(...) returns a structure output that contains information about the optimization.
[x,fval,exitflag,output,lambda] = linprog(...) returns a structure lambda whose fields contain the Lagrange multipliers at the solution x .

Note If the specified input bounds for a problem are inconsistent, the output $x$ is $x 0$ and the output fval is [].

## Input Arguments

"Function Arguments" on page 9-2 contains general descriptions of arguments passed into linprog. "Options" on page 11-145 provides the function-specific details for the options values.

## linprog

| problem | $f$ | Linear objective function vector $f$ |
| :--- | :--- | :--- |
|  | Aineq | Matrix for linear inequality constraints |
| bineq | Vector for linear inequality constraints |  |
| Aeq | Matrix for linear equality constraints |  |
| beq | Vector for linear equality constraints |  |
| lb | Vector of lower bounds |  |
| ub | Vector of upper bounds |  |
| solver | Initial point for $x$, active set algorithm <br> only <br> options linprog' <br> Options structure created with optimset |  |

## Output Arguments

"Function Arguments" on page 9-2 contains general descriptions of arguments returned by linprog. This section provides function-specific details for exitflag, lambda, and output:

exitflag | Integer identifying the reason the algorithm |
| :--- |
| terminated. The following lists the values of |
| exitflag and the corresponding reasons the |
| algorithm terminated. |.

| 1 | Function converged to a solution x. |
| :--- | :--- |
| 0 | Number of iterations exceeded <br> options.MaxIter. |
| -2 | No feasible point was found. |
| -3 | Problem is unbounded. <br> -4NaN value was encountered during <br> execution of the algorithm. |
| -5 | Both primal and dual problems <br> are infeasible. |

Search direction became too small. No further progress could be made.

| lambda | Structure containing the Lagrange multipliers at <br> the solution x (separated by constraint type). The |
| :--- | :--- |
| fields of the structure are: |  |
| lower | Lower bounds lb |
| upper | Upper bounds ub |
| ineqlin | Linear inequalities |
| eqlin | Linear equalities |

## Options

Optimization options used by linprog. Some options apply to all algorithms, and others are only relevant when using the large-scale algorithm. You can use optimset to set or change the values of these fields in the options structure, options. See "Optimization Options" on page 9-8 for detailed information.

$$
\begin{array}{ll}
\text { LargeScale } & \begin{array}{l}
\text { Use large-scale algorithm when set to 'on'. Use } \\
\text { medium-scale algorithm when set to 'off'. }
\end{array}
\end{array}
$$

## Medium-Scale and Large-Scale Algorithms

These options are used by both the medium-scale and large-scale algorithms:

## linprog

| Diagnostics | Print diagnostic information about the function to <br> be minimized. |
| :--- | :--- |
| Display | Level of display. 'off' displays no output; 'iter' <br> displays output at each iteration; ' final' (default) <br> displays just the final output. At this time, the <br> 'iter' level only works with the large-scale and <br> simplex algorithms. |
| MaxIter | Maximum number of iterations allowed. |

## Medium-Scale Algorithm Only

These options are used by the medium-scale algorithm:
Simplex If 'on', linprog uses the simplex algorithm. The simplex algorithm uses a built-in starting point, ignoring the starting point $x 0$ if supplied. The default is 'off'. See "Simplex Algorithm" on page 5-39 for more information and an example.

## Large-Scale Algorithm Only

These options are used only by the large-scale algorithm:
TolFun Termination tolerance on the function value.

## Examples Find $x$ that minimizes

$$
f(x)=-5 x_{1}-4 x_{2}-6 x_{3},
$$

subject to

$$
\begin{aligned}
& x_{1}-x_{2}+x_{3} \leq 20 \\
& 3 x_{1}+2 x_{2}+4 x_{3} \leq 42 \\
& 3 x_{1}+2 x_{2} \leq 30 \\
& 0 \leq x_{1}, 0 \leq x_{2}, 0 \leq x_{3} .
\end{aligned}
$$

First, enter the coefficients

```
f = [-5; -4; -6]
A = [\begin{array}{lll}{1}&{-1}&{1}\end{array}]
    3
    3 2 0];
b = [20; 42; 30];
lb = zeros(3,1);
```

Next, call a linear programming routine.

```
[x,fval,exitflag,output,lambda] = linprog(f,A,b,[],[],lb);
```

Entering x, lambda.ineqlin, and lambda.lower gets

```
x =
    0.0000
    15.0000
    3.0000
lambda.ineqlin =
    O
    1.5000
    0.5000
lambda.lower =
    1.0000
    O
    O
```

Nonzero elements of the vectors in the fields of lambda indicate active constraints at the solution. In this case, the second and third inequality constraints (in lambda.ineqlin) and the first lower bound constraint (in lambda.lower) are active constraints (i.e., the solution is on their constraint boundaries).

## Algorithm Large-Scale Optimization

The large-scale method is based on LIPSOL (Linear Interior Point Solver, [3]), which is a variant of Mehrotra's predictor-corrector
algorithm ([2]), a primal-dual interior-point method. A number of preprocessing steps occur before the algorithm begins to iterate. See "Large-Scale Linear Programming" on page 6-20.

## Medium-Scale Optimization

linprog uses a projection method as used in the quadprog algorithm. linprog is an active set method and is thus a variation of the well-known simplex method for linear programming [1]. The algorithm finds an initial feasible solution by first solving another linear programming problem.

Alternatively, you can use the simplex algorithm, described in "Simplex Algorithm" on page 5-39, by entering

```
options = optimset('LargeScale', 'off', 'Simplex', 'on')
```

and passing options as an input argument to linprog. The simplex algorithm returns a vertex optimal solution.

Note You cannot supply an initial point x0 for linprog with either the large-scale method or the medium-scale method using the simplex algorithm. In either case, if you pass in $x 0$ as an input argument, linprog ignores $x 0$ and computes its own initial point for the algorithm.

## Diagnostics Large-Scale Optimization

The first stage of the algorithm might involve some preprocessing of the constraints (see "Large-Scale Linear Programming" on page 6-20). Several possible conditions might occur that cause linprog to exit with an infeasibility message. In each case, the exitflag argument returned by linprog is set to a negative value to indicate failure.

If a row of all zeros is detected in Aeq but the corresponding element of beq is not zero, the exit message is

[^3]```
right-hand-side entry.
```

If one of the elements of $x$ is found not to be bounded below, the exit message is

```
Exiting due to infeasibility: Objective f'*x is
    unbounded below.
```

If one of the rows of Aeq has only one nonzero element, the associated value in $x$ is called a singleton variable. In this case, the value of that component of $x$ can be computed from Aeq and beq. If the value computed violates another constraint, the exit message is

```
Exiting due to infeasibility: Singleton variables in
equality constraints are not feasible.
```

If the singleton variable can be solved for but the solution violates the upper or lower bounds, the exit message is

```
Exiting due to infeasibility: Singleton variables in
the equality constraints are not within bounds.
```

Note The preprocessing steps are cumulative. For example, even if your constraint matrix does not have a row of all zeros to begin with, other preprocessing steps may cause such a row to occur.

Once the preprocessing has finished, the iterative part of the algorithm begins until the stopping criteria are met. (See "Large-Scale Linear Programming" on page 6-20 for more information about residuals, the primal problem, the dual problem, and the related stopping criteria.) If the residuals are growing instead of getting smaller, or the residuals are neither growing nor shrinking, one of the two following termination messages is displayed, respectively,

```
One or more of the residuals, duality gap, or total relative error
has grown }100000\mathrm{ times greater than its minimum value so far:
```


## linprog

or

```
One or more of the residuals, duality gap, or total relative error
has stalled:
```

After one of these messages is displayed, it is followed by one of the following six messages indicating that the dual, the primal, or both appear to be infeasible. The messages differ according to how the infeasibility or unboundedness was measured.

```
The dual appears to be infeasible (and the primal unbounded).(The
primal residual < TolFun.)
The primal appears to be infeasible (and the dual unbounded). (The
dual residual < TolFun.)
The dual appears to be infeasible (and the primal unbounded) since
the dual residual > sqrt(TolFun).(The primal residual <
10*TolFun.)
The primal appears to be infeasible (and the dual unbounded) since
the primal residual > sqrt(TolFun).(The dual residual <
10*TolFun.)
The dual appears to be infeasible and the primal unbounded since
the primal objective < -1e+10 and the dual objective < 1e+6.
The primal appears to be infeasible and the dual unbounded since
the dual objective > 1e+10 and the primal objective > -1e+6.
Both the primal and the dual appear to be infeasible.
```

Note that, for example, the primal (objective) can be unbounded and the primal residual, which is a measure of primal constraint satisfaction, can be small.

## Medium-Scale Optimization

linprog gives a warning when the problem is infeasible.
Warning: The constraints are overly stringent; there is no feasible solution.

In this case, linprog produces a result that minimizes the worst case constraint violation.

When the equality constraints are inconsistent, linprog gives

```
Warning: The equality constraints are overly
stringent; there is no feasible solution.
```

Unbounded solutions result in the warning

```
Warning: The solution is unbounded and at infinity;
``` the constraints are not restrictive enough.

In this case, linprog returns a value of \(x\) that satisfies the constraints.

\section*{Limitations Medium-Scale Optimization}

At this time, the only levels of display, using the Display option in options, are 'off' and 'final'; iterative output using 'iter' is not available.

\section*{References}
[1] Dantzig, G.B., A. Orden, and P. Wolfe, "Generalized Simplex Method for Minimizing a Linear from Under Linear Inequality Constraints," Pacific Journal Math., Vol. 5, pp. 183-195.
[2] Mehrotra, S., "On the Implementation of a Primal-Dual Interior Point Method," SIAM Journal on Optimization, Vol. 2, pp. 575-601, 1992.
[3] Zhang, Y., "Solving Large-Scale Linear Programs by Interior-Point Methods Under the MATLAB Environment," Technical Report TR96-01, Department of Mathematics and Statistics, University of Maryland, Baltimore County, Baltimore, MD, July 1995.

See Also quadprog, optimtool

Purpose

\section*{Equation}

\section*{Description}

\section*{Syntax}

Solve nonlinear curve-fitting (data-fitting) problems in least-squares sense

Find coefficients \(x\) that best fit the equation
\[
\min _{x}\|F(x, x d a t a)-y d a t a\|_{2}^{2}=\min _{x} \sum_{i}\left(F\left(x_{i}, x d a t a_{i}\right)-y d a t a_{i}\right)^{2},
\]
given input data \(x d a t a\), and the observed output \(y d a t a\), where \(x d a t a\) and \(y\) data are matrices or vectors of length \(m\), and \(F(x, x d a t a)\) is a matrix-valued or vector-valued function.
The function lsqcurvefit uses the same algorithm as lsqnonlin. Its purpose is to provide an interface designed specifically for data-fitting problems.
```

x = lsqcurvefit(fun,x0,xdata,ydata)
x = lsqcurvefit(fun,x0,xdata,ydata,lb,ub)
x = lsqcurvefit(fun,x0,xdata,ydata,lb,ub,options)
x = lsqcurvefit(problem)
[x,resnorm] = lsqcurvefit(...)
[x,resnorm,residual] = lsqcurvefit(...)
[x,resnorm,residual,exitflag] = lsqcurvefit(...)
[x,resnorm,residual,exitflag,output] = lsqcurvefit(...)
[x,resnorm,residual,exitflag,output,
lambda] = lsqcurvefit(...)
[x,resnorm,residual,exitflag,output,lambda,
jacobian] = lsqcurvefit(...)

```
lsqcurvefit solves nonlinear data-fitting problems. lsqcurvefit requires a user-defined function to compute the vector-valued function \(F(x, x d a t a)\). The size of the vector returned by the user-defined function must be the same as the size of the vectors ydata and xdata.
\(x=1\) sqcurvefit(fun, \(x 0, x d a t a, y d a t a)\) starts at \(x 0\) and finds coefficients \(x\) to best fit the nonlinear function fun ( \(x, x d a t a\) ) to the
data ydata (in the least-squares sense). ydata must be the same size as the vector (or matrix) \(F\) returned by fun.
\(x=\) lsqcurvefit(fun, \(x 0\), \(x d a t a, y d a t a, l b, u b)\) defines a set of lower and upper bounds on the design variables in \(x\) so that the solution is always in the range \(\mathrm{lb} \leq \mathrm{x} \leq \mathrm{ub}\).
\(x\) = lsqcurvefit(fun, \(x 0, x d a t a, y d a t a, l b, u b, o p t i o n s)\) minimizes with the optimization options specified in the structure options. Use optimset to set these options. Pass empty matrices for lb and ub if no bounds exist.
\(x=\) lsqcurvefit(problem) finds the minimum for problem, where problem is a structure described in "Input Arguments" on page 11-154.

Create the structure problem by exporting a problem from Optimization Tool, as described in "Exporting to the MATLAB \({ }^{\circledR}\) Workspace" on page 3-14.
[x,resnorm] = lsqcurvefit(...) returns the value of the squared 2 -norm of the residual at \(x\) : sum ((fun( \(x, x d a t a)\)-ydata). \({ }^{\wedge} 2\) ).
[x,resnorm, residual] = lsqcurvefit(...) returns the value of the residual fun( \(x\), xdata) - ydata at the solution \(x\).
[x,resnorm,residual,exitflag] = lsqcurvefit(...) returns a value exitflag that describes the exit condition.
[x,resnorm,residual,exitflag,output] = lsqcurvefit(...) returns a structure output that contains information about the optimization.
[x,resnorm,residual,exitflag,output,lambda] =
lsqcurvefit (...) returns a structure lambda whose fields contain the Lagrange multipliers at the solution \(x\).
[x,resnorm,residual,exitflag,output,lambda, jacobian] = lsqcurvefit (...) returns the Jacobian of fun at the solution \(x\).

Note If the specified input bounds for a problem are inconsistent, the output x is x 0 and the outputs resnorm and residual are [].

Components of \(x 0\) that violate the bounds \(1 b \leq x \leq u b\) are reset to the interior of the box defined by the bounds. Components that respect the bounds are not changed.

\section*{Input Arguments}
"Function Arguments" on page 9-2 contains general descriptions of arguments passed into lsqcurvefit. This section provides function-specific details for fun, options, and problem:
```

fun The function you want to fit. fun is a function that takes a vector $x$ and returns a vector $F$, the objective functions evaluated at $x$. The function fun can be specified as a function handle for an M-file function
x = lsqcurvefit(@myfun, x0,xdata,ydata)
where myfun is a MATLAB ${ }^{\circledR}$ function such as

```
```

function F = myfun(x,xdata)

```
function F = myfun(x,xdata)
F = .. % Compute function values at x
```

F = .. % Compute function values at x

```
fun can also be a function handle for an anonymous function.
```

f = @(x,xdata)x(1)*xdata.^2+x(2)*sin(xdata),...
'x','xdata';
x = lsqcurvefit(f,x0,xdata,ydata);

```

If the user-defined values for \(x\) and \(F\) are matrices, they are converted to a vector using linear indexing.

Note fun should return fun( \(x, x d a t a\) ), and not the sum-of-squares sum((fun(x,xdata)-ydata).^2). The algorithm implicitly squares and sums fun(x,xdata)-ydata.

If the Jacobian can also be computed and the Jacobian option is 'on', set by
```

options = optimset('Jacobian','on')

```
then the function fun must return, in a second output argument, the Jacobian value \(J\), a matrix, at \(x\). Note that by checking the value of nargout the function can avoid computing \(J\) when fun is called with only one output argument (in the case where the optimization algorithm only needs the value of \(F\) but not \(J\) ).
```

function [F,J] = myfun(x,xdata)
F = ... % objective function values at x
if nargout > 1 % two output arguments
J = ... % Jacobian of the function evaluated at x
end

```

If fun returns a vector (matrix) of \(m\) components and \(x\) has length \(n\), where \(n\) is the length of \(x 0\), then the Jacobian \(J\) is an m-by-n matrix where \(J(i, j)\) is the partial derivative of \(F(i)\) with respect to \(\times(j)\). (Note that the Jacobian \(J\) is the transpose of the gradient of F.) For more information, see "Jacobians of Vector and Matrix Objective Functions" on page 2-6.
options "Options" on page 11-158 provides the function-specific details for the options values.
\begin{tabular}{lll} 
problem & objective & Objective function of \(x\) and \(x\) data \\
& x0 & Initial point for \(x\), active set algorithm only \\
& xdata & Input data for objective function \\
ydata & \begin{tabular}{l} 
Output data to be matched by objective \\
function
\end{tabular} \\
& lb & Vector of lower bounds \\
ub & Vector of upper bounds \\
& solver & 'lsqcurvefit' \\
options & Options structure created with optimset
\end{tabular}

\section*{Output Arguments}

\begin{tabular}{|c|c|c|}
\hline & -1 & Algorithm was terminated by the output function. \\
\hline & -2 & Problem is infeasible: the bounds lb and ub are inconsistent. \\
\hline & -4 & Optimization could not make further progress. \\
\hline lambda & Structure contain solution x (sepa of the structure & ng the Lagrange multipliers at the ed by constraint type). The fields e \\
\hline & lower & Lower bounds lb \\
\hline & upper & Upper bounds ub \\
\hline output & Structure conta optimization. Th & ng information about the fields of the structure are \\
\hline & firstorderopt & Measure of first-order optimality (large-scale algorithm, [ ] for others). \\
\hline & iterations & Number of iterations taken \\
\hline & funcCount & Number of function evaluations \\
\hline & cgiterations & Total number of PCG iterations (large-scale algorithm, [ ] for others) \\
\hline & algorithm & Optimization algorithm used \\
\hline & stepsize & Final displacement in x (medium-scale algorithm only). \\
\hline & message & Exit message \\
\hline
\end{tabular}

Note The sum of squares should not be formed explicitly. Instead, your function should return a vector of function values. See the examples below.

\section*{Options}

Optimization options used by lsqcurvefit. Some options apply to all algorithms, some are only relevant when using the large-scale algorithm, and others are only relevant when you are using the medium-scale algorithm. You can use optimset to set or change the values of these fields in the options structure options. See "Optimization Options" on page 9-8 for detailed information.

The LargeScale option specifies a preference for which algorithm to use. It is only a preference, because certain conditions must be met to use the large-scale or medium-scale algorithm. For the large-scale algorithm, the nonlinear system of equations cannot be underdetermined; that is, the number of equations (the number of elements of \(F\) returned by fun) must be at least as many as the length of \(x\). Furthermore, only the large-scale algorithm handles bound constraints:
```

LargeScale Use large-scale algorithm if possible when set
to 'on'. Use medium-scale algorithm when set
to 'off'.

```

The large-scale algorithm is a more modern algorithm than the medium-scale algorithms. The large-scale algorithm handles both large-scale and medium-scale problems effectively.

\section*{Medium-Scale and Large-Scale Algorithms}

These options are used by both the medium-scale and large-scale algorithms:
\(\left.\begin{array}{ll}\text { DerivativeCheck } & \begin{array}{l}\text { Compare user-supplied derivatives (Jacobian) to } \\ \text { finite-differencing derivatives. }\end{array} \\ \text { Diagnostics } & \begin{array}{l}\text { Display diagnostic information about the function } \\ \text { to be minimized. }\end{array} \\ \text { DiffMaxChange } & \begin{array}{l}\text { Maximum change in variables for finite } \\ \text { differencing. }\end{array} \\ \text { DiffMinChange } & \begin{array}{l}\text { Minimum change in variables for finite } \\ \text { differencing. }\end{array} \\ \text { Display } & \begin{array}{l}\text { Level of display. ' off' displays no output, and } \\ \text { 'final' (default) displays just the final output. }\end{array} \\ \text { Jacobian } & \begin{array}{l}\text { If 'on', lsqcurvefit uses a user-defined Jacobian } \\ \text { (defined in fun), or Jacobian information (when }\end{array} \\ \text { MaxFunEvals } & \begin{array}{l}\text { using JacobMult), for the objective function. If } \\ \text { using finite differences. }\end{array} \\ \text { Maxiter } & \begin{array}{l}\text { Maximum number of function evaluations } \\ \text { allowed. }\end{array} \\ \text { OutputFcn } & \begin{array}{l}\text { Maximum number of iterations allowed. }\end{array} \\ \text { Specify one or more user-defined functions that an } \\ \text { optimization function calls at each iteration. See }\end{array}\right\}\)

\section*{Large-Scale Algorithm Only}

These options are used only by the large-scale algorithm:
\begin{tabular}{|c|c|}
\hline JacobMult & Function handle for Jacobian multiply function. \\
\hline & For large-scale structured problems, this function computes the Jacobian matrix product \(J * Y\), \(\mathrm{J}^{\prime *} \mathrm{Y}\), or \(J^{\prime *}(J * Y)\) without actually forming \(J\). The function is of the form \\
\hline
\end{tabular}
W = jmfun(Jinfo,Y,flag,p1,p2,...)
where Jinfo and the additional parameters p1, p2, ... contain the matrices used to compute J*Y (or J'*Y, or J'*(J*Y)). The first argument Jinfo must be the same as the second argument returned by the objective function fun, for example by
\[
[F, J i n f o]=\text { fun }(x)
\]
\(Y\) is a matrix that has the same number of rows as there are dimensions in the problem. flag determines which product to compute:
- If flag == 0 then \(W=J^{\prime *}(J * Y)\).
- If flag > 0 then \(W=J * Y\).
- If flag < 0 then \(W=J^{\prime *}\).

In each case, \(J\) is not formed explicitly. fsolve uses Jinfo to compute the preconditioner. The optional parameters p1, p2, ... can be any additional parameters needed by jmfun. See "Passing Extra Parameters" on page 2-10 for information on how to supply values for these parameters.

Note 'Jacobian' must be set to 'on' for Jinfo to be passed from fun to jmfun.

JacobPattern

MaxPCGIter

See "Nonlinear Minimization with a Dense but Structured Hessian and Equality Constraints" on page 4-62 for a similar example.

Sparsity pattern of the Jacobian for finite differencing. If it is not convenient to compute the Jacobian matrix \(J\) in fun, lsqcurvefit can approximate \(J\) via sparse finite differences, provided the structure of \(J\), i.e., locations of the nonzeros, is supplied as the value for JacobPattern. In the worst case, if the structure is unknown, you can set JacobPattern to be a dense matrix and a full finite-difference approximation is computed in each iteration (this is the default if JacobPattern is not set). This can be very expensive for large problems, so it is usually worth the effort to determine the sparsity structure.

Maximum number of PCG (preconditioned conjugate gradient) iterations (see "Algorithm" on page 11-163).

PrecondBandWidth The default PrecondBandWidth is 'Inf', which means a direct factorization (Cholesky) is used rather than the conjugate gradients (CG). The direct factorization is computationally more expensive than CG, but produces a better quality step towards the solution. Set PrecondBandWidth to 0 for diagonal preconditioning (upper bandwidth of 0). For some problems, an intermediate bandwidth reduces the number of PCG iterations.
TolPCG Termination tolerance on the PCG iteration.

\section*{Medium-Scale Algorithm Only}

These options are used only by the medium-scale algorithm:

> LevenbergMarquardt Choose Levenberg-Marquardt over Gauss-Newton algorithm.
> LineSearchType \(\quad\) Line search algorithm choice.

\section*{Examples}

Given vectors of data \(x d a t a\) and \(y d a t a\), suppose you want to find coefficients \(x\) to find the best fit to the exponential decay equation
\[
y d a t a(i)=x(1) e^{x(2) x d a t a(i)}
\]

That is, you want to minimize
\[
\min _{x} \sum_{i}\left(F\left(x, x d a t a_{i}\right)-y d a t a_{i}\right)^{2}
\]
where \(m\) is the length of xdata and ydata, the function \(F\) is defined by
\[
F(x, x d a t a)=x(1) * \exp (x(2) * x d a t a) ;
\]
and the starting point is \(x 0=[100 ;-1]\);

First, write an M-file to return the value of F ( F has n components).
```

function F = myfun(x,xdata)
F = x(1)*exp(x(2)*xdata);

```

Next, invoke an optimization routine:
```

% Assume you determined xdata and ydata experimentally
xdata = ...
[0.9 1.5 13.8 19.8 24.1 28.2 35.2 60.3 74.6 81.3];
ydata = ...
[455.2 428.6 124.1 67.3 43.2 28.1 13.1 -0.4 -1.3 -1.5];
x0 = [100; -1] % Starting guess
[x,resnorm] = lsqcurvefit(@myfun,x0,xdata,ydata)

```

Note that at the time that lsqcurvefit is called, xdata and ydata are assumed to exist and are vectors of the same size. They must be the same size because the value \(F\) returned by fun must be the same size as ydata.

After 27 function evaluations, this example gives the solution
```

x =
498.8309 -0.1013
resnorm =
9.5049

```

There may be slight variation in the number of iterations and the value of the returned \(x\) that is dependent upon the platform and release.

\section*{Algorithm}

\section*{Large-Scale Optimization}

By default lsqcurvefit chooses the large-scale algorithm. This algorithm is a subspace trust-region method and is based on the interior-reflective Newton method described in [1] and [2]. Each iteration involves the approximate solution of a large linear system using the method of preconditioned conjugate gradients (PCG). See "Trust-Region Methods for Nonlinear Minimization" on page 6-3 and "Preconditioned Conjugate Gradients" on page 6-12.

\section*{Medium-Scale Optimization}

If you set the LargeScale option to 'off' with optimset, lsqcurvefit uses the Levenberg-Marquardt method with line search [4], [5], and [6]. Alternatively, you can select a Gauss-Newton method [3] with line search by setting the LevenbergMarquardt option to 'off' (and LargeScale to 'off') with optimset. The Gauss-Newton method is generally faster when the residual sum((fun(x,xdata)-ydata). \({ }^{\wedge} 2\) ) is small.

The default line search algorithm, i.e., the LineSearchType option, is 'quadcubic'. This is a safeguarded mixed quadratic and cubic polynomial interpolation and extrapolation method. You can select a safeguarded cubic polynomial method by setting the LineSearchType option to 'cubicpoly'. This method generally requires fewer function evaluations but more gradient evaluations. Thus, if gradients are being supplied and can be calculated inexpensively, the cubic polynomial line search method is preferable. The algorithms used are described fully in Chapter 5, "Standard Algorithms".

\section*{Diagnostics Large-Scale Optimization}

The large-scale method does not allow equal upper and lower bounds. For example, if \(\operatorname{lb}(2)==u b(2)\), lsqlin gives the error

Equal upper and lower bounds not permitted.
(lsqcurvefit does not handle equality constraints, which is another way to formulate equal bounds. If equality constraints are present, use fmincon, fminimax, or fgoalattain for alternative formulations where equality constraints can be included.)

\section*{Limitations}

The function to be minimized must be continuous. lsqcurvefit might only give local solutions.
lsqcurvefit only handles real variables (the user-defined function must only return real values). When \(x\) has complex variables, the variables must be split into real and imaginary parts.

\section*{Large-Scale Optimization}

The large-scale algorithm for lsqcurvefit does not solve underdetermined systems; it requires that the number of equations, i.e., the row dimension of \(F\), be at least as great as the number of variables. In the underdetermined case, the medium-scale algorithm is used instead. See Large-Scale Problem Coverage and Requirements on page 4-44 for more information on what problem formulations are covered and what information must be provided.

The preconditioner computation used in the preconditioned conjugate gradient part of the large-scale method forms \(J^{T} J\) (where \(J\) is the Jacobian matrix) before computing the preconditioner; therefore, a row of \(J\) with many nonzeros, which results in a nearly dense product \(J^{T} J\), can lead to a costly solution process for large problems.
If components of \(x\) have no upper (or lower) bounds, then lsqcurvefit prefers that the corresponding components of ub (or lb) be set to inf (or - inf for lower bounds) as opposed to an arbitrary but very large positive (or negative for lower bounds) number.

\section*{Medium-Scale Optimization}

The medium-scale algorithm does not handle bound constraints.
Since the large-scale algorithm does not handle underdetermined systems and the medium-scale does not handle bound constraints, problems with both these characteristics cannot be solved by lsqcurvefit.

\section*{References}
[1] Coleman, T.F. and Y. Li, "An Interior, Trust Region Approach for Nonlinear Minimization Subject to Bounds," SIAM Journal on Optimization, Vol. 6, pp. 418-445, 1996.
[2] Coleman, T.F. and Y. Li, "On the Convergence of Reflective Newton Methods for Large-Scale Nonlinear Minimization Subject to Bounds," Mathematical Programming, Vol. 67, Number 2, pp. 189-224, 1994.
[3] Dennis, J. E. Jr., "Nonlinear Least-Squares," State of the Art in Numerical Analysis, ed. D. Jacobs, Academic Press, pp. 269-312, 1977.
[4] Levenberg, K., "A Method for the Solution of Certain Problems in Least-Squares," Quarterly Applied Math. 2, pp. 164-168, 1944.
[5] Marquardt, D., "An Algorithm for Least-Squares Estimation of Nonlinear Parameters," SIAM Journal Applied Math., Vol. 11, pp. 431-441, 1963.
[6] More, J. J., "The Levenberg-Marquardt Algorithm: Implementation and Theory," Numerical Analysis, ed. G. A. Watson, Lecture Notes in Mathematics 630, Springer Verlag, pp. 105-116, 1977.

\section*{See Also}
@ (function_handle), \\(matrix left division), lsqlin, lsqnonlin, lsqnonneg, optimset, optimtool, nlinfit

Note The Statistics Toolbox \({ }^{\text {TM }}\) function nlinfit has more statistics-oriented outputs that are useful, for example, in finding confidence intervals for the coefficients. It also comes with the nlintool GUI for visualizing the fitted function. The lsqnonlin function has more outputs related to how well the optimization performed. It can put bounds on the parameters, and it accepts many options to control the optimization algorithm.

\section*{Purpose}

Solve constrained linear least-squares problems

\section*{Equation}

Solves least-squares curve fitting problems of the form
\[
\min _{x}\|C \cdot x-d\|_{2}^{2} \text { such that }\left\{\begin{array}{c}
A \cdot x \leq b \\
A e q \cdot x=b e q \\
l b \leq x \leq u b
\end{array}\right.
\]

\section*{Syntax}
```

x = lsqlin(C,d,A,b)
x = lsqlin(C,d,A,b,Aeq,beq)
x = lsqlin(C,d,A,b,Aeq,beq,lb,ub)
x = lsqlin(C,d,A,b,Aeq,beq,lb,ub,x0)
x = lsqlin(C,d,A,b,Aeq,beq,lb,ub,x0,options)
x = lsqlin(problem)
[x,resnorm] = lsqlin(...)
[x,resnorm,residual] = lsqlin(...)
[x,resnorm,residual,exitflag] = lsqlin(...)
[x,resnorm,residual,exitflag,output] = lsqlin(...)
[x,resnorm,residual,exitflag,output,lambda] = lsqlin(...)

```

\section*{Description}
\(x=\operatorname{lsqlin}(C, d, A, b)\) solves the linear system \(C * x=d\) in the least-squares sense subject to \(A^{*} x \leq b\), where \(C\) is \(m\)-by-n.
\(x=\operatorname{lsqlin}(C, d, A, b, A e q, b e q)\) solves the preceding problem while additionally satisfying the equality constraints Aeq*x = beq. Set \(A=[]\) and \(b=[]\) if no inequalities exist.
\(x=1 s q l i n(C, d, A, b, A e q, b e q, l b, u b)\) defines a set of lower and upper bounds on the design variables in \(x\) so that the solution is always in the range \(\mathrm{lb} \leq \mathrm{x} \leq \mathrm{ub}\). Set Aeq = [] and beq = [] if no equalities exist.
\(x=\operatorname{lsq} \operatorname{lin}(C, d, A, b, A e q, b e q, l b, u b, x 0)\) sets the starting point to \(x 0\). Set \(l b=[]\) and \(b=[]\) if no bounds exist.
\(\mathrm{x}=\mathrm{lsqlin}(\mathrm{C}, \mathrm{d}, \mathrm{A}, \mathrm{b}, \mathrm{Aeq}, \mathrm{beq}, \mathrm{lb}, \mathrm{ub}, \mathrm{xO}\), options) minimizes with the optimization options specified in the structure options. Use optimset to set these options.
\(x=\) lsqlin(problem) finds the minimum for problem, where problem is a structure described in "Input Arguments" on page 11-168.
Create the structure problem by exporting a problem from Optimization Tool, as described in "Exporting to the MATLAB \({ }^{\circledR}\) Workspace" on page 3-14.
[x,resnorm] = lsqlin(...) returns the value of the squared 2-norm of the residual, norm ( \(\left.C^{*} x-d\right)^{\wedge} 2\).
[x,resnorm, residual] \(=\) lsqlin(...) returns the residual C*x-d.
[x,resnorm, residual, exitflag] = lsqlin(...) returns a value exitflag that describes the exit condition.
[x,resnorm, residual, exitflag,output] = lsqlin(...) returns a structure output that contains information about the optimization.
[x,resnorm, residual,exitflag,output,lambda] = lsqlin(...) returns a structure lambda whose fields contain the Lagrange multipliers at the solution \(x\).

Note If the specified input bounds for a problem are inconsistent, the output \(x\) is \(x 0\) and the outputs resnorm and residual are [].

Components of \(x 0\) that violate the bounds \(1 b \leq x \leq u b\) are reset to the interior of the box defined by the bounds. Components that respect the bounds are not changed.

If no \(x 0\) is provided, \(x 0\) is set to the zero vector. If any component of this zero vector \(x 0\) violates the bounds, \(x 0\) is set to a point in the interior of the box defined by the bounds.
\begin{tabular}{lll} 
problem & C & Matrix \\
& d & Vector \\
& Aineq & Matrix for linear inequality constraints \\
& bineq & Vector for linear inequality constraints \\
& Aeq & Matrix for linear equality constraints \\
beq & Vector for linear equality constraints \\
lb & Vector of lower bounds \\
ub & Vector of upper bounds \\
xo & Initial point for \(x\) \\
solver & 'lsqlin' \\
options & Options structure created with optimset
\end{tabular}

\section*{Output Arguments}
"Function Arguments" on page 9-2 contains general descriptions of arguments returned by lsqlin. This section provides function-specific details for exitflag, lambda, and output:
exitflag \(\left.\begin{array}{l}\text { Integer identifying the reason the algorithm } \\
\text { terminated. The following lists the values of } \\
\text { exitflag and the corresponding reasons the } \\
\text { algorithm terminated: }\end{array}\right\}\)\begin{tabular}{l} 
Function converged to a solution \\
x. \\
3
\end{tabular} \begin{tabular}{l} 
Change in the residual was \\
smaller than the specified \\
tolerance.
\end{tabular}

Ill-conditioning prevents further optimization.

Magnitude of search direction became too small. No further progress could be made.
lambda Structure containing the Lagrange multipliers at the solution \(x\) (separated by constraint type). The fields are
\begin{tabular}{ll} 
lower & Lower bounds lb \\
upper & Upper bounds ub \\
ineqlin & Linear inequalities \\
eqlin & Linear equalities
\end{tabular}
output Structure containing information about the optimization. The fields are
\begin{tabular}{ll} 
iterations & Number of iterations taken \\
algorithm & \begin{tabular}{l} 
Optimization algorithm used
\end{tabular} \\
cgiterations & \begin{tabular}{l} 
Total number of PCG iterations \\
(large-scale algorithm, [ ] for \\
medium-scale)
\end{tabular} \\
firstorderopt & \begin{tabular}{l} 
Measure of first-order optimality \\
(large-scale algorithm, [] for \\
medium-scale)
\end{tabular} \\
message & Exit message
\end{tabular}

\section*{Options}

Optimization options used by lsqlin. You can set or change the values of these options using the optimset function. Some options apply to all algorithms, some are only relevant when you are using the large-scale algorithm, and others are only relevant when using the medium-scale algorithm. See "Optimization Options" on page 9-8 for detailed information.

The LargeScale option specifies a preference for which algorithm to use. It is only a preference, because certain conditions must be met to use the large-scale algorithm. For lsqlin, when the problem has only upper and lower bounds, i.e., no linear inequalities or equalities are specified, the default algorithm is the large-scale method. Otherwise the medium-scale algorithm is used:
```

LargeScale Use large-scale algorithm if possible when set to ' on '. Use medium-scale algorithm when set to 'off'.

```

\section*{Medium-Scale and Large-Scale Algorithms}

These options are used by both the medium-scale and large-scale algorithms:
\begin{tabular}{ll} 
Diagnostics & \begin{tabular}{l} 
Display diagnostic information about the function \\
to be minimized.
\end{tabular} \\
Display & \begin{tabular}{l} 
Level of display. 'off' displays no output; ' \(f\) final' \\
(default) displays just the final output.
\end{tabular} \\
MaxIter & \begin{tabular}{l} 
Maximum number of iterations allowed.
\end{tabular} \\
TypicalX & Typical \(x\) values.
\end{tabular}

\section*{Large-Scale Algorithm Only}

These options are used only by the large-scale algorithm:

JacobMult Function handle for Jacobian multiply function. For large-scale structured problems, this function computes the Jacobian matrix product J*Y, J'*Y, or \(J^{\prime *}(J * Y)\) without actually forming \(J\). The function is of the form
W = jmfun(Jinfo,Y,flag,p1,p2,...)
where Jinfo and the additional parameters p1, p2, ... contain the matrices used to compute \(J * Y\) (or \(J^{\prime *} Y\), or \(J^{\prime *}(J * Y)\) ). The first argument Jinfo must be the same as the second argument returned by the objective function fun, for example by
\[
[F, J i n f o]=\text { fun }(x)
\]
\(Y\) is a matrix that has the same number of rows as there are dimensions in the problem. flag determines which product to compute:
- If flag \(==0\) then \(W=J^{\prime *}(J * Y)\).
- If flag > 0 then \(W=J * Y\).
- If flag < 0 then \(W=J^{\prime *}\).

In each case, \(J\) is not formed explicitly. fsolve uses Jinfo to compute the preconditioner. The optional parameters \(\mathrm{p} 1, \mathrm{p} 2, \ldots\) can be any additional parameters needed by jmfun. See "Passing Extra Parameters" on page 2-10 for
information on how to supply values for these parameters.

Note 'Jacobian' must be set to 'on' for Jinfo to be passed from fun to jmfun.

See "Nonlinear Minimization with a Dense but Structured Hessian and Equality Constraints" on page 4-62 for a similar example.

MaxPCGIter Maximum number of PCG (preconditioned conjugate gradient) iterations (see "Algorithm" on page 11-175).
PrecondBandWidth Upper bandwidth of preconditioner for PCG. By default, diagonal preconditioning is used (upper bandwidth of 0 ). For some problems, increasing the bandwidth reduces the number of PCG iterations. Setting PrecondBandWidth to 'Inf' uses a direct factorization (Cholesky) rather than the conjugate gradients (CG). The direct factorization is computationally more expensive than CG, but produces a better quality step towards the solution.
TolFun Termination tolerance on the function value.
TolPCG Termination tolerance on the PCG iteration.

Examples Find the least-squares solution to the overdetermined system \(C \cdot x=d\), subject to \(A \cdot x \leq b\) and \(l b \leq x \leq u b\).

First, enter the coefficient matrices and the lower and upper bounds.


\section*{Isqlin}
```

    0.6068 0.0185 0.9218 0.9169
    0.4859 0.8214 0.7382 0.4102
    0.8912 0.4447 0.1762 0.8936];
    d = [
0.0578
0.3528
0.8131
0.0098
0.1388];
A =[
0.2027 0.2721 0.7467 0.4659
0.1987 0.1988 0.4450 0.4186
0.6037 0.0152 0.9318 0.8462];
b = [
0.5251
0.2026
0.6721];
lb = -0.1*ones(4,1);
ub = 2*ones(4,1);

```

Next, call the constrained linear least-squares routine.
```

[x,resnorm,residual,exitflag,output,lambda] = ...
lsqlin(C,d,A,b,[ ],[ ],lb,ub);

```

Entering \(x\), lambda.ineqlin, lambda.lower, lambda. upper produces
```

x =
-0.1000
-0.1000
0.2152
0.3502
lambda.ineqlin =
O
0.2392
0
lambda.lower =

```
\[
\begin{gathered}
0.0409 \\
0.2784 \\
0 \\
0 \\
\text { lambda.upper }= \\
0 \\
0 \\
0 \\
0
\end{gathered}
\]

Nonzero elements of the vectors in the fields of lambda indicate active constraints at the solution. In this case, the second inequality constraint (in lambda.ineqlin) and the first lower and second lower bound constraints (in lambda. lower) are active constraints (i.e., the solution is on their constraint boundaries).

\section*{Notes}

For problems with no constraints, use \(\backslash\) (matrix left division). For example, \(x=A \backslash b\).
Because the problem being solved is always convex, lsqlin will find a global, although not necessarily unique, solution.

Better numerical results are likely if you specify equalities explicitly, using Aeq and beq, instead of implicitly, using \(l b\) and ub.

\section*{Large-Scale Optimization}

If \(x 0\) is not strictly feasible, lsqlin chooses a new strictly feasible (centered) starting point.
If components of \(x\) have no upper (or lower) bounds, set the corresponding components of ub (or lb) to Inf (or - Inf for lb) as opposed to an arbitrary but very large positive (or negative in the case of lower bounds) number.

\section*{Algorithm Large-Scale Optimization}

When the problem given to lsqlin has only upper and lower bounds; i.e., no linear inequalities or equalities are specified, and the matrix

C has at least as many rows as columns, the default algorithm is the large-scale method. This method is a subspace trust-region method based on the interior-reflective Newton method described in [1]. Each iteration involves the approximate solution of a large linear system using the method of preconditioned conjugate gradients (PCG). See "Trust-Region Methods for Nonlinear Minimization" on page 6-3 and "Preconditioned Conjugate Gradients" on page 6-12.

\section*{Medium-Scale Optimization}
lsqlin, with the LargeScale option set to 'off' with optimset, or when linear inequalities or equalities are given, is based on quadprog, which uses an active set method similar to that described in [2]. It finds an initial feasible solution by first solving a linear programming problem. See "Quadratic Programming" on page 6-18.

\section*{Diagnostics}

\section*{Large-Scale Optimization}

The large-scale method does not allow equal upper and lower bounds.
For example, if \(\mathrm{lb}(2)==u b(2)\), then lsqlin gives the following error:
```

Equal upper and lower bounds not permitted
in this large-scale method.
Use equality constraints and the medium-scale
method instead.

```

At this time, you must use the medium-scale algorithm to solve equality constrained problems.

\section*{Medium-Scale Optimization}

If the matrices \(C, A\), or Aeq are sparse, and the problem formulation is not solvable using the large-scale method, lsqlin warns that the matrices are converted to full.
```

Warning: This problem formulation not yet available
for sparse matrices.
Converting to full to solve.

```

When a problem is infeasible, lsqlin gives a warning:
```

Warning: The constraints are overly stringent;
there is no feasible solution.

```

In this case, lsqlin produces a result that minimizes the worst case constraint violation.

When the equality constraints are inconsistent, lsqlin gives
```

Warning: The equality constraints are overly stringent;
there is no feasible solution.

```

Limitations At this time, the only levels of display, using the Display option in options, are 'off' and 'final'; iterative output using 'iter' is not available.

\section*{References [1] Coleman, T.F. and Y. Li, "A Reflective Newton Method for Minimizing a Quadratic Function Subject to Bounds on Some of the Variables," SIAM Journal on Optimization, Vol. 6, Number 4, pp. 1040-1058, 1996.}
[2] Gill, P.E., W. Murray, and M.H. Wright, Practical Optimization, Academic Press, London, UK, 1981.

See Also \(\quad\) (matrix left division), lsqnonneg, quadprog, optimtool

Purpose
Equation
Solve nonlinear least-squares (nonlinear data-fitting) problems
Solves nonlinear least-squares curve fitting problems of the form
\[
\min _{x}\|f(x)\|_{2}^{2}=\min _{x}\left(f_{1}(x)^{2}+f_{2}(x)^{2}+\ldots+f_{n}(x)^{2}\right)
\]

Syntax
```

x = lsqnonlin(fun,x0)
x = lsqnonlin(fun,x0,lb,ub)
x = lsqnonlin(fun,x0,lb,ub,options)
x = lsqnonlin(problem)
[x,resnorm] = lsqnonlin(...)
[x,resnorm,residual] = lsqnonlin(...)
[x,resnorm,residual,exitflag] = lsqnonlin(...)
[x,resnorm,residual,exitflag,output] = lsqnonlin(...)
[x,resnorm,residual,exitflag,output,lambda] = lsqnonlin(...)
[x,resnorm,residual,exitflag,output,lambda,
jacobian] = lsqnonlin(...)

```

\section*{Description}
lsqnonlin solves nonlinear least-squares problems, including nonlinear data-fitting problems.

Rather than compute the value \(\|f(x)\|_{2}^{2}\) (the sum of squares), 1sqnonlin requires the user-defined function to compute the vector-valued function
\[
f(x)=\left[\begin{array}{c}
f_{1}(x) \\
f_{2}(x) \\
\vdots \\
f_{n}(x)
\end{array}\right]
\]

Then, in vector terms, you can restate this optimization problem as
\[
\min _{x}\|f(x)\|_{2}^{2}=\min _{x}\left(f_{1}(x)^{2}+f_{2}(x)^{2}+\ldots+f_{n}(x)^{2}\right)
\]
where \(x\) is a vector and \(f(x)\) is a function that returns a vector value.
\(x=1\) sqnonlin(fun, \(x 0\) ) starts at the point \(x 0\) and finds a minimum of the sum of squares of the functions described in fun. fun should return a vector of values and not the sum of squares of the values. (The algorithm implicitly sums and squares fun(x).)
\(x=1\) sqnonlin(fun, \(x 0, l b, u b)\) defines a set of lower and upper bounds on the design variables in \(x\), so that the solution is always in the range lb \(\leq \mathrm{x} \leq \mathrm{ub}\).
\(x=1\) sqnonlin(fun, \(x 0, l b, u b, o p t i o n s)\) minimizes with the optimization options specified in the structure options. Use optimset to set these options. Pass empty matrices for \(l b\) and \(u b\) if no bounds exist.
\(\mathrm{x}=\) lsqnonlin(problem) finds the minimum for problem, where problem is a structure described in "Input Arguments" on page 11-180.
Create the structure problem by exporting a problem from Optimization Tool, as described in "Exporting to the MATLAB \({ }^{\circledR}\) Workspace" on page 3-14.
[x,resnorm] = lsqnonlin(...) returns the value of the squared 2 -norm of the residual at \(x\) : sum (fun( \(x\) ). \({ }^{\wedge} 2\) ).
[ \(x\), resnorm, residual] = lsqnonlin(...) returns the value of the residual fun( \(x\) ) at the solution \(x\).
[x,resnorm,residual,exitflag] = lsqnonlin(...) returns a value exitflag that describes the exit condition.
[x,resnorm,residual,exitflag,output] = lsqnonlin(...) returns a structure output that contains information about the optimization.
```

[x,resnorm,residual,exitflag,output,lambda] =
lsqnonlin(...) returns a structure lambda whose fields contain the
Lagrange multipliers at the solution x.
[x,resnorm,residual,exitflag,output,lambda,jacobian] =
lsqnonlin(...) returns the Jacobian of fun at the solution x.

```

Note If the specified input bounds for a problem are inconsistent, the output x is x 0 and the outputs resnorm and residual are [].

Components of \(x 0\) that violate the bounds \(1 b \leq x \leq u b\) are reset to the interior of the box defined by the bounds. Components that respect the bounds are not changed.

\section*{Input Arguments}
"Function Arguments" on page 9-2 contains general descriptions of arguments passed into lsqnonlin. This section provides function-specific details for fun, options, and problem:
```

fun The function whose sum of squares is minimized. fun is
a function that accepts a vector x and returns a vector $F$, the objective functions evaluated at $x$. The function fun can be specified as a function handle for an M-file function

$$
x=1 \text { sqnonlin(@myfun, x0) }
$$

where myfun is a MATLAB ${ }^{\circledR}$ function such as

```
```

function F = myfun(x)

```
function F = myfun(x)
F = .. % Compute function values at x
```

F = .. % Compute function values at x

```
fun can also be a function handle for an anonymous function.
\[
x=1 \operatorname{sqnonlin}(@(x) \sin (x . * x), x 0) ;
\]

If the user-defined values for x and F are matrices, they are converted to a vector using linear indexing.

If the Jacobian can also be computed and the Jacobian option is 'on', set by
options = optimset('Jacobian','on')
then the function fun must return, in a second output argument, the Jacobian value \(J\), a matrix, at \(x\). Note that by checking the value of nargout the function can avoid computing \(J\) when fun is called with only one output argument (in the case where the optimization algorithm only needs the value of \(F\) but not \(J\) ).
```

function [F,J] = myfun(x)
F = ... % Objective function values at x
if nargout > 1 % Two output arguments
J = ... % Jacobian of the function evaluated at x
end

```

If fun returns a vector (matrix) of \(m\) components and \(x\) has length \(n\), where \(n\) is the length of \(x 0\), then the Jacobian \(J\) is an m-by-n matrix where \(J(i, j)\) is the partial derivative of \(F(i)\) with respect to \(\times(j)\). (Note that the Jacobian \(J\) is the transpose of the gradient of \(F\).)
options "Options" on page 11-183 provides the function-specific details for the options values.
\begin{tabular}{lll} 
problem & objective & Objective function \\
& x0 & Initial point for x
\end{tabular}
lb Vector of lower bounds
ub Vector of upper bounds
solver 'lsqnonlin'
options Options structure created with optimset

\section*{Output Arguments}
"Function Arguments" on page 9-2 contains general descriptions of arguments returned by lsqnonlin. This section provides function-specific details for exitflag, lambda, and output:
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{9}{*}{exitflag} & \multicolumn{2}{|l|}{Integer identifying the reason the algorithm terminated. The following lists the values of exitflag and the corresponding reasons the algorithm terminated:} \\
\hline & 1 & Function converged to a solution x . \\
\hline & 2 & Change in \(x\) was less than the specified tolerance. \\
\hline & 3 & Change in the residual was less than the specified tolerance. \\
\hline & 4 & Magnitude of search direction was smaller than the specified tolerance. \\
\hline & 0 & Number of iterations exceeded options.MaxIter or number of function evaluations exceeded options.FunEvals. \\
\hline & -1 & Algorithm was terminated by the output function. \\
\hline & -2 & Problem is infeasible: the bounds lb and ub are inconsistent. \\
\hline & -4 & Line search could not sufficiently decrease the residual along the current search direction. \\
\hline lambda & \multicolumn{2}{|l|}{Structure containing the Lagrange multipliers at the solution x (separated by constraint type). The fields are} \\
\hline & lower & Lower bounds lb \\
\hline & upper & Upper bounds ub \\
\hline output & \multicolumn{2}{|l|}{Structure containing information about the optimization. The fields of the structure are} \\
\hline
\end{tabular}
\begin{tabular}{ll} 
firstorderopt & \begin{tabular}{l} 
Measure of first-order optimality \\
(large-scale algorithm, [ ] for \\
others)
\end{tabular} \\
iterations & \begin{tabular}{l} 
Number of iterations taken
\end{tabular} \\
funcCount & \begin{tabular}{l} 
The number of function \\
evaluations
\end{tabular} \\
cgiterations & \begin{tabular}{l} 
Total number of PCG iterations \\
(large-scale algorithm, [ ] for \\
others))
\end{tabular} \\
stepsize & \begin{tabular}{l} 
Final displacement in x \\
(medium-scale algorithm only)
\end{tabular} \\
algorithm & \begin{tabular}{l} 
Optimization algorithm used
\end{tabular} \\
message & Exit message
\end{tabular}

Note The sum of squares should not be formed explicitly. Instead, your function should return a vector of function values. See "Examples" on page 11-188.

Optimization options. You can set or change the values of these options using the optimset function. Some options apply to all algorithms, some are only relevant when you are using the large-scale algorithm, and others are only relevant when you are using the medium-scale algorithm. See "Optimization Options" on page 9-8 for detailed information.

The LargeScale option specifies a preference for which algorithm to use. It is only a preference because certain conditions must be met to use the large-scale or medium-scale algorithm. For the large-scale algorithm, the nonlinear system of equations cannot be underdetermined; that is, the number of equations (the number of elements of \(F\) returned by fun) must be at least as many as the length of x. Furthermore, only the large-scale algorithm handles bound constraints:

LargeScale Use large-scale algorithm if possible when set to 'on '. Use medium-scale algorithm when set to 'off'. The large-scale algorithm is a more modern algorithm than the medium-scale algorithms. The large-scale algorithm handles both large-scale and medium-scale problems effectively.

\section*{Medium-Scale and Large-Scale Algorithms}

These options are used by both the medium-scale and large-scale algorithms:

DerivativeCheck Compare user-supplied derivatives (Jacobian) to finite-differencing derivatives.

Diagnostics Display diagnostic information about the function to be minimized.

DiffMaxChange Maximum change in variables for finite differencing.

DiffMinChange Minimum change in variables for finite differencing.
\begin{tabular}{ll} 
Display & \begin{tabular}{l} 
Level of display. 'off' displays no output; \\
'iter' displays output at each iteration; 'final' \\
(default) displays just the final output.
\end{tabular} \\
Jacobian & \begin{tabular}{l} 
If 'on', lsqnonlin uses a user-defined Jacobian \\
(defined in fun), or Jacobian information (when \\
using JacobMult), for the objective function. If \\
'off', lsqnonlin approximates the Jacobian \\
using finite differences.
\end{tabular} \\
MaxFunEvals & \begin{tabular}{l} 
Maximum number of function evaluations allowed.
\end{tabular} \\
MaxIter & \begin{tabular}{l} 
Maximum number of iterations allowed.
\end{tabular} \\
OutputFcn & \begin{tabular}{l} 
Specify one or more user-defined functions that an \\
optimization function calls at each iteration. See \\
"Output Function" on page 9-18.
\end{tabular}
\end{tabular}
\begin{tabular}{ll} 
PlotFcns & \begin{tabular}{l} 
Plots various measures of progress while the \\
algorithm executes, select from predefined plots \\
or write your own. Specifying @optimplotx plots \\
the current point; @optimplotfunccount plots the \\
function count; @optimplotfval plots the function \\
value; @optimplotresnorm plots the norm of the \\
residuals; @optimplotstepsize plots the step size; \\
@optimplotfirstorderopt plots the first-order \\
of optimality.
\end{tabular} \\
TolFun & \begin{tabular}{l} 
Termination tolerance on the function value.
\end{tabular} \\
TolX & \begin{tabular}{l} 
Termination tolerance on \(x\).
\end{tabular} \\
TypicalX & Typical \(x\) values.
\end{tabular}

\section*{Large-Scale Algorithm Only}

These options are used only by the large-scale algorithm:
\begin{tabular}{ll} 
JacobMult & \begin{tabular}{l} 
Function handle for Jacobian multiply function. \\
For large-scale structured problems, this function \\
computes the Jacobian matrix product \(J * Y, ~\) \\
'
\end{tabular} \\
or \(J^{\prime *}(J * Y)\) without actually forming \(J\). The \\
function is of the form
\end{tabular}
W = jmfun(Jinfo,Y,flag,p1,p2,...)
where Jinfo and the additional parameters \(\mathrm{p} 1, \mathrm{p} 2, \ldots\) contain the matrices used to compute \(J * Y\left(o r J^{\prime *} Y\right.\), or J'*(J*Y)). The first argument Jinfo must be the same as the second argument returned by the objective function fun, for example by
\[
[F, J i n f o]=f u n(x)
\]

\section*{Isqnonlin}
\(Y\) is a matrix that has the same number of rows as there are dimensions in the problem. flag determines which product to compute:
- If flag == 0 then \(W=J^{\prime *}(J * Y)\).
- If flag > 0 then \(W=J * Y\).
- If flag < 0 then \(W=J\) '*Y.

In each case, \(J\) is not formed explicitly. lsqnonlin uses Jinfo to compute the preconditioner. The optional parameters p1, p2, ... can be any additional parameters needed by jmfun. See "Passing Extra Parameters" on page 2-10 for information on how to supply values for these parameters.

Note 'Jacobian' must be set to 'on' for Jinfo to be passed from fun to jmfun.

See "Nonlinear Minimization with a Dense but Structured Hessian and Equality Constraints" on page 4-62 for a similar example.
\(\left.\begin{array}{ll}\text { JacobPattern } & \begin{array}{l}\text { Sparsity pattern of the Jacobian for finite } \\ \text { differencing. If it is not convenient to compute } \\ \text { the Jacobian matrix } J \text { in fun, lsanonlin can }\end{array} \\ \text { approximate J via sparse finite differences, } \\ \text { provided the structure of J, i.e., locations of } \\ \text { the nonzeros, is supplied as the value for }\end{array}\right\}\)

\section*{Medium-Scale Algorithm Only}

These options are used only by the medium-scale algorithm:

\section*{Isqnonlin}
\begin{tabular}{ll} 
LevenbergMarquardt & \begin{tabular}{l} 
Choose Levenberg-Marquardt over \\
Gauss-Newton algorithm.
\end{tabular} \\
LineSearchType & Line search algorithm choice.
\end{tabular}

\section*{Examples Find \(x\) that minimizes}
\[
\sum_{k=1}^{10}\left(2+2 k-e^{k x_{1}}-e^{k x_{2}}\right)^{2}
\]
starting at the point \(\mathrm{x}=[0.3,0.4]\).
Because lsqnonlin assumes that the sum of squares is not explicitly formed in the user-defined function, the function passed to lsqnonlin should instead compute the vector-valued function
\[
F_{k}(x)=2+2 k-e^{k x_{1}}-e^{k x_{2}},
\]
for \(k=1\) to 10 (that is, F should have k components).
First, write an M-file to compute the k-component vector F .
```

function F = myfun(x)
k = 1:10;
F = 2 + 2*k-exp(k*x(1))-exp(k*x(2));

```

Next, invoke an optimization routine.
```

x0 = [0.3 0.4] % Starting guess
[x,resnorm] = lsqnonlin(@myfun,x0) % Invoke optimizer

```

After about 24 function evaluations, this example gives the solution
```

x =
0.2578 0.2578
resnorm % Residual or sum of squares
resnorm =
124.3622

```

\section*{Diagnostics Large-Scale Optimization}

\section*{Algorithm}

\section*{Large-Scale Optimization}

By default lsqnonlin chooses the large-scale algorithm. This algorithm is a subspace trust-region method and is based on the interior-reflective Newton method described in [1] and [2]. Each iteration involves the approximate solution of a large linear system using the method of preconditioned conjugate gradients (PCG). See "Trust-Region Methods for Nonlinear Minimization" on page 6-3 and "Preconditioned Conjugate Gradients" on page 6-12.

\section*{Medium-Scale Optimization}

If you set the LargeScale option to 'off' with optimset, Isqnonlin uses the Levenberg-Marquardt method with line search [4], [5], and [6]. Alternatively, you can select a Gauss-Newton method [6] with line search by setting the LevenbergMarquardt option to 'off' (and LargeScale to 'off') with optimset. The Gauss-Newton method is generally faster when the residual \(\|F(x)\|_{2}^{2}\) is small. The default line search algorithm, i.e., the LineSearchType option, is 'quadcubic'. This is a safeguarded mixed quadratic and cubic polynomial interpolation and extrapolation method. You can select a safeguarded cubic polynomial method by setting the LineSearchType option to 'cubicpoly'. This method generally requires fewer function evaluations but more gradient evaluations. Thus, if gradients are being supplied and can be calculated inexpensively, the cubic polynomial line search method is preferable. The algorithms used are described fully in Chapter 5, "Standard Algorithms".

The large-scale method does not allow equal upper and lower bounds. For example, if \(1 \mathrm{~b}(2)==u b(2)\), lsqlin gives the error

Equal upper and lower bounds not permitted.
(lsqnonlin does not handle equality constraints, which is another way to formulate equal bounds. If equality constraints are present, use fmincon, fminimax, or fgoalattain for alternative formulations where equality constraints can be included.)

\section*{Limitations}

The function to be minimized must be continuous. lsqnonlin might only give local solutions.
lsqnonlin only handles real variables. When \(x\) has complex variables, the variables must be split into real and imaginary parts.

\section*{Large-Scale Optimization}

The large-scale method for lsqnonlin does not solve underdetermined systems; it requires that the number of equations (i.e., the number of elements of \(F\) ) be at least as great as the number of variables. In the underdetermined case, the medium-scale algorithm is used instead. (If bound constraints exist, a warning is issued and the problem is solved with the bounds ignored.) See Large-Scale Problem Coverage and Requirements on page 4-44 for more information on what problem formulations are covered and what information must be provided.
The preconditioner computation used in the preconditioned conjugate gradient part of the large-scale method forms \(J^{T} J\) (where \(J\) is the Jacobian matrix) before computing the preconditioner; therefore, a row of \(J\) with many nonzeros, which results in a nearly dense product \(J^{T} J\), can lead to a costly solution process for large problems.

If components of \(x\) have no upper (or lower) bounds, then lsqnonlin prefers that the corresponding components of ub (or lb) be set to inf (or - inf for lower bounds) as opposed to an arbitrary but very large positive (or negative for lower bounds) number.

\section*{Medium-Scale Optimization}

The medium-scale algorithm does not handle bound constraints.
Because the large-scale algorithm does not handle underdetermined systems and the medium-scale algorithm does not handle bound constraints, problems with both these characteristics cannot be solved by lsqnonlin.

\section*{References}

See Also @ (function_handle), lsqcurvefit, lsqlin, optimset, optimtool
[1] Coleman, T.F. and Y. Li, "An Interior, Trust Region Approach for Nonlinear Minimization Subject to Bounds," SIAM Journal on Optimization, Vol. 6, pp. 418-445, 1996.
[2] Coleman, T.F. and Y. Li, "On the Convergence of Reflective Newton Methods for Large-Scale Nonlinear Minimization Subject to Bounds," Mathematical Programming, Vol. 67, Number 2, pp. 189-224, 1994.
[3] Dennis, J.E., Jr., "Nonlinear Least-Squares," State of the Art in Numerical Analysis, ed. D. Jacobs, Academic Press, pp. 269-312, 1977.
[4] Levenberg, K., "A Method for the Solution of Certain Problems in Least-Squares," Quarterly Applied Math. 2, pp. 164-168, 1944.
[5] Marquardt, D., "An Algorithm for Least-Squares Estimation of Nonlinear Parameters," SIAM Journal Applied Math., Vol. 11, pp. 431-441, 1963.
[6] Moré, J.J., "The Levenberg-Marquardt Algorithm: Implementation and Theory," Numerical Analysis, ed. G. A. Watson, Lecture Notes in Mathematics 630, Springer Verlag, pp. 105-116, 1977.

Purpose
Equation
Solve nonnegative least-squares constraint problem
Solves nonnegative least-squares curve fitting problems of the form
\[
\min _{x}\|C \cdot x-d\|_{2}^{2}, \text { where } x \geq 0
\]

Syntax
```

x = lsqnonneg(C,d)
x = lsqnonneg(C,d,x0)
x = lsqnonneg(C,d,x0,options)
x = lsqnonneg(problem)
[x,resnorm] = lsqnonneg(...)
[x,resnorm,residual] = lsqnonneg(...)
[x,resnorm,residual,exitflag] = lsqnonneg(...)
[x,resnorm,residual,exitflag,output] = lsqnonneg(...)
[x,resnorm,residual,exitflag,output,lambda] = lsqnonneg(...)

```

\section*{Description}
\(x=1\) sqnonneg \((C, d)\) returns the vector \(x\) that minimizes norm ( \(C * x-d)\) subject to \(x \geq 0\). \(C\) and \(d\) must be real.
\(x=1\) sqnonneg \((C, d, x 0)\) uses \(x 0\) as the starting point if all \(x 0 \geq 0\); otherwise, the default is used. The default start point is the origin (the default is also used when \(x 0=\) [ ] or when only two input arguments are provided).
\(x=1\) sqnonneg( \(C, d, x 0\), options) minimizes with the optimization options specified in the structure options. Use optimset to set these options.
\(x=1 s q n o n n e g(p r o b l e m)\) finds the minimum for problem, where problem is a structure described in "Input Arguments" on page 11-193.
Create the structure problem by exporting a problem from Optimization Tool, as described in "Exporting to the MATLAB \({ }^{\circledR}\) Workspace" on page 3-14.
[x, resnorm] = lsqnonneg (...) returns the value of the squared 2 -norm of the residual, norm ( \(\left.C^{*} x-d\right)^{\wedge} 2\).
[x,resnorm,residual] = lsqnonneg(...) returns the residual C*x-d.
[x,resnorm,residual,exitflag] = lsqnonneg(...) returns a value exitflag that describes the exit condition of lsqnonneg.
[x,resnorm,residual,exitflag,output] = lsqnonneg(...) returns a structure output that contains information about the optimization.
[x,resnorm,residual,exitflag,output,lambda] = lsqnonneg (...) returns the Lagrange multipliers in the vector lambda.

\section*{Input Arguments}
"Function Arguments" on page 9-2 contains general descriptions of arguments passed into lsqnonneg. This section provides function-specific details for options and problem:
\begin{tabular}{ll} 
options & \begin{tabular}{l} 
Use optimset to set or change the values of these \\
fields in the options structure, options. See \\
"Optimization Options" on page 9-8 for detailed \\
information.
\end{tabular} \\
Display & \begin{tabular}{l} 
Level of display. 'off' displays no \\
output; 'final' displays just the final \\
output; ' notify ' (default) displays \\
output only if the function does not \\
converge.
\end{tabular} \\
problem & \begin{tabular}{ll} 
Tolx & \begin{tabular}{l} 
Termination tolerance on x.
\end{tabular} \\
c & \begin{tabular}{l} 
Matrix
\end{tabular} \\
xo & \begin{tabular}{l} 
Vector
\end{tabular} \\
solver & \begin{tabular}{l} 
Initial point for x
\end{tabular} \\
options & \begin{tabular}{l} 
Options structure created with \\
optimset
\end{tabular}
\end{tabular}
\end{tabular}

\section*{Output Arguments}
"Function Arguments" on page 9-2 contains general descriptions of arguments returned by lsqnonneg. This section provides function-specific details for exitflag, lambda, and output:
exitflag \begin{tabular}{l} 
Integer identifying the reason the algorithm \\
terminated. The following lists the values of \\
exitflag and the corresponding reasons the \\
algorithm terminated.
\end{tabular}

1 Function converged to a solution x .

0
Number of iterations exceeded options.MaxIter.
lambda Vector containing the Lagrange multipliers: lambda ( \(i\) ) \(\leq 0\) when \(x(i)\) is (approximately) 0 , and lambda(i) is (approximately) 0 when \(\mathrm{x}(\mathrm{i})>0\).
output Structure containing information about the optimization. The fields are
\begin{tabular}{ll} 
iterations & Number of iterations taken \\
algorithm & Optimization algorithm used \\
message & Exit message
\end{tabular}

Examples Compare the unconstrained least-squares solution to the lsqnonneg solution for a 4-by-2 problem.
```

$C=[$
$0.0372 \quad 0.2869$
$0.6861 \quad 0.7071$
$0.6233 \quad 0.6245$
0.6344 0.6170];
d $=$ [
0.8587
0.1781

```
```

    0.0747
    0.8405];
    [C\d, lsqnonneg(C,d)] =
-2.5627 0
3.1108 0.6929
[norm(C*(C\d)-d), norm(C*lsqnonneg(C,d)-d)] =
0.6674 0.9118

```

The solution from lsqnonneg does not fit as well as the least-squares solution. However, the nonnegative least-squares solution has no negative components.

\section*{Algorithm}

Notes
lsqnonneg uses the algorithm described in [1]. The algorithm starts with a set of possible basis vectors and computes the associated dual vector lambda. It then selects the basis vector corresponding to the maximum value in lambda in order to swap it out of the basis in exchange for another possible candidate. This continues until lambda \(\leq 0\).

The nonnegative least-squares problem is a subset of the constrained linear least-squares problem. Thus, when C has more rows than columns (i.e., the system is overdetermined),
```

[x,resnorm,residual,exitflag,output,lambda] = ...
lsqnonneg(C,d)

```
is equivalent to
```

    [m,n] = size(C);
    [x,resnorm,residual,exitflag,output,lambda_lsqlin] = ...
        lsqlin(C,d,-eye(n,n),zeros(n,1));
    except that lambda = -lambda_lsqlin.ineqlin.

```

For problems greater than order 20, lsqlin might be faster than lsqnonneg; otherwise lsqnonneg is generally more efficient.

\section*{References}
[1] Lawson, C.L. and R.J. Hanson, Solving Least-Squares Problems, Prentice-Hall, Chapter 23, p. 161, 1974.

See Also \(\backslash\) (matrix left division), lsqlin, optimset, optimtool
Purpose Optimization options values
Syntax val = optimget(options,'param')val = optimget(options,'param',default)
Description val \(=\) optimget(options,' param') returns the value of the specifiedoption in the optimization options structure options. You need to typeonly enough leading characters to define the option name uniquely.Case is ignored for option names.
val = optimget(options,'param',default) returns default if thespecified option is not defined in the optimization options structureoptions. Note that this form of the function is used primarily by otheroptimization functions.
Examples This statement returns the value of the Display option in the structurecalled my_options.
```

val = optimget(my_options,'Display')

```
This statement returns the value of the Display option in the structure called my_options (as in the previous example) except that if the Display option is not defined, it returns the value 'final'.
```

optnew = optimget(my_options,'Display','final');

```
See Also optimset

Purpose Create or edit optimization options structure
\(\begin{array}{ll}\text { Syntax } & \begin{array}{l}\text { options }= \\ \text { optimset }\end{array} \\ \begin{array}{l}\text { options }= \\ \\ \text { options }\end{array}=\text { optimset } \\ \text { optimset (optimfun) } \\ \text { options }= & \text { optimset(oldopts, 'param1' ', value1, } \ldots \text { ) }\end{array}\) creates an optimization options structure called options, in which the specified options (param) have specified values. Any unspecified options are set to [] (options with value [] indicate to use the default value for that option when you pass options to the optimization function). It is sufficient to type only enough leading characters to define the option name uniquely. Case is ignored for option names.
optimset with no input or output arguments displays a complete list of options with their valid values.
options = optimset (with no input arguments) creates an options structure options where all fields are set to [].
options = optimset(optimfun) creates an options structure options with all option names and default values relevant to the optimization function optimfun.
options = optimset(oldopts,'param1', value1, ...) creates a copy of oldopts, modifying the specified options with the specified values.
options = optimset(oldopts, newopts) combines an existing options structure, oldopts, with a new options structure, newopts. Any options in newopts with nonempty values overwrite the corresponding old options in oldopts.

\section*{Options}

For more information about individual options, see the reference pages for the optimization functions that use these options. "Optimization Options" on page 9-8 provides descriptions of these options and which functions use them.

In the following lists, values in \{ \} denote the default value; some options have different defaults for different optimization functions and so no values are shown in \(\}\).

You can also view the optimization options and defaults by typing optimset at the command line.

Optimization options used by both large-scale and medium-scale algorithms:
\begin{tabular}{|c|c|}
\hline Algorithm & ```
'active-set' | 'interior-point' |
{'trust-region-reflective'}
``` \\
\hline DerivativeCheck & 'on' | \{'off'\} \\
\hline Diagnostics & 'on' | \{'off'\} \\
\hline Display & 'off' | 'iter' |'final' |'notify' \\
\hline FunValCheck & \{'off'\} | 'on' \\
\hline GradObj & 'on' | \{'off'\} \\
\hline Jacobian & 'on' | \{'off'\} \\
\hline LargeScale & 'on' |'off'. The default for fsolve is off \('\). The default for all other functions that provide a large-scale algorithm is ' on ' \\
\hline MaxFunEvals & Positive integer \\
\hline MaxIter & Positive integer \\
\hline OutputFen & function_handle | \{[]\}. Specify one or more (using a cell array of function handles) user-defined functions that an optimization function calls at each iteration. See "Output Function" on page 9-18. \\
\hline
\end{tabular}
\begin{tabular}{ll} 
PlotFcns & \begin{tabular}{l} 
function_handle | \{[]\}. Specify one or \\
more (using a cell array of function handles) \\
pre- or user-defined plot functions that an \\
optimization function calls at each iteration.
\end{tabular} \\
TolCon & \begin{tabular}{l} 
See "Plot Functions" on page 9-27.
\end{tabular} \\
TolFun & Positive scalar \\
TolX & Positive scalar \\
TypicalX & Positive scalar \\
& Vector of all ones
\end{tabular}

Optimization options used by large-scale algorithms only:
\begin{tabular}{|c|c|}
\hline Hessian & 'on' | \{'off'\} \\
\hline HessMult & Function | \{[]\} \\
\hline HessPattern & Sparse matrix | \{sparse matrix of all ones\} \\
\hline InitialHessMatrix & ```
{'identity'} | 'scaled-identity' |
'user-supplied'
``` \\
\hline InitialHessType & scalar \(\mid\) vector \(\mid\{[]\}\) \\
\hline JacobMult & Function | \{[]\} \\
\hline JacobPattern & Sparse matrix | \{sparse matrix of all ones\} \\
\hline MaxPCGIter & Positive integer | \{the greater of 1 and floor( \(n / 2\) )) \} where \(n\) is the number of elements in \(x 0\), the starting point \\
\hline PrecondBandWidth & Positive integer | 0 | Inf \\
\hline & The default value depends on the solver. \\
\hline TolPCG & Positive scalar | 00.1 \} \\
\hline
\end{tabular}

Optimization options used by medium-scale algorithms only:
\begin{tabular}{|c|c|}
\hline BranchStrategy & 'mininfeas' | \{'maxinfeas'\} \\
\hline DiffMaxChange & Positive scalar | \(\{1 \mathrm{e}-1\}\) \\
\hline DiffMinChange & Positive scalar | \(\{1 \mathrm{e}-8\}\) \\
\hline GoalsExactAchieve & Positive scalar integer | \(\{0\}\) \\
\hline GradConstr & 'on' | \{'off'\} \\
\hline HessUpdate & \{'bfgs'\}| 'dfp' | 'steepdesc' \\
\hline LevenbergMarquardt & 'on' | \{'off'\} \\
\hline LineSearchType & 'cubicpoly' | \{'quadcubic'\} \\
\hline MaxNodes & Positive scalar | \{1000*NumberOfVariables\} \\
\hline MaxRLPIter & Positive scalar | \{100*NumberOfVariables\} \\
\hline MaxSQPIter & Positive integer \\
\hline MaxTime & Positive scalar | \{7200\} \\
\hline MeritFunction & singleobj' | \{'multiobj'\} \\
\hline MinAbsMax & Positive scalar integer | \(\{0\}\) \\
\hline NodeDisplayInterval & Positive scalar | \(\{20\}\) \\
\hline NodeSearchStrategy & 'df' | \{'bn'\} \\
\hline NonlEqnAlgorithm & \{'dogleg'\} | 'lm' | 'gn', where 'lm' is Levenburg-Marquardt and 'gn' is Gauss-Newton. \\
\hline RelLineSrchBnd & Real nonnegative scalar | \{[]\} \\
\hline RelLineSrchBndDuration & Positive integer | \(\{1\}\) \\
\hline Simplex & When you set 'Simplex' to 'on' and 'LargeScale' to 'off', linprog uses the simplex algorithm to solve a constrained linear programming problem. \\
\hline
\end{tabular}
\begin{tabular}{ll} 
TolConSQP & Positive scalar \(\mid\{1 \mathrm{e}-6\}\) \\
TolRLPFun & Positive scalar \(\mid\{1 \mathrm{e}-6\}\) \\
TolXInteger & Positive scalar \(\mid\{1 \mathrm{e}-8\}\) \\
UseParallel & 'always' \(\mid\{\) 'never' \(\}\)
\end{tabular}

Optimization options used by interior-point algorithm only:
\begin{tabular}{|c|c|}
\hline AlwaysHonorConstraints & 'bounds' | \{'none'\} \\
\hline FinDiffType & 'central' | \{'forward'\} \\
\hline HessFcn & Function handle to a user-supplied Hessian \\
\hline Hessian & 'fin-diff-grads' | 'lbfgs' | \{'lbfgs',Positive Integer\} | user-supplied' | \{bfgs\} \\
\hline HessMult & Handle to a user-supplied function that gives a Hessian-times-vector product \\
\hline InitBarrierParameter & Positive real scalar | \(\{0.1\}\) \\
\hline InitTrustRegionRadius & Positive real scalar |\{ \(\sqrt{n}\}\), where \(n\) is the number of variables. \\
\hline MaxProjCGIter & Positive integer | \(\left\{2^{*}\right.\) ( n - neq\}, where \(n\) is the number of variables, and neq is the number of equalities \\
\hline ObjectiveLimit & Scalar |-1e20 \\
\hline ScaleProblem & 'none' | \{'obj-and-constr' \\
\hline SubproblemAlgorithm & 'cg' | \{'ldl-factorization'\} \\
\hline TolProjCG & Positive scalar | \(\{1 \mathrm{e}-2\}\) \\
\hline TolProjCGAbs & Positive scalar | \(\{1 \mathrm{e}-10\}\) \\
\hline
\end{tabular}
```

Examples This statement creates an optimization options structure called
options in which the Display option is set to 'iter' and the TolFun
option is set to $1 \mathrm{e}-8$.
options = optimset('Display','iter','TolFun',1e-8)
This statement makes a copy of the options structure called options, changing the value of the TolX option and storing new values in optnew.

```
```

optnew = optimset(options,'TolX',1e-4);

```
optnew = optimset(options,'TolX',1e-4);
This statement returns an optimization options structure options that contains all the option names and default values relevant to the function fminbnd.
```

```
options = optimset('fminbnd')
```

options = optimset('fminbnd')
If you only want to see the default values for fminbnd, you can simply type

```
```

    optimset fminbnd
    ```
    optimset fminbnd
or equivalently
optimset('fminbnd')
See Also
optimget, optimtool
```


## optimtool

Purpose Tool to select solver, optimization options, and run problems

| Syntax | optimtool <br> optimtool(optstruct) <br> optimtool('solver') |
| :--- | :--- |

Description
optimtool opens the Optimization tool, a graphical user interface (GUI) for selecting a solver, the optimization options, and running problems. See Chapter 3, "Optimization Tool" for a complete description of the tool.
optimtool can be used to run any Optimization Toolbox ${ }^{\mathrm{TM}}$ solver, and any Genetic Algorithm and Direct Search Toolbox ${ }^{\mathrm{TM}}$ solver. Results can be exported to an M-file or to the MATLAB ${ }^{\circledR}$ workspace as a structure.
optimtool(optstruct) starts the Optimization Tool with optstruct. optstruct can either be an optimization options structure or optimization problem structure. An options structure can be created using the optimset function or by using the export option from optimtool. A problem structure can be created or modified in optimtool by exporting the problem information to the MATLAB workspace.
optimtool('solver') starts the Optimization Tool with the specified solver, identified as a string, and the corresponding default options and problem fields. All Optimization Toolbox solvers are valid inputs to the optimtool function.


See Also optimset

## Purpose

## Equation

Solve quadratic programming problems
Finds a minimum for a problem specified by

$$
\min _{x} \frac{1}{2} x^{T} H x+f^{T} x \text { such that }\left\{\begin{aligned}
A \cdot x & \leq b \\
A e q \cdot x & =b e q \\
l b \leq x & \leq u b
\end{aligned}\right.
$$

$H, A$, and Aeq are matrices, and $f, b, b e q, l b, u b$, and $x$ are vectors.
Syntax

```
x = quadprog(H,f,A,b)
x = quadprog(H,f,A,b,Aeq,beq)
x = quadprog(H,f,A,b,Aeq,beq,lb,ub)
x = quadprog(H,f,A,b,Aeq,beq,lb,ub,x0)
x = quadprog(H,f,A,b,Aeq,beq,lb,ub,x0,options)
x = quadprog(problem)
[x,fval] = quadprog(...)
[x,fval,exitflag] = quadprog(...)
[x,fval,exitflag,output] = quadprog(...)
[x,fval,exitflag,output,lambda] = quadprog(...)
```


## Description

$x=$ quadprog $(H, f, A, b)$ returns a vector $x$ that minimizes $1 / 2^{*} x^{\prime *} H^{*} x+f^{\prime *} x$ subject to $A^{*} x \leq b$.
$x=$ quadprog ( $H, f, A, b, A e q, b e q)$ solves the preceding problem while additionally satisfying the equality constraints Aeq*x = beq. If no inequalities exist, set $\mathrm{A}=$ [] and $\mathrm{b}=$ [].
$x=$ quadprog ( $H, f, A, b, A e q, b e q, l b, u b)$ defines a set of lower and upper bounds on the design variables, $x$, so that the solution is in the range $\mathrm{lb} \leq \mathrm{x} \leq \mathrm{ub}$. If no equalities exist, set Aeq $=$ [] and beq $=$ []. $x=q u a d p r o g(H, f, A, b, A e q, b e q, l b, u b, x 0)$ sets the starting point to $x 0$. If no bounds exist, set $l b=[]$ and $u b=[]$.
$\mathrm{x}=$ quadprog $(\mathrm{H}, \mathrm{f}, \mathrm{A}, \mathrm{b}, \mathrm{Aeq}, \mathrm{beq}, \mathrm{lb}, \mathrm{ub}, \mathrm{x} 0$, options $)$ minimizes with the optimization options specified in the structure options. Use

## quadprog

optimset to set these options. If you do not wish to give an initial point, set x0 = [].
$x=$ quadprog(problem) finds the minimum for problem, where problem is a structure described in "Input Arguments" on page 11-209.

Create the structure problem by exporting a problem from Optimization Tool, as described in "Exporting to the MATLAB ${ }^{\circledR}$ Workspace" on page 3-14.
[x,fval] = quadprog(...) returns the value of the objective function at x :

$$
f \text { val }=0.5{ }^{*} x^{\prime *} H^{*} x+f^{\prime *} x \text {. }
$$

[x,fval,exitflag] = quadprog(...) returns a value exitflag that describes the exit condition of quadprog.
[x,fval,exitflag,output] = quadprog(...) returns a structure output that contains information about the optimization.
[x,fval,exitflag,output,lambda] = quadprog(...) returns a structure lambda whose fields contain the Lagrange multipliers at the solution x .

Note If the specified input bounds for a problem are inconsistent, the output $x$ is $x 0$ and the output fval is [].

Components of x 0 that violate the bounds $\mathrm{lb} \leq \mathrm{x} \leq \mathrm{ub}$ are reset to the interior of the box defined by the bounds. Components that respect the bounds are not changed.

If no $x 0$ is provided, all components of $x 0$ are set to a point in the interior of the box defined by the bounds.

## Input Arguments

## Output Arguments

"Function Arguments" on page 9-2 contains general descriptions of arguments passed into quadprog. "Options" on page 11-211 provides function-specific details for the options values.

| problem | H | Symmetric matrix |
| :--- | :--- | :--- |
|  | f | Vector |
|  | Aineq | Matrix for linear inequality constraints |
|  | bineq | Vector for linear inequality constraints |
| Aeq | Matrix for linear equality constraints |  |
| beq | Vector for linear equality constraints |  |
| lb | Vector of lower bounds |  |
| ub | Vector of upper bounds |  |
| xo | Initial point for $x$ |  |
| solver | 'quadprog' |  |
| options | Options structure created with optimset |  |

"Function Arguments" on page 9-2 contains general descriptions of arguments returned by quadprog. This section provides function-specific details for exitflag, lambda, and output:

exitflag | Integer identifying the reason the algorithm |
| :--- |
| terminated. The following lists the values of |
| exitflag and the corresponding reasons the |
| algorithm terminated: |

## quadprog

|  | 4 | Local minimizer was found. |
| :---: | :---: | :---: |
|  | 0 | Number of iterations exceeded options.MaxIter. |
|  | -2 | Problem is infeasible. |
|  | -3 | Problem is unbounded. |
|  | -4 | Current search direction was not a direction of descent. No further progress could be made. |
|  | -7 | Magnitude of search direction became too small. No further progress could be made. |
| lambda | Structure co at the soluti type). The f | g the Lagrange multipliers separated by constraint re |
|  | lower | Lower bounds lb |
|  | upper | Upper bounds ub |
|  | ineqlin | Linear inequalities |
|  | eqlin | Linear equalities |
| output | Structure co optimization | ng information about the fields are |
|  | iterations | Number of iterations taken |
|  | algorithm | Optimization algorithm used |


| cgiterations | Total number of PCG <br> iterations (large-scale <br> algorithm only) |
| :--- | :--- |
| firstorderopt | Measure of first-order <br> optimality (large-scale <br> algorithm only) |
| message | Exit message |

## Options

Optimization options. Use optimset to set or change the values of these options. Some options apply to all algorithms, some are only relevant when using the large-scale algorithm, and others are only relevant when you are using the medium-scale algorithm. See "Optimization Options" on page 9-8 for detailed information.

The option to set an algorithm preference is as follows.
LargeScale Use large-scale algorithm if possible when set to ' on '. Use medium-scale algorithm when set to 'off'.
'on ' is only a preference. If the problem has only upper and lower bounds; i.e., no linear inequalities or equalities are specified, the default algorithm is the large-scale method. Or, if the problem given to quadprog has only linear equalities; i.e., no upper and lower bounds or linear inequalities are specified, and the number of equalities is no greater than the length of $x$, the default algorithm is the large-scale method. Otherwise the medium-scale algorithm is used.

## Medium-Scale and Large-Scale Algorithms

These options are used by both the medium-scale and large-scale algorithms:

## quadprog

| Diagnostics | Display diagnostic information about the function <br> to be minimized. |
| :--- | :--- |
| Display | Level of display. 'off' displays no output, and <br> 'final' (default) displays just the final output. |
| MaxIter | Maximum number of iterations allowed. |
| TypicalX | Typical $x$ values. |

## Large-Scale Algorithm Only

These options are used only by the large-scale algorithm:

| HessMult | Function handle for Hessian multiply <br> function. For large-scale structured problems, <br> this function computes the Hessian matrix <br> product H*Y without actually forming H. The <br> function is of the form |
| :--- | :--- |
| W = hmfun(Hinfo, Y) |  |
| maxPCGIter | where Hinfo and possibly some additional <br> parameters contain the matrices used to <br> compute H*Y. |
| See "Quadratic Minimization with a Dense <br> but Structured Hessian" on page 4-68 for an <br> example that uses this option. |  |
| Maximum number of PCG (preconditioned <br> conjugate gradient) iterations. See <br> "Algorithm" on page 11-216 for more <br> information. |  |

\(\left.$$
\begin{array}{ll}\text { PrecondBandWidth } & \begin{array}{l}\text { Upper bandwidth of preconditioner for PCG. } \\
\text { By default, diagonal preconditioning is used } \\
\text { (upper bandwidth of 0). For some problems, } \\
\text { increasing the bandwidth reduces the number } \\
\text { of PCG iterations. Setting PrecondBandWidth } \\
\text { to ' Inf ' uses a direct factorization (Cholesky) } \\
\text { rather than the conjugate gradients (CG). The } \\
\text { direct factorization is computationally more } \\
\text { expensive than CG, but produces a better } \\
\text { quality step towards the solution. }\end{array} \\
\text { TolFun } & \begin{array}{l}\text { Termination tolerance on the function value. } \\
\text { TolFun is used as the exit criterion for } \\
\text { problems with simple lower and upper bounds } \\
\text { (lb, ub). }\end{array} \\
\text { TolPCG } & \begin{array}{l}\text { Termination tolerance on the PCG iteration. }\end{array}
$$ <br>

TolPCG is used as the exit criterion for\end{array}\right\}\)| problems with only equality constraints (Aeq, |
| :--- |
| beq). |

## Examples Find values of $x$ that minimize

$$
f(x)=\frac{1}{2} x_{1}^{2}+x_{2}^{2}-x_{1} x_{2}-2 x_{1}-6 x_{2}
$$

subject to

$$
\begin{aligned}
& x_{1}+x_{2} \leq 2 \\
& -x_{1}+2 x_{2} \leq 2 \\
& 2 x_{1}+x_{2} \leq 3 \\
& 0 \leq x_{1}, 0 \leq x_{2} .
\end{aligned}
$$

First, note that this function can be written in matrix notation as

$$
f(x)=\frac{1}{2} x^{T} H x+f^{T} x,
$$

where

$$
H=\left[\begin{array}{cc}
1 & -1 \\
-1 & 2
\end{array}\right], f=\left[\begin{array}{l}
-2 \\
-6
\end{array}\right], \quad x=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] .
$$

Enter these coefficient matrices.

```
H=[[1-1; -1 2]
f = [-2; -6]
A = [1 1; -1 2; 2 1]
b = [2; 2; 3]
lb = zeros(2,1)
```

Next, invoke a quadratic programming routine.

```
[x,fval,exitflag,output,lambda] = ...
    quadprog(H,f,A,b,[],[],lb)
```

This generates the solution
$\mathrm{x}=$
0.6667
1.3333
fval $=$
-8.2222
exitflag =
1
output =
iterations: 3
algorithm: 'medium-scale: active-set'
firstorderopt: []
cgiterations: []
message: 'Optimization terminated.
lambda =
lower: [2x1 double]

```
    upper: [2x1 double]
    eqlin: [0x1 double]
    ineqlin: [3x1 double]
```

lambda.ineqlin
ans =
3.1111
0.4444
0
lambda. lower
ans =
0
0

Nonzero elements of the vectors in the fields of lambda indicate active constraints at the solution. In this case, the first and second inequality constraints (in lambda.ineqlin) are active constraints (i.e., the solution is on their constraint boundaries). For this problem, all the lower bounds are inactive.

Notes
In general quadprog locates a local solution unless the problem is strictly convex.

Better numerical results are likely if you specify equalities explicitly, using Aeq and beq, instead of implicitly, using lb and ub.

If the components of $x$ have no upper (or lower) bounds, then quadprog prefers that the corresponding components of ub (or lb) be set to Inf (or - Inf for lb) as opposed to an arbitrary but very large positive (or negative in the case of lower bounds) number.

## Large-Scale Optimization

By default, quadprog uses the large-scale algorithm if you specify the feasible region using one, but not both, of the following types of constraints:

- Upper and lower bounds constraints


## quadprog

## Algorithm

- Linear equality constraints, in which the columns of the constraint matrix Aeq are linearly independent. Aeq is typically sparse.

You cannot use inequality constraints with the large-scale algorithm. If the preceding conditions are not met, quadprog reverts to the medium-scale algorithm.

If you do not supply $x 0$, or $x 0$ is not strictly feasible, quadprog chooses a new strictly feasible (centered) starting point.

If an equality constrained problem is posed and quadprog detects negative curvature, the optimization terminates because the constraints are not restrictive enough. In this case, exitflag is returned with the value -1 , a message is displayed (unless the options Display option is 'off'), and the $x$ returned is not a solution but a direction of negative curvature with respect to H .

For problems with simple lower and upper bounds (lb, ub), quadprog exits based on the value of TolFun. For problems with only equality constraints (Aeq, beq), the exit is based on TolPCG. Adjust TolFun and TolPCG to affect your results. TolX is used by both types of problems.

## Large-Scale Optimization

The large-scale algorithm is a subspace trust-region method based on the interior-reflective Newton method described in [1]. Each iteration involves the approximate solution of a large linear system using the method of preconditioned conjugate gradients (PCG). See "Trust-Region Methods for Nonlinear Minimization" on page 6-3 and "Preconditioned Conjugate Gradients" on page 6-12.

## Medium-Scale Optimization

quadprog uses an active set method, which is also a projection method, similar to that described in [2]. It finds an initial feasible solution by first solving a linear programming problem. This method is discussed in Chapter 5, "Standard Algorithms".

## Diagnostics

## Large-Scale Optimization

The large-scale method does not allow equal upper and lower bounds. For example, if $l b(2)==u b(2)$, then quadprog gives this error:

```
Equal upper and lower bounds not permitted
in this large-scale method.
Use equality constraints and the medium-scale
method instead.
```

If you only have equality constraints you can still use the large-scale method. But if you have both equalities and bounds, you must use the medium-scale method.

## Medium-Scale Optimization

When the problem is infeasible, quadprog gives this warning:

```
Warning: The constraints are overly stringent;
    there is no feasible solution.
```

In this case, quadprog produces a result that minimizes the worst case constraint violation.

When the equality constraints are inconsistent, quadprog gives this warning:

```
Warning: The equality constraints are overly stringent;
    there is no feasible solution.
```

Unbounded solutions, which can occur when the Hessian H is negative semidefinite, can result in

```
Warning: The solution is unbounded and at infinity;
    the constraints are not restrictive enough.
```

In this case, quadprog returns a value of $x$ that satisfies the constraints.
Limitations

At this time the only levels of display, using the Display option in
References

[1] Coleman, T.F. and Y. Li, "A Reflective Newton Method for Minimizing
a Quadratic Function Subject to Bounds on some of the Variables,"
SIAM Journal on Optimization, Vol. 6, Number 4, pp. 1040-1058, 1996.See Also options, are 'off' and 'final'; iterative output using 'iter' is not available.
The solution to indefinite or negative definite problems is often unbounded (in this case, exitflag is returned with a negative value to show that a minimum was not found); when a finite solution does exist, quadprog might only give local minima, because the problem might be nonconvex.

## Large-Scale Optimization

The linear equalities cannot be dependent (i.e., Aeq must have full row rank). Note that this means that Aeq cannot have more rows than columns. If either of these cases occurs, the medium-scale algorithm is called instead. See Large-Scale Problem Coverage and Requirements on page 4-44 for more information on what problem formulations are covered and what information must be provided.
[2] Gill, P. E. and W. Murray, and M.H. Wright, Practical Optimization, Academic Press, London, UK, 1981.
See Also linprog, lsqlin, optimtool

## Examples

Use this list to find examples in the documentation.

## Examples that Use Standard Algorithms

"Example: Nonlinear Constrained Minimization" on page 1-4
"Unconstrained Minimization Example" on page 4-5
"Nonlinear Inequality Constrained Example" on page 4-7
"Constrained Example with Bounds" on page 4-8
"Constrained Example with Gradients" on page 4-10
"Gradient Check: Analytic vs. Numeric" on page 4-18
"Equality Constrained Example" on page 4-19
"Nonlinear Equations with Analytic Jacobian" on page 4-20
"Nonlinear Equations with Finite-Difference Jacobian" on page 4-23
"Error Estimates in Nonlinear Curve Fitting with lsqcurvefit" on page 4-24
"Using lsqnonlin With a Simulink ${ }^{\circledR}$ Model" on page 4-29
"Signal Processing Example" on page 4-38

## Optimization Tool Examples

"Problem Formulation: Rosenbrock's Function" on page 1-4
"Optimization Tool with the fmincon Solver" on page 3-18
"Optimization Tool with the lsqlin Solver" on page 3-22
"Constrained Minimization Using fmincon's Interior-Point Algorithm With Analytic Hessian" on page 4-12

## Large-Scale Examples

"Nonlinear Equations with Jacobian" on page 4-47
"Nonlinear Equations with Jacobian Sparsity Pattern" on page 4-49
"Nonlinear Least-Squares with Full Jacobian Sparsity Pattern" on page 4-52
"Nonlinear Minimization with Gradient and Hessian" on page 4-53
"Nonlinear Minimization with Gradient and Hessian Sparsity Pattern" on page $4-55$
"Nonlinear Minimization with Bound Constraints and Banded Preconditioner" on page 4-57
"Nonlinear Minimization with Equality Constraints" on page 4-60
"Nonlinear Minimization with a Dense but Structured Hessian and Equality Constraints" on page 4-62
"Quadratic Minimization with Bound Constraints" on page 4-66
"Quadratic Minimization with a Dense but Structured Hessian" on page 4-68
"Linear Least-Squares with Bound Constraints" on page 4-73
"Linear Programming with Equalities and Inequalities" on page 4-75
"Linear Programming with Dense Columns in the Equalities" on page 4-76

## A

active constraints
linprog example 11-147
lsqlin example 11-175
quadprog example 11-215
active set method
fmincon medium-scale algorithm 11-56
linprog medium-scale algorithm 11-148
lsqlin medium-scale algorithm 11-176
quadprog medium-scale algorithm 11-216
sequential quadratic programming (SQP) 5-34
attainment factor 11-25
Avoiding Global Variables 2-10
axis crossing.. See zero of a function

## B

banana function. See Rosenbrock's function
Barrier function 6-6
basin of attraction 2-39
BFGS formula 5-8
fmincon medium-scale algorithm 11-56
fminunc medium-scale algorithm 11-90
bintprog 11-2
bisection search 11-129
bound constraints, large-scale 6-15
box constraints.. See bound constraints

## C

centering parameter 6-22
CG. See conjugate gradients
color 11-11
complementarity conditions 6-21
complex variables
lsqcurvefit 11-164
lsqnonlin 11-190
computing, parallel 7-1
conjugate gradients 6-4 6-6
constrained minimization 11-35 11-132 large-scale example
with bound constraints and banded preconditioner 4-57
with equality constraints 4-60
constraints
linear 6-14
fmincon 11-55
fminimax 11-69
continuous derivative gradient methods 5-6
convex problem 5-29
curve-fitting 10-3 11-152
categories 2-22
functions that apply 10-3

## D

data-fitting 10-3 11-152
categories 2-22
functions that apply 10-3
dense columns, constraint matrix 6-22
DFP formula 11-90
direction of negative curvature 6-4
discontinuities 4-92
discontinuous problems
fminsearch 11-78
fminunc 11-90
discrete variables 4-93
distributed computing 7-1
dual problem 6-20
duality gap 6-21

## E

equality constraints
dense columns 4-76
medium-scale example 4-19
equality constraints inconsistent warning, quadprog 11-217
equality constraints, linear
large-scale 6-14
equation solving
categories 2-22
functions that apply 10-2
error, Out of memory 4-52

## F

F-count 2-25
feasibility conditions 6-21
feasible point, finding 5-37
fgoalattain 11-12
example 4-39
first-order optimality measure 2-26
fixed variables 6-23
fixed-step ODE solver 4-34
flag. See exitflag on individual function pages
fminbnd 11-29
fmincon 11-35
large-scale example with bound constraints and banded preconditioner 4-57
with equality constraints 4-60
medium-scale example 4-7
fminimax 11-59
example 4-35
fminsearch 11-72
fminunc 11-79
large-scale example 4-53
medium-scale example 4-5
warning messages 4-91
fseminf 11-93
fsolve 11-109
large-scale Jacobian 4-47
medium-scale analytic Jacobian 4-20
medium-scale finite difference Jacobian 4-23
fsolve medium-scale default 11-120
function arguments 9-2
function discontinuities 4-92
functions
grouped by category 10-1
fzero 11-124
fzmult 11-130

## G

gangstr 11-131
Gauss-Newton method (large-scale)
nonlinear least-squares 6-17
Gauss-Newton method (medium-scale)
implementation, nonlinear equations 5-27
implementation, nonlinear least squares 5-22
least-squares optimization 5-20
solving nonlinear equations $5-25$
global and local minima 2-39
global optimum 7-9
goal attainment 5-44
example 4-39
fgoalattain 10-2 11-12
goaldemo 11-24
golden section search 11-34
Gradient
writing 2-4
gradient checking, analytic 4-18
gradient examples 4-10
gradient methods
continuous first derivative 5-6
quasi-Newton 5-7
unconstrained optimization 5-6

## H

Hessian 2-4
writing 2-4
Hessian modified message 5-34
Hessian modified twice message 5-34
Hessian sparsity structure 4-56
Hessian update 5-11
stage of SQP implementation 5-32
Hessian updating methods 5-8

## I

inconsistent constraints 11-151
indefinite problems 11-218
infeasible message 5-34
infeasible optimization problems 4-92
infeasible problems 11-56
infeasible solution warning
linprog 11-150
quadprog 11-217
input arguments 9-2
integer variables 4-93
interior-point algorithm 4-12
interior-point linear programming 6-20
introduction to optimization 5-4

## J

Jacobian 2-6
analytic 4-20
finite difference 4-23
large-scale nonlinear equations 4-47
Jacobian sparsity pattern 4-49

## K

Karush-Kuhn-Tucker conditions 2-27 5-29
KKT conditions 2-27
KNITRO ${ }^{\circledR}$ 8-2
ktrlink 11-132

## L

Lagrange multiplier 2-30 4-14
Lagrange multipliers
large-scale linear programming 6-24
Lagrangian 2-27 11-42 11-137
large-scale functionality coverage 4-43
large-scale methods 6-1
demos 6-11
examples 4-42
least squares 5-20
categories 2-22
functions that apply 10-3
Levenberg-Marquardt method 5-21
lsqcurvefit medium-scale default 11-164
lsqnonlin medium-scale default 11-189
search direction 5-21
line search
fminunc medium-scale default 11-90
fsolve medium-scale default $11-120$
lsqcurvefit medium-scale default 11-164
lsqnonlin medium-scale default 11-189
unconstrained optimization 5-9
line search strategy $4-3$
linear constraints 6-14
fmincon 11-55
fminimax 11-69
linear equations solve 11-119
linear least squares
constrained 11-167
large-scale algorithm 6-19
large-scale example 4-73
nonnegative 10-3 11-192
unconstrained 11-175
linear programming 10-2 11-142
implementation 5-37
large-scale algorithm 6-20
large-scale example
with dense columns in equalities 4-76
with equalities and inequalities 4-75
problem 5-4
linprog 11-142
large-scale example
with dense columns in equalities 4-76
with equalities and inequalities 4-75
LIPSOL 6-20
local and global minima 2-39
lower bounds 4-8
lsqcurvefit 11-152
lsqlin 11-167
large-scale example 4-73
lsqnonlin 11-178
convergence 4-93
large-scale example 4-49
medium-scale example 4-31
lsqnonneg 11-192

## M

Maximization 2-9
medium-scale methods 5-1
demos 5-5
Mehrotra's predictor-corrector algorithm 6-20
merit function 5-38 6-7
minimax examples 4-35
minimax problem, solving 10-2 11-59
minimization
categories 2-20
functions that apply 10-2
minimum
global 2-39
local 2-39
Multiobjective
categories 2-21
multiobjective optimization
examples 4-28
fgoalattain 10-2 11-12

## N

negative curvature direction
in PCG algorithm 6-12
in trust-region methods 6-4
negative definite problems 11-218
Nelder and Mead 5-6
Newton direction
approximate 6-4

Newton's method
systems of nonlinear equations 5-26
unconstrained optimization 5-6
no update message 5-34
nonconvex problems 11-218
nonlinear data-fitting
fminsearch 11-78
fminunc 11-90
lsqnonlin 11-178
nonlinear equations Newton's method 5-26
nonlinear equations (large-scale)
example with Jacobian 4-47
solving 11-109
nonlinear equations (medium-scale) 5-25
analytic Jacobian example 4-20
finite difference Jacobian example 4-23
Gauss-Newton method 5-25
solving 11-109
trust-region dogleg method 5-26
nonlinear least squares 5-22
fminsearch 11-78
fminunc 11-90
large-scale algorithm 6-17
large-scale example 4-49
lsqcurvefit 10-3 11-152
lsqnonlin 11-178
nonlinear programming 5-4

## 0

objective function
return values $4-93$
optimality conditions linear programming 6-21
Optimality measure
first-order 2-26
optimality measure, first-order 2-27
optimget 11-197
optimization
functions by category 10-1
handling infeasibility 4-92
helpful hints 4-91
introduction 5-4
objective function return values 4-93
troubleshooting 4-91
unconstrained 5-6
optimization parameters structure 4-79
optimget 10-4 11-197
optimset 10-4 11-198
Optimization Tool 3-1
functions that apply 10-3
opening 3-2
optimtool 11-204
options 3-10
pausing and stopping 3-7
running a problem 3-6
steps 3-5
optimset 11-198
optimtool 11-204
optimum, global 7-9
options parameters
descriptions 9-8
possible values 11-199
utility functions 10-4
Out of memory error 4-52
output arguments 9-2
output display 4-84
output function 2-31
Output structure 2-30

## P

parallel computing 7-1
Parameters, Additional 2-10
PCG. See preconditioned conjugate gradients
preconditioned conjugate gradients 6-12
algorithm 6-12
in trust-region methods 6-4
preconditioner 4-48
banded 4-57
in PCG method 6-12
predictor-corrector algorithm 6-21
preprocessing 6-23
linear programming 6-20
primal problem 6-20
primal-dual algorithm 6-21
primal-dual interior-point 6-20
projection method
quadprog medium-scale algorithm 11-216
sequential quadratic programming (SQP) 5-34

## Q

quadprog 11-207
large-scale example 4-66
quadratic programming 5-4
fmincon 11-56
large-scale algorithm 6-18
large-scale example 4-66
quadprog 11-207
quasi-Newton method implementation 5-11
quasi-Newton methods 5-7
fminunc medium-scale algorithm 11-90
unconstrained optimization 5-7

## $\mathbf{R}$

reflective line search 6-18
reflective steps 6-15
definition 6-16
residual 5-19
revised simplex algorithm 5-39
Rosenbrock's function 1-4 2-5 2-9 4-20 4-23 5-6
5-9 5-20 to 5-21 5-31 11-75

## $S$

sampling interval 11-101
secular equation 6-4
semi-infinite constraints 10-2 11-93
Sherman-Morrison formula 6-22
signal processing example 4-38
simple bounds 4-8
simplex search 11-77
unconstrained optimization 5-6
Simulink ${ }^{\circledR}$, multiobjective example 4-29
singleton rows 6-23
slack 6-6
solving nonlinear systems of equations 5-25
sparsity pattern, Jacobian 4-49
sparsity structure, Hessian 4-56
SQP method 5-30
fmincon 11-56
implementation 5-34
steepest descent 11-90
stopping criteria 2-28
stopping criteria, large-scale linear
programming 6-23
structural rank 6-23
subspace
determination of 6-4
subspace, two-dimensional 6-4
systems of nonlinear equations
solving 11-109

## T

trust region 6-3
trust-region dogleg method (medium-scale)
implementation for nonlinear equations 5-27
systems of nonlinear equations 5-26
two-dimensional subspace 6-4
linprog 11-151
quadprog 11-217
unconstrained minimization
fminsearch 11-72
fminunc 11-79
large-scale example 4-53
medium-scale example 4-5
one dimensional 10-2 11-29
unconstrained optimization 5-6
upper bounds 4-8

## V

variable-step ODE solver 4-34
Variables, Additional 2-10

## W

warning
equality constraints inconsistent, quadprog 11-217
infeasible solution, linprog 11-150
infeasible solution, quadprog 11-217
stuck at minimum, fsolve 11-121
unbounded solutions, linprog 11-151
unbounded solutions, quadprog 11-217
warnings displayed 4-92

## Z

zero curvature direction 6-12
zero finding 11-109
zero of a function, finding 11-124

## U

unbounded solutions warning


[^0]:    "Function Arguments" on page 9-2 contains general descriptions of arguments returned by fgoalattain. This section provides function-specific details for attainfactor, exitflag, lambda, and output:

[^1]:    ## Algorithm

    Limitations

    References

    See Also
    fminbnd is an M-file. The algorithm is based on golden section search and parabolic interpolation. Unless the left endpoint $x_{1}$ is very close to the right endpoint $x_{2}$, fminbnd never evaluates fun at the endpoints, so fun need only be defined for $x$ in the interval $x_{1}<x<x_{2}$. If the minimum actually occurs at $x_{1}$ or $x_{2}$, fminbnd returns an interior point at a distance of no more than 2*TolX from $x_{1}$ or $x_{2}$, where TolX is the termination tolerance. See [1] or [2] for details about the algorithm.

    The function to be minimized must be continuous. fminbnd might only give local solutions.
    fminbnd often exhibits slow convergence when the solution is on a boundary of the interval. In such a case, fmincon often gives faster and more accurate solutions.
    fminbnd only handles real variables.
    [1] Forsythe, G.E., M.A. Malcolm, and C.B. Moler, Computer Methods for Mathematical Computations, Prentice Hall, 1976.
    [2] Brent, Richard. P., Algorithms for Minimization without Derivatives, Prentice-Hall, Englewood Cliffs, New Jersey, 1973.
    @ (function_handle), fminsearch, fmincon, fminunc, optimset, optimtool, "Anonymous Functions"

[^2]:    Output "Function Arguments" on page 9-2 describes arguments returned by Arguments fmincon. This section provides function-specific details for exitflag, lambda, and output:

[^3]:    Exiting due to infeasibility: An all-zero row in the constraint matrix does not have a zero in corresponding

